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Foreword

It’s my pleasure to welcome you to Mariánské Lázně on the occasion of

the 9th Workshop on Uncertainty Processing (WUPES 2012),

to be held from September 12 to September 15, 2012. This traditional interna-
tional workshop, organized in the Czech Republic every three years since 1988,
is devoted to the (mathematical) methods for representing, managing and ex-
ploiting uncertain knowledge for (computer-aided) decision making. There are
other conferences devoted to this topic, but this workshop is special in some
aspects. First, its aim is to foster creative intellectual activity and exchange the
ideas in an informal atmosphere. For this reason, the tradition is to limit the
number of participants. Second, the workshop is typically held in some (small)
quite place, so that the participants are not disturbed in their discussion and,
also have a chance to enjoy the beauty of the country. Third, there is a group
of traditional participants and special topics to be discussed at the workshop.

This booklet consists of the papers accepted to WUPES 2012. The contri-
butions were chosen by the Programme Committee on the basis of two-page
abstracts. The final submissions were then processed by the editors of the
Proceedings. Because the proceedings papers are considered to be preliminary
versions of future journal papers, they have not been reviewed. A carefully
selected subset of proceedings papers is tratiditionally published in a special
journal issue after the regular review procedure.

The proceedings of WUPES 2012 contain 23 contributions and the organiz-
ers expect about 30 participants. Besides traditional themes, like the coherence
theory, Bayesian networks, the possibility theory, belief functions and condi-
tional independence, further topics emerged; namely, fuzzy logic, the entropy
and algebraic (methods in) statistics.

The venue of the workshop, Mariánské Lázně, also known under German
name Marienbad, is the second biggest spa town in the Czech Republic. It is
placed in the western part of the Czech Republic and surrounded by green hills.
There is about 100 springs of mineral water in the neighborhood of this town,
built about two hundred years ago. I hope that the participants of WUPES 2012
will enjoy this mosaic of parks and yellow-and-white houses. The organizers of
the workshop are indebted to the town of Mariánské Lázně for providing the
lecture hall and for the help with the local organization.

Let me conclude by expressing my thanks to all my colleagues and friends
for their commitment to prepare this event: the members of the Organizing
Committee, the members of the Programme Committee, the editors of the Pro-
ceedings, the local people in the venue, and to the sponsoring organizations.
I wish you a nice stay in Mariánské Lázně.

Milan Studený
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The Irrelevant Information Principle

for Collective Probabilistic Reasoning

Martin Adamč́ık and George Wilmers

School of Mathematics

The University of Manchester

martin.adamcik@manchester.ac.uk, george.wilmers@gmail.com

Abstract

Within the framework of discrete probabilistic uncertain reasoning a large
literature exists justifying the maximum entropy inference process, ME, as being
optimal in the context of a single agent whose subjective probabilistic knowledge
base is consistent. In [9] Paris and Vencovská, extending the work of Johnson and
Shore [6], completely characterised the ME inference process by an attractive
set of axioms which an inference process should satisfy, thus providing a quite
di↵erent justification for ME from that of the more traditional possible worlds
or information theoretic arguments whose origins go back to nineteenth century
statistical mechanics as in [8] or [5].

More recently the second author in [10] and [11] extended the Paris-Vencovská
axiomatic approach to inference processes to the context of several agents whose
subjective probabilistic knowledge bases, while individually consistent, may be
collectively inconsistent. In particular he defines a “social entropy process”,
SEP, which is a natural extension of the single agent ME. However, while SEP

is known to possess many attractive properties, these are almost certainly insu�-
cient to uniquely characterise SEP. It is therefore of particular interest to study
those Paris-Vencovská principles valid for ME whose immediate generalisations
to the multiagent case are not satisfied by SEP. One of these principles is the
Irrelevant Information Principle, a principle which very few inference processes
satisfy even in single agent context. In this paper we will investigate whether
SEP can satisfy an interesting modified generalisation of this principle.

1 Motivation

In this paper we consider the following fundamental problem of discrete multi-agent
probabilistic uncertain reasoning. We are interested in finding a general procedure
which, given a finite set of agents, each possessing a subjective probabilistic knowl-
edge base over a finite space of possible events, yields a single probability function or
social probability function defined over that space of events, which optimally represents
the joint knowledge of all the agents, and such that that general procedure satisfies
some natural criteria derived from logical or rational considerations.
There are several initial assumptions we want to make. Firstly we assume that the
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probabilistic knowledge of each particular expert is consistent with the laws of prob-
ability. Secondly all agents are assumed to have equal status, and the final social
probability function should not depend on the order in which the agents’ knowledge
bases are considered.

We illustrate the motivation behind this idea by a toy two-agent example.

Imagine that two safety experts are dealing with a fault in a chemical factory pro-
ducing nitrogen fertilizers. There is a problem with ammonia supply. Ammonia is
stored in a tank connected to the rest of the factory by a valve which is operated by an
electric circuit.

The first expert believes that there is a 40% chance of a mechanical fault on the
valve. The second expert comes up with a di↵erent opinion that there is a 80% chance
that there is a mechanical problem on that valve. Moreover, the first safety expert
thinks that there is a 70% chance that there is a malfunction of the electric circuit.
We suppose that both experts have no other knowledge related to this problem.

The joint beliefs (knowledge) of the two experts are inconsistent in this case. In
practice, knowledge is usually incomplete and o↵ers a lot of uncertainty; the first expert
in above example has no knowledge about, for instance, the conditional probability
that there is a fault on the the valve given that there is a fault on the electric circuit.
The situation becomes more complicated once the second agent is considered whose
knowledge is inconsistent with the knowledge of the first agent. Altogether we can ask
the following question:

Question. How should a rational adjudicator whose only knowledge consists of what is
related to him by the two experts above, evaluate the probability that both the valve and
the electric circuit are faulty, based only on the experts’ subjective knowledge specified
above and without any other assumptions?

Assuming, as we do in this paper, that each agent’s uncertain knowledge can be
represented within the framework of probability theory, we can describe the knowledge
of each expert by a set of possible probability distributions over four possible mutually
exclusive cases: (1) a fault on the valve and no fault on the electric circuit, (2) a fault
on the valve and a fault on the electric circuit, (3) no fault on valve and a fault on the
electric circuit and (4) no faults on the valve or on the electric circuit (i.e. in this case
there is a problem with something else). We can denote the corresponding probabilities
that (1),(2),(3) and (4) is true by real numbers w1, w2, w3 and w4 from the interval
[0, 1] which sum to 1. Based on the knowledge of the first expert w1 + w2 = 0.4
and w1 + w3 = 0.7. Any probability function (x, 0.4 � x, 0.7 � x, x � 0.1), where
x 2 [0.1, 0.4], is consistent with the knowledge of the first expert. Similarly, the
second expert admits any (x, 0.8�x, y, 0.2�y) where x 2 [0, 0.8] and y 2 [0, 0.2]. This
representation of the knowledge of the experts naturally abstracts from the complex
nature of the actual problem. However we are not interested here in the particular
manner in which this abstraction from the infinite complexity of a real world problem
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has been accomplished. Instead we will focus on the following narrower, abstract, but
more clearly defined question:

Question. Given two (or more) sets of probability functions corresponding to the

knowledge bases of corresponding experts as in the above example, which single prob-

ability function best represents the combined probabilistic knowledge of the experts?

Naturally, we would like to find a general procedure doing this for any knowledge
bases which satisfies some natural principles. We will formalize this idea in a general
setting in the next section.

2 Formalization

Let L = {a1 . . . ah} be a finite propositional language where a1, . . . , ah are proposi-
tional variables. In our example n = 2, a1 stands for sentence “a fault on the valve”
and a2 stands for sentence “a fault on the electric circuit”. By the disjunctive normal
form theorem any L-sentence can by expressed as a disjunction of atomic sentences
(atoms) and we will denote a maximal set of logically inequivalent atoms {↵1, . . . ,↵J},
where J = 2h, by At(L). The atoms of At(L) are thus mutually exclusive and exhaus-
tive.

A probability function w over L is defined by a function w : At(L) ! [0, 1] such

that
PJ

j=1 w(↵j) = 1. A value of w on any L-sentence ' may then be defined by
setting

w(') =
X

↵j |='

w(↵j).

We will denote the set of all probability functions over L by DL. For the sake of
simplicity we will often write wj instead of w(↵j), but note this has a sense only for
atomic sentences. Given a probability function w 2 DL, a conditional probability is
defined by Bayes’s formula

w('| ) = w(' ^  )
w( )

for any L-sentence ' and any L-sentence  such that w( ) 6= 0 and is left undefined
otherwise.

Now consider two distinct propositional languages L1 = {a1, . . . , ah1} and L2 =
{b1, . . . , bh2}. Let At(L1) = {↵1, . . . ,↵J} and At(L2) = {�1, . . . ,�I}. Then every
atom of the joint language L1[L2 can be written uniquely (up to logical equivalence)
as ↵j ^ �i for precisely one 1  j  J and precisely one 1  i  I. With only a slight
abuse of notation, for an L1 [L2-probability function r we will often write rji instead
of r(↵j ^ �i), in a similar way as for an L1-probability function v we write vj instead
of v(↵j).

Now notice that |= ↵j $
WI

i=1 ↵j^�i. Therefore, the marginal probability function

whose j-th value is given by
PI

i=1 rji is the projection of an L1[L2-probability function
r to the language L1. We will denote it by r|L1 . Similarly if � is a set of L1 [ L2-
probability functions, we denote the set {v|L1 : v 2 �} by �|L1 . Also if v is an
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L1-probability function and w is an L2-probability function then v · w defined by
v ·w(↵j ^ �i) = vjwi is an L1 [ L2-probability function such that (v ·w)|L1 = v.

A (probabilistic) knowledge base K over L is a set of constraints on probability
functions over L such that the set of all probability functions satisfying the constraints
in K forms a nonempty closed convex subset VK of DL. VK may be thought of as the
set of possible probability functions of a particular agent which are consistent with
her subjective probabilistic knowledge base K. In the sequel we shall loosely identify
K with VK, and may also refer to such a VK as a knowledge base. Note that the non-
emptiness of VK corresponds to the assumption that K is consistent, while if K and F

are knowledge bases then the knowledge base K[F corresponds to VK[F = VK \ VF.
The set of all knowledge bases VK over L is denoted by CL.

In the toy example, the knowledge of the first expert can be represented by the
knowledge base K which consist of a set of linear constraints on a probability function
w = (w1, w2, w3, w4) defined over the atomic sentences a1 ^a2, a1 ^¬a2, ¬a1 ^a2 and
¬a1 ^ ¬a2. Then K = {w1 + w2 = 0.4, w1 + w3 = 0.7} and VK = {(x, 0.4 � x, 0.7 �
x, x� 0.1) : x 2 [0.1, 0.4]}.

Given K 2 CL1 note that the underlying language L1 is implicitly understood in
the notation VK which should more properly be denoted V

L1
K . Thus if L1 ⇢ L then

K is also in CL and V

L
K = {w 2 DL : w|L1 2 V

L1
K }. For simplicity we shall normally

just write VK when the appropriate language is understood.
We now define the central notion which maps any given sequence of knowledge

bases to a single probability function termed the social probability function for that
sequence. A social inference process S defines for each L and n � 1 a function

SL : CL⇥ . . .⇥ CL| {z }
n

! DL.

The number n here intuitively represents the number of distinct agents or distinct
sources of information.

The restricted notion S (or SL) in the case of a single knowledge base or agent, i.e.
when n = 1, is simply called an inference process and such inference processes have
been extensively studied by Paris, Vencovská and others ([6], [8], [9], [5] or [4]).

As was noted above, a consistent knowledge base K yields a set of possible prob-
ability functions VK consistent with K. In the case of single agent with knowledge
base K there are several possible procedures to choose a specific probability function
from VK. However by the traditional possible worlds modeling or information theo-
retic arguments whose origins go back to nineteenth century statistical mechanics as
in [8] or [5], the maximum entropy inference process ME has been justified as being
optimal, where MEL(K) is defined as that unique probability function w in VK which
maximizes the Shannon entropy E(w) of w given by

E(w) = �
JX

j=1

w(↵j) logw(↵j).

E is a strictly concave function and therefore it attains a unique maximum over any
nonempty closed convex region VK of DL.
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A quite di↵erent justification for ME to the traditional ones was described in [6] by
Johnson and Shore. Their work was developed by Paris and Vencovská in [9] where
they showed that a list of principles based on symmetry and consistency uniquely
characterises ME. It seems fruitful to look at the axiomatic approach also in the
more general context of a social inference process. Accordingly we may ask:

What general principles should a social inference process S satisfy in order to

ensure that for given knowledge bases, and in the absence of any other information, S
chooses a social probability function according to rational criteria?

We might hope that ultimately such a set of rational principles may determine
uniquely a particular social inference process S.

3 Language Invariance and Irrelevant Information

In this section we examine how certain fundamental invariance principles formulated
by Paris and Vencovská for an inference process (see [7]) can be extended to the notion
of a social inference process.

An obvious question we need to ask regarding social inference processes is whether
they depend on the choice of a particular propositional language L = {a1, . . . , ah}.
For fixed S, L, ' 2 SL and K1, . . . ,Kn 2 CL consider SL(K1, . . . ,Kn)('). It would
seem to be irrational to change this value if L is extended by a set of propositional
variables {b1, . . . , bk}, all distinct from the variables of L, provided that we have not
supplied any new knowledge. Following [7] we will formulate this as the following
principle:

LI [Language Invariance Principle]. A social inference process S satisfies language

invariance if whenever L1 and L2 are languages with L1 ✓ L2 and K1, . . . ,Kn 2 CL1,

then

SL1(K1, . . . ,Kn)(') = SL2(K1, . . . ,Kn)(')

for any L1-sentence '.

Following [7] we can also ask a di↵erent question. What will happen if alongside
the new propositional variables, new knowledge concerning these variables is also pro-
vided which contains no reference to the old variables. Again, it would seem to be
rational that the value of a social inference process on a sentence that is formulated
in original language should not change. This leads us to

IIP [The Irrelevant Information Principle]. Let L = L1 [ L2 where L1 and L2

are disjoint propositional languages, and let K1, . . . ,Kn and F1, . . . ,Fn be knowledge

bases formulated for the languages L1 and L2 respectively. Then for any L1-sentence '

SL(K1 [ F1, . . . ,Kn [ Fn)(') = SL(K1, . . . ,Kn)(').

In the case when n = 1 this principle plays a crucial role in the characterisation of
ME in [9]. Nevertheless, despite its intuitive plausibility this principle is in fact very
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hard to satisfy; indeed although ME satisfies this principle, almost all other commonly
used (single agent) inference processes do not do so (see [7] and [4] for details).

IIP appears even harder for a social inference processes to satisfy. However, in this
multi-agent case we might argue that this principle is just too strong. If knowledge
provided by agents for the language L2 is inconsistent then the addition of such new
knowledge may provide us with more information on how strongly the agents disagree,
which in turn may a↵ect our evaluation of the knowledge concerning L1. However, if
the new knowledge does not change the level of disagreement as is the case when the
new knowledge of all the agents is jointly consistent, then the principle of irrelevant
information is arguably more justified. Accordingly we formulate:

CIIP [The Consistent Irrelevant Information Principle]. Let L = L1 [ L2

where L1 and L2 are disjoint propositional languages. Let K1, . . . ,Kn and F1, . . . ,Fn

be knowledge bases formulated for the languages L1 and L2 respectively, and suppose

that F1, . . . ,Fn are jointly consistent. Then for any L1-sentence '

SL(K1 [ F1, . . . ,Kn [ Fn)(') = SL(K1, . . . ,Kn)(').

Assuming LI this last equation is equivalent to

SL(K1 [ F1, . . . ,Kn [ Fn)(') = SL1(K1, . . . ,Kn)(').

For instance, in the toy example of section 1 the information of both experts about
a fault on the electric circuit is both consistent and a priori irrelevant to the probability
that there is a fault on the valve. Hence if we want to know only the probability that
there is a fault on the valve, then applying the CIIP we need consider only the fact
that the first expert states that this probability is 40% and the second states that this
probability is 80%.

4 The Social Entropy Process

In this section we define a particular social inference process formulated by the second
author in [10] and [11]. The Social Entropy Process SEP, is defined by the following
two stage process. At the first stage we define the set �L(K1, . . . ,Kn) as those prob-
ability functions v which globally minimise the sum of Kullback-Leibler divergences
(cross-entropies)

nX

i=1

CE(v,w(i)) =
nX

k=1

JX

j=1

vj log
vj

w

(k)
j

(1)

subject only to the conditions that w(1) 2 VK1 , . . . ,w
(n) 2 VKn , where

vj log
vj

w

(k)
j

=

(
0 if vj = 0 and w

(k)
j = 0,

1 if vj 6= 0 and w

(k)
j = 0.

Recall that vj and w

(k)
j stand for v(↵j) and w

(i)(↵j) respectively, where ↵j is an atom
and there are J (logically inequivalent) atoms in At(L).
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It is not di�cult to see (see [11]) that �L(K1, . . . ,Kn) is nonempty if there is

some atom ↵j such that for no i is it the case that for all w 2 VKi w(↵j) = 0. Under
this condition �L(K1, . . . ,Kn) is well-defined. From now on we shall consider only
n-tuples of knowledge bases K1, . . . ,Kn which satisfy this condition. Note that the
definition of a social inference process is not much restricted by such an assumption.

In [11] it is proved that �L(K1, . . . ,Kn) is also a closed convex region of DL and
therefore there is a unique probability function in �L(K1, . . . ,Kn) having maximal
entropy, and we will denote this function byMEL(�L(K1, . . . ,Kn)). Therefore, at the
second stage of the definition we set SEPL(K1, . . . ,Kn) = MEL(�L(K1, . . . ,Kn)).
It is clear that SEPL coincides with MEL in the case when n = 1 and, it is straight-
forward to show that SEP is language invariant.

The set �L(K1, . . . ,Kn) is often a singleton and in that case the second stage
is essentially redundant. For instance, this happens whenever VKk is a singleton for
some k. The function which maps K1, . . . ,Kn to �L(K1, . . . ,Kn) is therefore called
the weak social entropy process and is denoted by WSEP(K1, . . . ,Kn).

For any v 2 �L(K1, . . . ,Kn) there is an n-tuple w

(1) 2 VK1 , . . . ,w
(n) 2 VKn

minimizing
Pn

k=1 CE(v,w
(k)) defined in (1). We will denote the set of all such n-

tuples by �L(K1, . . . ,Kn).

Lemma 4.1. The following are equivalent:

(i) The probability functions v, w(1)
, . . . ,w

(n) minimize (1) subject only to w

(1) 2
VK1 , . . . ,w

(n) 2 VKn .

(ii) w

(1)
, . . . ,w

(n) maximize
PJ

j=1(
Qn

k=1 w
(k)
j )

1
n , subject only to w

(1) 2 VK1 , . . . ,

w

(n) 2 VKn , and vj =
(
Qn

k=1 w(k)
j )

1
n

PJ
j=1(

Qn
k=1 w(k)

j )
1
n

for all j = 1, . . . , J .

For a proof see [11]. We will define the maximal value of
PJ

j=1(
Qn

k=1 w
(k)
j )

1
n

subject to w

(1) 2 VK1 , . . . ,w
(n) 2 VKn to be ML(K1, . . . ,Kn).

The lemma above implies that SEPL coincides with the logarithmic (or “nor-
malised geometric mean”) pooling operator of decision theory (cf. [2]) in the very
special case when each VKk defines a single probability function.

In addition to the above pleasing properties, SEP satisfies a set of natural princi-
ples listed in [10] and [11] similar to those shown to be satisfied by ME in [9]. However
these are almost certainly not su�cient to characterise SEP in the manner in which
ME was characterised in [9].

Furthermore, although SEP is language invariant, it does not satisfy the Irrelevant
Information Principle IIP. A simple counterexample is provided by the following1.
Let L1 = {p}, L2 = {q} and L = L1 [ L2. Knowledge bases K1 = {w(p) = 0.2},
F1 = {w(q) = 0.9}, K2 = {w(p) = 0.4}, F2 = {w(q) = 0}. There is only one
L-probability function w

(2) 2 VK2[F2 : (0, 0.4, 0, 0.6). Hence

ML(x) =
p
0.4(0.2� x) +

p
0.6(�0.1 + x),

1
A counterexample to IIP for SEP was first found by Soroush Rafiee Rad (private communication,

2010).
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which is maximal for x = 0.16.

SEP(K1 [ F1,K2 [ F2)(p) =

p
0.4(0.2� 0.16)p

0.4(0.2� 0.16) +
p
0.6(�0.1 + 0.16)

= 0.4 6=

6=
p
2p

2 + 2
p
3
=

p
0.08p

0.08 +
p
0.48

= SEP(K1,K2)(p).

Since IIP in its single agent variant played a crucial role in the characterisation
of ME this failure could be interpreted as a significant criticism of SEP. However,
while this principle may be too strong in the multi-agent case, note that the weaker
CIIP principle may still be regarded as a natural generalization of the single agent
IIP since it reduces to IIP for the case n = 1.

We say that WSEP satisfies CIIP if whenever L = L1 [L2 where L1 and L2 are
disjoint propositional languages and K1, . . . ,Kn and F1, . . . ,Fn are knowledge bases
formulated for the languages L1 and L2 respectively such that F1, . . . ,Fn are jointly
consistent, then

WSEPL(K1 [ F1, . . . ,Kn [ Fn)|L1 = WSEPL1(K1, . . . ,Kn).

We prove that WSEP satisfies CIIP in the following section. However except in the
cases when �L1(K1, . . . ,Kn) is a singleton the question whether SEP also satisfies
CIIP remains open.

5 WSEP satisfies CIIP

In what follows we will fix two distinct propositional languages L1 = {a1, . . . , ah1}
and L2 = {b1, . . . , bh2}. Let L = L1[L2 and let At(L1) = {↵1, . . . ,↵J} and At(L2) =
{�1, . . . ,�I}.

For r 2 SL, to simplify the notation we will often denote r|L1(↵j) by rj·. We
will also denote the conditional probability function r(�i|↵j) by ri|j . It follows that
rji = rj·ri|j , i.e. the value rji can be computed as the product of the projection of r
to L1 on the L1-atom ↵j and the conditional probability r(�i|↵j).

Lemma 5.1. Let w(k)
j � 0 be real numbers for all 1  j  J and 1  k  n where

k, j, J, n 2 N. Then
JX

j=1

(
nY

k=1

w

(k)
j )

1
n  (

nY

k=1

JX

j=1

w

(k)
j )

1
n . (2)

Equality holds if and only if either there are real constants l

(1)
> 0, . . . , l(n) > 0

such that l

(1)(w(1)
1 , . . . , w

(1)
J ) = l

(2)(w(2)
1 , . . . , w

(2)
J ) = . . . = l

(n)(w(n)
1 , . . . , w

(n)
J ) or

PJ
j=1 w

(k)
j = 0 for some k.

This lemma is Hölder’s inequality, see [3], and it will be very useful in the following
proof.
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Lemma 5.2. Let K1, . . . ,Kn 2 CL1, F1, . . . ,Fn 2 CL2 be such that F1, . . . ,Fn are
jointly consistent.

(a) If v 2 �L1(K1, . . . ,Kn) and t is an L2-probability function such that t 2
Tn

i=1 VFi

then v · t 2 �L1[L2(K1 [ F1, . . . ,Kn [ Fn). In particular F1, . . . ,Fn could be empty
in which case t can be arbitrary.

(b) Let r 2 �L1[L2(K1 [F1, . . . ,Kn [Fn). Then r|L1 2 �L1(K1, . . . ,Kn). Moreover
ML1[L2(K1 [ F1, . . . ,Kn [ Fn) = ML1(K1, . . . ,Kn).

Proof. For a given v 2 �L1(K1, . . . ,Kn) let (p(1)
, . . . ,p

(n)) 2 �L1(K1, . . . ,Kn) be

such that vj =
(
Qn

k=1 p(k)
j )

1
n

ML1 (K1,...,Kn)
. Note that ML1(K1, . . . ,Kn) =

PJ
j=1(

Qn
k=1 p

(k)
j )

1
n .

For a given r 2 �L1[L2(K1 [ F1, . . . ,Kn [ Fn) let

(w(1)
, . . . ,w

(n)) 2 �L1[L2(K1 [ F1, . . . ,Kn [ Fn)

be such that rji =
(
Qn

k=1 w(k)
ji )

1
n

ML1[L2 (K1[F1,...,Kn[Fn)
.

Let us consider probability functions w(1)|L1 , . . . ,w
(n)|L1 . Denote

M =
JX

j=1

(
nY

k=1

w

(k)
j· )

1
n
.

Then M  ML1(K1, . . . ,Kn) since ML1(K1, . . . ,Kn) is maximal. But by the lemma
5.1 also ML1[L2(K1 [ F1, . . . ,Kn [ Fn)  M , hence

ML1[L2(K1 [ F1, . . . ,Kn [ Fn)  ML1(K1, . . . ,Kn). (3)

(a) Let t 2
T

i VFi
. We are going to prove that

(p(1) · t, . . . ,p(n) · t) 2 �L1[L2(K1 [ F1, . . . ,Kn [ Fn). (4)

It is easy to see that p

(1) · t, . . . ,p(n) · t satisfy K1 [ F1, . . . ,Kn [ Fn respectively.
Moreover,

X

j=1,...,J,i=1,...,I

(
nY

k=1

p

(k)
j ti)

1
n =

X

j=1,...,J,i=1,...,I

(
nY

k=1

p

(k)
j )

1
n
ti = ML1(K1, . . . ,Kn),

since
PI

i=1 ti = 1. But from (3) we already know that ML1[L2(K1[F1, . . . ,Kn[Fn) 
ML1(K1, . . . ,Kn) hence (4) is proved.
(b) By the maximality of ML1[L2(K1 [ F1, . . . ,Kn [ Fn) and by (3) we have

ML1[L2(K1 [ F1, . . . ,Kn [ Fn) = M = ML1(K1, . . . ,Kn) (5)

hence
X

j=1,...,J,i=1,...,I

(
nY

k=1

w

(k)
ji )

1
n =

JX

j=1

(
nY

k=1

IX

i=1

w

(k)
ji )

1
n .
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By lemma 5.1 this equality could only occur if for each j there are real constants

l

(1)
j > 0, . . . , l(n)j > 0 such that the proportionality

l

(1)
j (w(1)

j1 , . . . , w

(1)
jI ) = l

(2)
j (w(2)

j1 , . . . , w

(2)
jI ) = . . . = l

(n)
j (w(n)

j1 , . . . , w

(n)
jI )

holds, or w(k)
j· =

PI
i=1 w

(k)
ji = 0 holds for some k.

Let us consider coe�cient j to be fixed. If w(k)
j· = 0 for every k let q·|j be an

arbitrary L2-probability function with value on i-th atom denoted as qi|j . Otherwise

for k̄ such that w(k̄)
j· 6= 0 let us define

qi|j =
w

(k̄)
ji

w

(k̄)
j·

.

Obviously,
IX

i=1

qi|j =
IX

i=1

w

(k̄)
ji

PI
i=1 w

(k̄)
ji

= 1

and hence q·|j is a well defined L2-probability function. Notice that thanks to pro-
portionality the definition does not depend on the choice of k̄:

l

(k̄)
j w

(k̄)
ji

l

(k̄)
j

PI
i=1 w

(k̄)
ji

=
l

(k)
j w

(k)
ji

l

(k)
j

PI
i=1 w

(k)
ji

.

In other words
w

(k)
ji = w

(k)
j· qi|j . (6)

By (5) the projections to L1 satisfy

(w(1)|L1 , . . . , w
(n)|L1) 2 �L1(K1, . . . ,Kn).

Then for L1-probability function v defined by vj =
(
Qn

k=1 w(k)
j· )

1
n

PJ
j=1(

Qn
k=1 w(k)

j· )
1
n

we have that

v 2 �L1(K1, . . . ,Kn).
Moreover,

rji =
(
Qn

k=1 w
(k)
ji )

1
n

PJ
j=1

PI
i=1(

Qn
k=1 w

(k)
ji )

1
n

=
(
Qn

k=1 w
(k)
j· qi|j)

1
n

PJ
j=1

PI
i=1(

Qn
k=1 w

(k)
j· qi|j)

1
n

= vjqi|j ,

where rj· =
P

i vjqi|j = vj and ri|j = rji
rj·

=
vjqi|j
rj·

= qi|j which gives us the required

result that r|L1 2 �L1(K1, . . . ,Kn). ⇤

Theorem 5.3. WSEP satisfies CIIP.

This follows at once from lemma 5.2.
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Theorem 5.4. SEP satisfies the CIIP in the special case when there is only one
probability function in �L1(K1, . . . ,Kn), say �L1(K1, . . . ,Kn) = {w}. Note that by
theorem 3.8 in [11] this holds whenever at least one of the agents has a knowledge base
which fixes a probability function for L1.

Proof. By lemma 5.2 (b) clearly

SEPL1[L2(K1 [ F1, . . . ,Kn [ Fn)|L1 = r|L1 = w = SEPL1(K1, . . . ,Kn).

⇤

6 Conclusion

In this paper we have sought to investigate the Irrelevant Information Principle in
the context of multi-agent uncertain reasoning. While this principle plays a crucial
role in an axiomatic characterization of ME given in [9], we have argued that the
most obvious generalization of the Irrelevant Information Principle to the multi-agent
context may be too strong. We have proposed an alternative generalization called the
Consistent Irrelevant Information Principle for a social inference process (CIIP). We
have described the promising social inference process SEP first formulated in [10] and
its weaker counterpart WSEP. We have shown that WSEP satisfies CIIP and that
SEP satisfies CIIP in many cases. The question as to whether SEP satisfies CIIP

remains open.
The authors are very grateful to Dr Alena Vencovská for spotting a mistake in the

original proof of lemma 5.2. The first author is supported by Marie Curie Early Stage
Researcher Grant (MALOA - from Mathematical Logic to Applications) financed by
the European Commission.
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Abstract

At the present era, the most of the facets of human life are exposed to an
informational explosion. This assertion is valid especially for the fields of busi-
ness and managerial decision making. The immense unstructured information
sources indispensably demand automatic methods for extraction of the context
and e�cient handling of the texts. The requirement of automaticity implies
the necessity to develop uninformed approaches in text mining (more profound
consideration can be found in [4]).

This contribution thus belongs to the area of text mining and ranks among
uninformed tools for the analysis of text corpora, namely for the automatic
classification of documents into groups according to a language based on non-
informative words. The other important feature is the removal of related words
(or “desynonymization”) of given text.

1 Introduction

First of all, let us specify the prerequisites of the approach. The presented method
assumes that alphabetic scripts are used in the considered texts, requires a su�cient
size of the particular documents (it means at least thousands of words, for an example
see word counts in Table 1) and expects their monolinguality (the text corpus itself
is assumed to be multilingual). The corpus is dynamic which means that we build it
up by sequential addition of considered documents together with information about
the membership in monolingual group. Based on these requirements, the first step of
addition to the corpus consist of preprocessing operations. We start with a search of
non-informative words based on frequency analysis of the considered text. This step
corresponds to stopwords as one of the features used for language identification (see
e.g. [3]).

As the first approximation, we assume that a significant portion of non-informative
words must belong to the most frequent words in the document. Such words are then



14 V. B

´

INA, J. P

ˇ

RIBIL

Table 1: Word counts, languages and values of threshold for small Gutenberg corpus.
Title of ebook Word count Language Criterion

A Vuela Pluma 83334 spanish 0.00122
Reise in die Aequinoctial 106053 german 0.00117
At Sundown 5904 english 0.00126
Autour de la Lune 59022 french 0.00120
Tre Racconti Sentimentali 28039 italian 0.00040
Briefe aus dem Gefängnis 13347 german 0.00090
Cidades e Paizagens 17342 portuguese 0.00067
Die Geschwister 5368 german 0.00083
Hendes Højhed 17203 danish 0.00168
Judith 23263 dutch 0.00161
King Henry the Eighth 26985 english 0.00059
La princesse de Cleves 64248 french 0.00119
Marta y Maŕıa 90234 spanish 0.00039
Nature and Culture 47055 english 0.00047
Nervosos, Lymphaticos . . . 38841 portuguese 0.00055
Octavia 12216 portuguese 0.00057
Principles of Orchestration 42776 english 0.00034
Rautatie 22918 finnish 0.00202
Suicida 5271 portuguese 0.00054
Wilde Bob 57225 dutch 0.00226

compared to the most frequent words of particular monolingual groups in corpus.
When su�cient proportion of same words is detected, the document is classified in
the corresponding language group.

The subsequent step is the “quasi-lemmatization” or “desynonymization” of the
text based on the employment of modified (weighted) Levenshtein distance measure,
which takes into account possible deletions, insertions or substitutions in two compared
sequences together with a possibility to use the additional operation of transposition
(see e.g. [6]). The procedure of “quasi-lemmatization” itself is based on sequential ad-
dition of the actually processed text into (already) quasi-lemmatized corpus. However,
this approach demands comparison of all informative words in actually analyzed text
with all words in the corpus, which in case of larger corpora appears to be compu-
tationally infeasible. Therefore, a heuristics based on proportions of the same letters
can be applied in order to select rather similar words further examined using modified
Levenshtein measure of distance.

2 Preprocessing

As the very first step in the processing of the text document we perform two usual
linearization (document content filtration) steps - (a) markup and format removal
and (b) tokenization (lower case conversion, removal of the digits, special symbols,
punctuation, etc). Another reasonable preliminary step is a removal of very short
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(uninformative) words.

3 Determination of stopwords

As a stopword we consider commonly used words not important for the content of
document. In the classical concept of text minning the stopwords are given in a list
separately for each language and the stopword lists slightly di↵er in various approaches
and in particular software tools. Such stopwords list need to be defined manually which
is no use in an uninformed approach.

This step is based on the construction of term-document matrix containing fre-
quencies of particular terms in the whole corpus of documents. A term is considered
to be stopword if its occurrence expressed as percentage is above some threshold1. The
question arises: How to determine the value of threshold? A possible answer lies in
the computational experiments.

Let us consider the following example, a small document corpus containing twenty
ebooks (see first column of Table 1) from Project Gutenberg web pages [2]. It should
be stressed that the languages of particular books mentioned in the table are presented
only for sake of clarity; the stopword search and consequent steps are still uninformed.

As we already mentioned as a stopword we consider any term appearing in the
document with su�cient frequency. Which value of relative frequency can serve as a
threshold? To find a suitable value we perform a computations with di↵erent setting
and evaluate some suitable criterion allowing a reasonable choice based on the knowl-
edge of document’s language and a corresponding list of stopwords in R text mining
package [5].

The determination of threshold is based on comparison of the frequency based
stopword list and known o�cial list of stopwords. Such criterion should obey the
following requirements. The optimal value is achieved when the highest proportion of
true stopwords (from a tm list) is found, but it is also crucial to keep the number of
false stopwords limited. Therefore we propose a criterion in the form of proportion
product

Q =
n̂t

N̂
· n̂t

Nt
,

where Nt means the number of all true stopwords from tm package, N̂ means the
number of all stowords found by the frequency based approach and n̂t is the size of
intersection of both groups, i.e. the number of all true stopwords found by frequency
based approach. As a result, a value of threshold is chosen resulting into the highest
criterion value.

To illustrate the typical shape of criterion curve we draw corresponding graphs for
the first occurrence of each language in our example (see Figure 1).

For our corpus of twenty documents we found the following values of threshold.
Average value of the twenty threshold values is 0.00099, hence the choice of value 0.001
appears to be reasonable as an estimate relative frequency separating the stopwords
from the other terms.

1
An alternative approach can avoid definition of any threshold but can simply consider as stop-

words, let us say, one hundred most frequent words in the document.
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Figure 1: Sensitivity of stopword search on value of threshold for selected documents.
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4 Language categorization

In the preceding section we described a frequency based approach to the identification
of stopwords in a monolingual document. Now on the basis of this capability we
perform the categorization of languages in the documents incorporated to the corpus.

As we mentioned above the corpus is dynamic. It means that we begin with a first
document where the stopwords are identified. This document is labeled as language
number 1. During the process of addition of any subsequent document to a corpus
we find its stopwords and classify as one of the preceding languages in the case when
su�cient proportion of stopwords is common. In the opposite case we assign next free
number as a label of still unnoticed language.

In the experiments with a small Gutenberg Project corpus we found out that
reasonable proportions of common stopwords in documents writen in same languages
appear to lay somewhere between 20 and 30 percents. When the smaller proportion
is chosen (in our case less than 18 percent), the method fails to recognize between
spanish and portuguese texts. On contrary, when we expect proportion of common
stopwords as high as 35 percent, the approach begin to create artificial languages
in case of documents somehow di↵ering. In our case the document ”Principles of
Orchestration” began to di↵er.

A useful modification of the method can be proposed. It is based on collecting
of the documents with same language and determination of the stopwords in whole
monolingual subcorpus. Of course, at this point it is reasonable to develop a suitable
heuristics labouring under the knowledge of stopword frequences in each document
without necessity to recompute repeatedly the stopwords in whole monolingual sub-
corpus.

Naturally, the setting of parameters requires more profound analysis and use of
larger corpora but the above stated values appear to be a reasonable starting point.

Let us have a look at the result of language categorization in case of setting the
common proportion of stopwords to the value 0.2 (see Table 2). We can see that
all languages in the corpus were successfully recognized and on the other hand all
document written in the same language were classified into the same group.

As an example of some source of problem in case of technical and other specific
text in Table 3 we present the first fifty stopwords (in alphabetical ordering) from the
document ”Principles of Orchestration”.

The attentive reader surely noticed that a significant proportion of stopwords in this
document is connected with the musical terminology which can be easily considered
as a separate language. Alternatively - with an appropriate setting of parameter - the
methodology can be employed to categorize well distinguished areas of interest.

5 Quasi-lemmatization

As we can observe in Table 3, many stopwords appear in di↵erent forms, in English
usually in singular and plural (in our case e.g. couples if words: case and cases or flute
and flutes). However, this is a general problem arising not only in the procedure of
stopword removal. Moreover, this issue is even more substantial in slavic (and many
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Table 2: The third column presents language categorization in case of 20 percent of
common stopwords.

Title of ebook Language Category

A Vuela Pluma spanish 1
Reise in die Aequinoctial german 2
At Sundown english 3
Autour de la Lune french 4
Tre Racconti Sentimentali italian 5
Briefe aus dem Gefängnis german 2
Cidades e Paizagens portuguese 6
Die Geschwister german 2
Hendes Højhed danish 7
Judith dutch 8
King Henry the Eighth english 3
La princesse de Cleves french 4
Marta y Maŕıa spanish 1
Nature and Culture english 3
Nervosos, Lymphaticos . . . portuguese 6
Octavia portuguese 6
Principles of Orchestration english 3
Rautatie finnish 9
Suicida portuguese 6
Wilde Bob dutch 8

Table 3: The first fifty stopwords in the document “Principles of Orchestration”.
above act all also and another
any are balance bar bass basses
bassoon bassoons before being between brass
bride but can cantabile case cases
cellos certain clarinet clarinets cockerel colour
combination composer di↵erent distribution divided double
doubled doubling each e↵ect employed eng
etc example examples expression fag first
flute flutes
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other) languages, where grammatical cases of the same word di↵er in a su�x.
This problem is usually solved by language-specific tools like stemmers or thesauri.

However, this is not feasible in case of an uninformed approach. We are facing the
need to develop language-independent method for searching the similar words which is
called quasi-lemmatization. As a reasonable choice appears to be the similarity mea-
surement based on the well known string metric Levenshtein distance. This measure
has interesting features, it is typically used in cases when small number of di↵erences
is expected. The operations considered by this measure are addition, removal and
substitution of single letters [6]. Sometimes an additional operation of transposition
is also involved (see [1]), but this appears even more computationally demanding,
therefore we use the classical variant.

Since mutual comparison of all pairs of words using Levenshtein distance is not
computationally feasible, we employ a heuristic method based on significant proportion
of common letters in the pair of compared words. Whenever this heuristic detects suf-
ficient similarity, we refine the recognition of similar words employing the Levenshtein
distance.

5.1 Mutual comparison - a heuristic

As we already stressed, the mutual comparison performed for each pair of words needs
to be simple and fast. We propose a method based on computing of letter frequencies in
both words and their subtraction. This guarantees that all letters with same number of
occurrences in both words cancel out and as nonzero term remain only letters di↵ering
in their counts. If we then sum up the absolute values of these di↵erences we obtain a
criterion usually giving high numbers for di↵erent words and small values for similar
ones

TH =
X

i

|n1i � n2i| .

Index i stands for a summation over all words appearing in both words, n1i is a
frequency of particular letters in the first (and n2i in the second) word.

It is reasonable to use this criterion in a relative manner, namely to compare its
value with a reasonable multiple of average length of both words. E.g. we consider
two words to be similar if

CH · TH = 2.5TH <
N1 +N2

2
,

where CH is a multiplying coe�cient with reasonable values between 2 and 3 (in
examples 2.5 is used) and N1 resp. N2 stand for lengthes of both words.

5.2 Mutual comparison - Levenshtein distance

A heuristic presented in previous part provide some candidates for similar words. More
sophisticated analysis can be performed using Levenshtein string metric [6]. This well
known refines the process and identifies similar pairs. Again, this measure of string
distance can be applied relatively, which means in comparison to an average length of
the two words allowing more di↵erences in longer words. Moreover, if the proportion
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is smaller than some constant (we used value 0.4), pair of words is considered to be
similar.

Now among the pair of similar words one representant is chosen and the other
variant is removed from the corpus (and substituted by the chosen word). This choice
can be based on two alternative principles:

• choice according to the length - the shorter word is chosen assuming that it
represents more fundamental variant,

• choice according to the frequency - more frequent variant is chosen representing
the more obvious word.

We employ the first of preceding two variants.
Let us have a look at the example of comparison results. All pairs of words in

a sample listing bellow passed through the heuristic criterion from Subsection 5.1
with result of similarity. However, the pairs in parentheses (and denoted by the
word rejected) were considered by Levenshtein string metric (see Subsection 5.2) as
di↵erent.

gebirgsart <- urgebirgsarten

gebirgsbevölkerung -> gebirgsvölker

(rejected: gebirgsbildungen, uebergangsbildung)

gebirgsbildungen <- urgebirgsbildungen

(rejected: gebirgskette, gesteigert)

gebirgskette <- kalkgebirgskette

(rejected: gebirgskette, steigerte)

(rejected: gebirgskette, steigerten)

(rejected: gebirgskette, bersteigt)

(rejected: gebirgskette, berstiege)

gebirgskette <- urgebirgsketten

gebirgsland <- gebirgslande

gebirgsland <- gebirgswand

gebirgsschichten -> gebirgsstrichen

(rejected: gebirgsspalten, geistesanlage)

(rejected: gebirgsspalten, granitberges)

The changes accepted by Levenshtein distance measure (not in parentheses) contain
in the listing also hinted direction of a change. It is apparent that sometimes a
problematic change can occur as for example in case of the two last accepted pairs.

The result of such “quasi-lemmatization” strongly depends on language, type of
text and setting of constants but usually leads to a circa fifty percent reduction of the
word count.

6 Conclusions

Authors bring fundamental ideas of preliminary steps necessary to design an e�cient
method for text mining in case of uninformed approach. It is apparent that the



Preliminary steps in uninformed approach to the extraction of context. . . 21

presented techniques are dependent on several constants with seemingly arbitrarily
specified values. These values are not necessarily the optimal ones but were estimated
during several testing runs and - in case of threshold for stopword search - set up using
a criterion based on real and frequency based stopwords’ proportions.

The basic preliminary steps thus consist of stopword search, language classifica-
tion based on stopwords and so called quasi-lemmatization allowing the significant
reduction of terms contained in the corpus.
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Abstract

We intend to provide a characterization of decision models based on partial

information and on choices among conditional acts. Proper representability of

choices in such frameworks can be performed locally and globally: we deal with

local representability. In particular we study partial conditional ordinal relations

among events and complete conditional preferences on acts.

1 Motivations

In a comparative framework it is natural to require that every possible event E of a
family E is strictly more likely then the impossible event �.

Nevertheless we know that, whenever E is an uncountable set, most events must
have zero or one probability, hence, to have a comparative degree of belief representable
by a probability, we can only require that � 4 E and � � ⌦. For this reason Savage
introduced the concept of null events through the condition that any two acts restricted
to one of such event are indi↵erent (and so indistinguishable). This is actually caused
by chosen numerical framework (real valued probability) which does not allow to give
positive degree of belief to all events.

The same problem can be present also in a dynamic situation in which we start
from a possibly finite set of random quantities (acts) and by considering as initial
set of events (state of world) only those induced by the random quantities at hand.
Even when we require all these events Ei to be not-null, i.e. � � Ei, and the relation
among acts is representable by a (positive) probability of the induced comparative
probability, this does not ensure that the comparative probability can be extended
in a way that it is representable by a positive probability, as the following example
shows.

Example 1. Let _, ^ and (·)c denote the usual logical disjunction, conjunction and

negation operator. Let E = {A,B,C} with A ^ B ^ C = �. Consequently the algebra

spanned by E has 7 atoms and it is immediate to see that the comparative degree of

belief

� � A � B � C A _B ⇠ A _B _ C (1)
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is representable by a probability but that necessarily it will result Ac ^Bc ^ C ⇠ �.

In order to have � � A, for any potential event A, it is necessary to resume di↵erent
representability: either through a probability with values on a non-archimedian field
R⇤ ! R or a local one using conditional probabilities (both in R⇤ or in R). In both
cases we will be able to distinguish “zero” events in di↵erent levels of zeroes.

In literature several attempts to generalize Savage axioms to admit negligible even

possible events, partial assessments and dynamic decision have been proposed, see
e.g. [2, 10, 8]. Dynamism can be reduced to reason about classes of preferences, each
relation being conditioned to a specific information. This can be formalized through
conditional preference relations (see again [8]). In this contribution we bring to the
light peculiarities of conditional preference relations with specific representability re-
quirements. We study the representability problem of partial conditional preference
relations which allow negligible events by referring either to non-archimedean condi-
tional probabilities or to real valued conditional probabilities in the sense of de Finetti
[7].

2 Preliminaries

As already mentioned, a preference relation among acts induces a comparative prob-
ability among events. Acts are seen here as simple random quantities with possible
consequences on a set X . Di↵erently from usual approaches, we think the state space
⌦ implicitly described by the values expressed by acts. In particular, a binary act f
expressing only two values x1 and x2 implicitly define an event A as all real situations
letting f to take value x1 and its contrary event Ac as all real situations letting f to
take value x2. Constat act, i.e. those that takes a unique value x 2 X whatever it
happens, implicitly define the sure event ⌦ and its contrary �, the impossible event.
A preference relation 4 among an arbitrary set of acts hence induces a preference
relation, that with an abuse of notation we continue to indicate with 4, among an
arbitrary set of events E . As usual we denote with � and ⇠ the asymmetrical and
symmetrical parts of 4, respectively.

Let us hence focus on a comparative probability on an arbitrary set of events E
which is a binary relation 4 expressing evaluations of the type “no more probable
than”. Axioms for a comparative probability are:

(1) for any E 2 E we have � 4 E and the not-triviality requirement � � ⌦;

(2) 4 is a weak order;

(P) If A,B,C,A _ C,B _ C 2 E are such that A ^ C = B ^ C = � then

A 4 B () A _ C 4 B _ C .

De Finetti instead of (1) required (1’) � � E. We will say a comparative probability
to be positive if it verifies (1’). A comparative probability on E is said to be coherent if
for any finite sub-family F ✓ E and for every �i > 0 and Ei, Fi 2 F such that Ei 4 Fi

it results
sup

X

i

�i(|Fi|� |Ei|)  0 ) Ei ⇠ Fi8i (2)
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where the supremum is taken over all possible values derived from the indicator func-
tions | · | of the events.

Coherence implies that for any event E 2 E we have � 4 E, reflexivity and
transitivity of 4 and axiom (P). On the contrary it does not imply neither (1’) nor
the non-triviality � � ⌦ conditions.

3 Representability

In order to give a representability result based on conditional probabilities taking
values in a non-archimedean field, we refer to [12] for the main notions on hypereals
and we denote by [0, 1]⇤ a non-archimedean extension of the real unit interval [0, 1].

Theorem 1. Let E be a finite set of events and let CE be the set of atoms generated

by E. For a positive comparative probability the following statements are equivalent:

i) (E ,4) [ (� � Ck)Ck2CE is a positive coherent comparative probability;

ii) there exists a probability function p :< E >! [0.1] strictly positive which represents

4|E[CE ;

iii) there exists a non-archimedean probability function p⇤ :< E >! [0.1]⇤ strictly

positive which represents 4|E[CE .

Proof: Equivalence between i) and ii) is the usual representation theorem of coher-
ent comparative probabilities (see e.g. [4]). Equivalence between ii) and iii) directly
derives from the transfer principle between [0, 1] and [0, 1]⇤ (see e.g. [12]), that holds
since the finiteness of E . Strict positivity of p derives from the fact that the represented
comparative probability is positive also on atoms.
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A coherent comparative probability on E can be extended to a coherent compar-
ative probability on E 0 � E , but a positive coherent comparative probability is not
necessarily extendible to positive one. In particular positivity requirement cannot hold
for some atom (see again Example 1). Nevertheless it is important to note that, given
a positive coherent comparative probability on a countable algebra, representable by
a positive probability, there is a positive coherent extension on any countable super-
algebra, representable by a positive probability:

Theorem 2. Let E ,A be two countable algebras such that E ✓ A, given a positive

comparative probability 4, which is representable by a positive probability, there is at

least a positive comparative probability 40
extending 4, which is representable by a

positive probability.

Proof: By hypothesis 4 representable by a positive probability p on E . Let CE be
the set of atoms of E , then p(C) > 0 for any C 2 CE . Moreover, let CA be the set of
atoms of A, then for any K 2 CA there is a unique C 2 CE such that K ✓ C. Given
any C 2 CE consider the set KC = {K 2 CA : K ✓ C}, it follows that the sets KC

are a partition of CA. Furthermore, consider a function p0 on CA defined in such a
way that p0(K) = p(C)

](KC) for any K ✓2 KC with KC finite and p0(Kn) =
p(C)
2n for any

Kn 2 KC with KC countable (but not finite).
From strict positivity of p on CE , it follows the strict positivity of p0 on CA. More-

over,

p(C) =
X

K2KC

p0(K)

even when C is obtained as a countable (but not finite) logical sum of atoms in CA
and X

K2CA

p0(K) =
X

C2CE

X

K2KC

p0(K) =
X

C2CE

p(C)

that is not necessarily 1 when E is not finite and p is not �-additive.
Then, for any A 2 A the function p0 on CA can be extended on A as follows: let

B 2 E be the greatest event, with respect to logical sum, contained in A and let KB
A =S

K✓A^Bc ,K2CA
K, then A = B _KB

A , define p0(A) = p(B) +
P

K✓A^Bc ,K2CA
p0(K).

Notice that when A 2 E (B = A) p0(A) = p(A); moreover if p is �-additive, then p0 is
obtained by �-additivity from p0 on CA and so p0 is a �-additive probability on A.
We need to prove that even when p is just finite additive, also p0 is a finite additive
probability. For any set of pairwise incompatible events A1, ..., An 2 A, there are the
corresponding maximal (with respect to logical sum) events B1, ..., Bn, B 2 E con-
tained in A1, ..., An,_n

i=1Ai, respectively, and the events KBi

Ai
=

S
K✓Ai^Bc

i ,K2CA
K

for i = 1, ..., n and KB
A =

S
K✓A^Bc ,K2CA

K with _n
i=1Bi ✓ B, KB

A ✓ _n
i=1K

Bi

Ai
.

Then, B = _n
i=1(Bi _ (KBi

Ai
^B)) and KB

A = _n
i=1(K

B
A ^KBi

Ai
), so

p0(A) = p0(_n
i=1Ai) = p0(B) + p0(KB

A ) =

p0(_n
i=1Bi) + p0(_n

i=1(K
Bi

Ai
^B)) + p0(_n

i=1(K
Bi

Ai
^KB

A )) =
nX

i=1

p0(Bi) +
nX

i=1

p0(KBi

Ai
^B) +

nX

i=1

p0(KBi

Ai
^KB

A ) =
nX

i=1

p0(Ai).
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The probability p0 on A induces a positive comparative probability 40 that extends 4
on E .

The following example shows a case of the previous result:

Example 2. Let E be an algebra generated by the set {C1, ..., C4} of atoms with Ci =

“the number i is drawn”, for i = 1, 2, 3 and C4 = “a number greater or equal to 4 is

drawn”. We define 4 on E as induced by the probability on E such that p(Ci) = 1/21+i

for i = 1, 2, 3 and p(C4) = 9/16. If we extend the relation on the algebra A of finite

and co-finite subsets of the natural numbers, we could take that one generated by

p0(n) = 1/21+n
for any n 2 N and p0(K) = 1� p0(Kc) for any K ⇢ N co-finite .

Note that such p0 is a finitely additive but not �-additive probability: in fact the

sum over all the atoms n 2 N is 1/2.

Coherence characterization can be maintained to sets of events E with arbitrary
cardinality only for non-archimedean representability. In fact the following Theorem
holds:

Theorem 3. Let E be a set of events and 4 a positive comparative probability on E,
then the following are equivalent:

i) for every finite subset F ✓ E (F ,4|F ) [ (� � Ck)Ck2CF is coherent;

ii) there exists a non-archimedean probability function p⇤ :< E >! [0.1]⇤ strictly

positive which represents 4.

Proof: From Theorem 1 we have that for any finite F ⇢ E there exists a strictly
positive p defined on the algebra generated by E which represents 4 restricted to F [
CF . As already proved in [11][Th.5.1], there exists a strictly positive non-archimedean
probability p⇤ defined on the whole algebra< E > that represents4. The explicit proof
of strict positivity of p⇤ derives directly from representability of a positive comparative
probability (see again last rows of the proof of Th.5.1 in [11]).

An example of positive comparative probability, coherent on any finite set that is
not representable by a strictly positive probability is the following:

Example 3. Let A be the algebra of finite and co-finite subsets of N and 4 induced

by cardinalities, i.e.:

A 4 B ,
⇢

](A)  ](B) if A is finite

](Bc)  ](Ac) if B is co-finite

.

It is representable through the non-archimedean probability generated by p⇤(n) = ✏,
with ✏ any infinitesimal of [0, 1]⇤, if n 2 N and p⇤(B) = 1� ](Bc)✏ if B is a co-finite.

While it can be only weakly represented by a real valued probability since n ⇠ m for all

n,m 2 N implies inevitably p(n) = p(m) = 0 and consequently p(A) = p(B) = 0 even

if A and B are finite but with di↵erent cardinalities.
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4 Reference dependent comparative probabilities

As already stated in the motivations, we want explicitly face a dynamic context,
i.e. situations where the Decision Maker has to express preferences conditioned to
di↵erent information scenarios, i.e. to di↵erent events H varying in a arbitrary set of
alternativesH. As before let us firstly focus on preferences reflected among conditional
events.

Let L be a set of conditional events L = {Ei|Hi}i2I with the requirement that if
Ei|Hi 2 L then �|Hi 2 L. Denote with H = {Hi : Ei|Hi 2 L} the set of conditioning
events and with E = {Ei : Ei|Hi 2 L} the set of the conditioned ones. Let A be the

algebra spanned by E [ H. In the following 4=
[

H2H
{4H} will be a partial binary

relation defined for the couples of conditional events E|H,F |H in L conditioned to
the same event H 2 H.

In such a context it is natural to search for representability of 4 through conditional
measures, taking in particular consideration negligible events even as conditioning
ones. Anyhow, since we have seen that a strictly positive non-archimedean repre-
sentability is permitted also with the presence of negligible events, if such measures
are allowed by the Decision Maker representability can be guaranteed by rationality of
a simpler unconditional relation derived from 4.This can be obtained as the following
projection of 4:

Definition 1. Let L⇤ ⇢ A the set of events {E ^H : E|H 2 L} and 4⇤
the partial

relation in L⇤
defined through

E ^H 4⇤ F ^H , E|H 4 F |H . (3)

Let us show how such projection 4⇤ su�ces to guarantee a non-archimedean rep-
resentability of the original conditional preference relation:

Theorem 4. Let 4⇤
be a partial relation defined as in in Definition 1. Then the

following statements are equivalent:

i) For any finite subset F ✓ L the relation 40
defined on F 0 = F⇤ [ CF⇤

by taking

(F⇤,4⇤) [ {� � Ck}Ck2CF⇤ is coherent;

ii) There exists a strictly positive non-archimedean probability p⇤ : A ⇥ A0 ! [0, 1]⇤

that represents 4 in L.
Proof: i) implies ii) since from previous Theorem 2 there exists a p⇤ : A ! [0, 1]⇤

strictly positive that represents 4⇤ in L⇤. Hence

E|H 4 F |H , p⇤(E ^H)  p⇤(F ^H) . (4)

Since p⇤ is strictly positive in A, then p⇤(H) > 0 and hence we have

p⇤(E|H) =
p⇤(E ^H)

p⇤(H)
 p⇤(F |H) =

p⇤(F ^H)

p⇤(H)
. (5)
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The proof of the implication ii) ) i) goes straightforward: in fact if p⇤(·|·) represents
4 and is strictly positive, then

p⇤(E|H)  p⇤(F |H) , p⇤(E ^H)  p⇤(F ^H) (6)

and hence 4⇤ must be coherent, this means, from previous Th.2, that i) must hold.

It is known, see e.g. [9], that from any p⇤(E|H) = p⇤(EH)
p⇤(H) with p⇤(·) > 0 it

is possible to obtain a real valued full conditional probability on A ⇥ A0 by taking
p(E|H) = Re[p⇤(E|H)] (with Re[·] the real part function). Anyhow relations induced
on A⇥A0 from a non-archimedean conditional probability p⇤(·|·) are not the same of
those by the corresponding p(·|·), even if we limit ourselves to the 4H , i.e. to compare
events conditioned to the same reference events H.

We show how, for real valued probabilities, we can preserve the feature of distin-
guishing the di↵erent layers of admissibility among di↵erent scenarios. The following
definition generalize the coherence condition for a dynamical setting:

Definition 2. The partial relation 4 on L is conditionally coherent if for all Ei|Hi 4
Fi|Hi there exists �i 2 [0, 1], with �i > 0 whenever Ei|Hi � Fi|Hi, such that for every

n 2 N, �i > 0 and Ei|Hi 4 Fi|Hi, i = 1, . . . , n, we have

sup
H0

nX

i=1

�i(|Fi|� |Ei|� �i)|Hi| � 0 (7)

with H0 =
Sn

i=1 Hi.

Note that if there is a single conditioning event, i.e. H = {H}, then Definition 2
coincides with the so called strong coherence condition (sc) in [4, 6].

The following theorem shows that the previous rationality requirement is what
is needed to have the representability of the preference relation through conditional
probabilities:

Theorem 5. Let 4 be a partial binary relation on L. The following statements are

equivalent:

i) 4 is conditionally coherent;

ii) there exists a coherent real valued conditional probability p : L ! [0, 1] that repre-
sents 4.

Proof: This proof is a particular case of the more general one already proved in [6].
In fact, for more general comparative conditional assessments where comparisons can
be made also among di↵erent conditioning events, the following coherence condition
(ccp) has been proved to be equivalent to the representability through a conditional
probability:
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(ccp) for all Ei|Hi 4 Fi|Ki there exists ↵i,�i 2 [0, 1], with ↵i  �i and ↵i < �i

whenever Ei|Hi � Fi|Ki, such that for every n 2 N and �i,�
0
i � 0 for every

Ei|Hi 4 Fi|Ki we have

sup
H0

nX

i=1

[�i(|Fi ^Ki|� �i|Ki|) + �0
i(↵i|Hi|� |Ei ^Hi|)] � 0

withH0 union of the conditioning events whose corresponding �i or �0
i is positive.

Now we are dealing with a relation 4 that compares only events conditioned to the
same event H. Hence if (ccp) holds then (7) is obtained by taking �i = �0

i and
�i = �i � ↵i. Vice versa, suppose (7) holds. We will show that every single therm of
the summation in (ccp) can be obtained and the non-negativity of the supremum main-
tained. Without loss of generality take �i  �0

i (the opposite works symmetrically),
then the single therm in (7) is of the form

�i|Fi ^Hi|� �i|Ei ^Hi|� �i�i|Hi| (8)

for some specific �i � 0. Moreover, since �|Hi 4 Fi|Hi, there will exists a �i � 0 such
that

(�0
i � �i)|Fi ^Hi|� (�0

i � �i)�i|Hi| (9)

has a non-negative supremum over Hi. By adding (9) to (8) non-negativity of the
supremum is maintained and a therm of those of (ccp) is obtained by taking ↵i = �i
and �i = �i + �i.

Note that if E = H = A is a finite algebra, then 4 defined on A⇥A0 and positive
has a projection 4⇤ as in Definition 1 coherent if and only if it is conditionally coherent.
In fact, if 4 has a projection 4⇤ coherent and since it contains 4⌦, from Theorem 1 4⇤

is strictly positive, coherent and complete onA if and only if it is representable through
a strictly positive real valued (or equivalently non-archimedean valued) probability p

(p⇤) hence for any couple Ei|Hi 4 Fi|Hi it holds p⇤(Ei^Hi)
p⇤(Hi)  p⇤(Fi^Hi)

p⇤(Hi) as well as
p(Ei^Hi)

p(Hi)  p(Fi^Hi)
p(Hi) . So we have the representability through a conditional probability

that, by the previous Theorem5, is equivalent to the conditional coherence.
On the other hand, in the infinite case we have that a positive 4 can admit

a representation through a non-archimedean probability p⇤ in [0, 1]⇤, and hence it
is coherent, but it can happen that it is not representable through a real valued
probability p in [0, 1]. In fact p comes from p⇤ as Re[p⇤] and it could only almost

represent and not represent4. On the other hand, as already stated in the motivations,
if we want to represent 4 on A ⇥ A0 through a real valued conditional probability
p(·|·), it is impossible to require all Ei|Hi being more probable than �, since this surely
cannot hold for Hi = ⌦. Consequently a binary relation 4 representable by a real
valued conditional probability p is necessarily less fine of an other relation representable
by a non-archimedean conditional probability, except of course the finite case as proved
earlier.

We have to stress that all previous coherence conditions do not ensure uniqueness
of the representing probabilities. This reflects on the original relation 4 among acts,
obtaining representability only by a family of conditional expected utilities, even if the
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set of acts is complete and the induced events form a �-algebra. To have uniqueness
we need of a condition similar to that of fineness and tightness used by Savage and
in the following section we will provide it but paying attention to allow negligible
conditioning events.

5 Rationality of conditional preferences among acts

Starting with a partial conditional preference there could be representability problem,
not only about uniqueness of the conditional probability but also about the existence
of utility functions. Anyhow, if the consequence space X is a subset of the reals, so
that acts are simple random variables, comparisons could be represented by conditional
previsions (expectations). In this case a rational condition has been already introduced
in [14] and it is a generalization of the conditional coherence Definition 2 with simple
random variables Xi and Yi replacing events Ei and Fi.

To avoid representability troubles, let us consider the set of acts S be rich enough
to induce the set of derived events A to be a �-algebra. Moreover, we limit to con-
sider settings where the di↵erent scenarios H constitutes a countable additive class of
events in A \ {�}. Such limitation is quite usual and generally accepted in practical
applications.

Hence we deal with a conditional comparative relation 4=
[

H2H
{4H}, with 4H

defined for every couple of single acts f, g : A ! X and thought on the hypothesis
that a specific scenario H 2 H occurs.

In the description we will mainly follow the approach of [8], with the main di↵erence
that we allow for negligible conditioning events. In the following, constant acts f 2 S
will be identified with their unique consequence x 2 X . Consequently the comparative
relation 4 induces also a comparative relation on X that we will continue to denote
with the same symbol, as we made for events. For a generic event A 2 A and acts
f, g 2 S we denote with

fAg =

⇢
f(!) ! 2 A
g(!) ! 2 Ac

the act that coincides with f if A occurs and with g otherwise.
Rationality of a conditional preference relation 4=

S
H2H 4H usually realizes with

the existence of a utility function u on the consequences space X and of at least a
conditional probability p(·|·) such that

f 4A g , EA(u(f))  EA(u(g))

with EA(·) conditional expectation (i.e. expectation computed w.r.t. p(·|·)).
We need now to introduced conditioning events equivalent to the impossible one

but whose conditioning is not trivial, hence not null even negligible. Negligibility can
be formalized, by borrowing the similar definition given in [10], with the following
definition:

Definition 3. An event H 2 H is negligible with respect to an other event K 2 H,

with K � H, if 8f, g, h, h0 2 S
fHch 4K gHch0 , f 4K g .
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It is easy to show that this definition capture the full meaning of negligibility. In
fact the following lemma holds:

Lemma 1. If H is negligible w.r.t. K then � ⇠K H.

Proof: The impossible event � can be identified with the binary act 0Hc0, while H
with the binary act 0Hc1. Since the relation 0 ⇠K 0 always holds, then negligibility
of H w.r.t. K implies 0Hc0 ⇠K 0Hc1 that coincides with the thesis � ⇠K H.

Negligible events can be organized in a hierarchy, forming the so called di↵erent
zero layers:

Definition 4. H0 = ⌦ , H↵ =
_

�⇠
H(↵�1) H

H for ↵ � 1.

Note that such H↵ are maximal events in H such that � ⇠H(↵�1) H↵, while not-
negligible events K w.r.t. a zero-layer H↵ can be identified by those elements of H
such that � �H↵ K.

Let us introduce axioms that we bring us to the last representability result:

Ax1 For each H 2 H 4H is a complete and transitive binary relation on S;
Ax2 For each K 2 H:

g 4K f ) g 4⌦ fKg
if � �H↵ K then g �K f ) g �H↵ fKg;

Ax3 For each H 2 H and x, y 2 X
y 4⌦ x , y 4H x;

Ax4 For every x, x0, y, y0 2 X
if y �⌦ x and y0 �⌦ x0 then for any A,B 2 A
xBy 4H↵ xAy , x0By0 4H↵ x0Ay0 8↵ � 0;

Ax5 9x, y 2 X s.t. y �⌦ x;

Ax6 For every x 2 X and f, g 2 S with g �H↵ f there exists a finite partition H↵ of
H↵ s.t. for every H 2 H↵ we have:

i) g �H↵ xHf ;

ii) xHg �H↵ f .

Ax7 For every H 2 H and f, g 2 S
f(!) = g(!) 8{!} ⇢ H then f ⇠H g.

Theorem 6. If the set H is finite the following conditions are equivalent:

(i) 4=
[

H2H
{4H} is representable through a conditional expected utility;

(ii) 4=
[

H2H
{4H} satisfies axioms Ax1–Ax7.
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Proof:The proof that (i) ) (ii) is straightforward.
We now prove (ii) ) (i). By hypothesis 4⌦ satisfies Savage’s axioms and so it

is representable by an expected utility EU. Then, there is a unique (up to a positive
a�ne transformation) utility on X and a unique probability on A.

For any H 2 H such that ; �⌦ H, the relation �H is representable by a EH with

EH(f) =
E(fIH)

p(H)

with IH the binary act 1H0. Now consider the maximal negligible event H1 2 H with
respect to ⌦. This event H1 plays the same role that ⌦ in the previous step and, since
�H1 satisfies the Savage’s axioms it is representable by an expected utility EU where
the utility is the same that in the previous step and the probability p1 = pH1 with
p1(H1) = 1.

The procedure continues considering events H↵ (with ↵ less or equal to the cardi-
nality of H) and p↵ as in the previous step.

Note that the probabilities p↵ are the agreeing class of a conditional probability p0

on A⇥H (see [5]):
for any E|H 2 A⇥H

p0(E|H) =
p↵(E ^H)

p↵(H)

with p↵(H) = p0(H|H↵) and ↵ the maximum index such that H ✓ H↵.
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Abstract

We study likelihood functions as point functions and then as set functions.

In particular, we characterize likelihood functions consistent with a conditional

possibility and we provide a comparison with probabilistic likelihood functions

from a formal point of view.

1 Introduction

In some applications the available information is related to di↵erent sets of events
moreover di↵erent uncertainty frameworks are involved. Thus there is a growing in-
terest to study more flexible modeling able to manage uncertainty, vagueness and
partial information.

Here we focus on inferential processes in which the available information is ex-
pressed by probability and possibility (for analogous issues see [10, 8, 14, 13]).

An ensuing problem is to maintain coherence with respect to a (probabilistic or
possibilistic) framework by using all the available information, so we need to check
when a probabilistic likelihood has the same properties of a possibilistic one. For this
aim we study the extension of a possibilistic likelihood function to events of a partition
less fine than that in which it is defined.

By referring to conditional probabilities [6] and T -conditional possibilities (where T
stands for any triangular norm) [1], a (probabilistic or possibilistic) likelihood function
can be regarded as an assessment on a class of conditional events {E|Hi}, with {Hi}
a finite partition, satisfying a trivial condition. We characterize its coherence and
the coherent extensions on the conditional events {E|K}, with K belonging to the
additive set H spanned by the Hi’s.

This will provide a comparison of properties characterizing probabilistic and pos-
sibilistic likelihood functions both as point and set functions.

Our analysis shows that there is no particular property distinguishing probabilistic
point likelihood from possibilistic one, i.e., the same assessment is always coherent in
both frameworks.
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On the other hand, for what concerns aggregated likelihood an interesting di↵erence
is that in probabilistic setting no kind of monotonicity is required for the coherence,
while in the possibilistic one there is a local form of monotonicity (i.e., the possibilistic
aggregated likelihood is monotone on the elements of a suitable partition H of the
additive set H).

2 Coherent conditional possibility assessments

Coherence is well known in probability theory [6], moreover this notion has been
studied also in other frameworks such as possibility theory (see [4]) by referring to
T -conditional possibilities (with T a triangular norm) [1, 4].

Definition 1. Let T be any t-norm. A function ⇧ : B⇥H ! [0, 1] is a T -conditional
possibility if it satisfies the following properties:

(i) ⇧(E|H) = ⇧(E ^H|H), for every E 2 B and H 2 H;

(ii) ⇧(·|H) is a possibility on B, for any H 2 H;

(iii) ⇧(E ^ F |H) = T (⇧(E|H),⇧(F |E ^H)), for any H,E ^H 2 H and E,F 2 B.

This definition generalize some other definitions present in literature (see, for in-
stance, [5, 7, 9, 11, 12]).

In the following we deal with strict t-norms or minimum.
In analogy with conditional probability, an assessment ⇧ on an arbitrary set G

of conditional events is a coherent T -conditional possibility if (and only if) ⇧ is a
restriction of a T -conditional possibility (in the sense of Definition 1) defined on B ⇥
H ◆ G.

We recall a characterization of a finite coherent T -conditional possibility assessment
given in [4].

Theorem 1. Let G = {E1|H1, . . . , En|Hn} be an arbitrary set of conditional events,
and C0 and B denote the set of atoms and the algebra spanned by {E1, H1, . . . , En, Hn},
respectively.
For a real function ⇧ : G ! [0, 1], the following statements are equivalent:

a) ⇧ is a coherent T -conditional possibility assessment on E;
b) there exists a sequence of compatible systems S⇧

↵ (↵ = 0, . . . , k), with unknowns
x↵
r � 0 for Cr 2 C↵,

S⇧
↵ =

8
>>>>>>>>><

>>>>>>>>>:

max
Cr✓Ei^Hi

x↵
r = T

✓
⇧(Ei|Hi), max

Cr✓Hi

x↵
r

◆
max

Cr✓Hi

x↵�1
r < 1

x↵
r � x↵�1

r if Cr 2 C↵
x↵�1
r = T

✓
x↵
r , max

Cj2C↵

x↵�1
j

◆
if Cr 2 C↵

max
Cr2C↵

xr = 1
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with ↵ = 0, . . . , k, where x↵ (with r-th component x↵
r ) is the solution of S⇧

↵ and
C↵ = {Cr 2 C↵�1 : x↵�1

r < 1}, moreover x�1
r = 0 for any Cr 2 C0.

Remark: Any sequence of solutions of {S⇧
↵ } is related to a class P = {⇧0, . . . ,⇧k}

of possibilities agreeing with the given assessment. The class is not necessarily unique
and as shown in [4] any class P induces a unique full T -conditional possibility ⇧(·|·)
extending the given assessment.

We recall that a coherent (conditional) probability or possibility assessment can
be extended to any new (conditional) event and the coherent extension in both cases
lays on a closed interval ([3, 4]).

3 Likelihood: as point function and set function

This section is devoted to a comparative analysis of likelihood in probabilistic and
possibilistic framework.

Theorem 2. Let L = {H1, . . . , Hn} be a finite partition of ⌦ and E an event. For
every function f : {E}⇥ L ! [0, 1] satisfying condition

(L1) f(E|Hi) = 0 if E ^Hi = ; and f(E|Hi) = 1 if Hi ✓ E

the following statements hold:

i) f is a coherent conditional probability;

ii) f is a coherent T -conditional possibility (for every t-norm T ).

Proof. Condition i) has been proved in [3]. We prove ii). From condition b) of The-
orem 1, by the incompatibility of the events Hi, the equations in system S⇧

0 have
di↵erent unknowns (each of them is linked only with the last equation), and so the
system S⇧

0 admits a solution assigning possibility 1 to each conditioning event Hi.
Then, the assessment f is a coherent T -conditional possibility.

The above result shows a common feature between probabilistic and possibilistic
(point) likelihood, so this allows to regard, from a syntactical point of view, a proba-
bilistic likelihood as a possibilistic one and vice versa. Moreover, it emphasizes that
no significant property characterizes likelihood as point function, so in the sequel we
call likelihood function any function f : {E} ⇥ L ! [0, 1], with L = {H1, . . . , Hn} a
finite partition of ⌦, satisfying condition (L1).

Our aim now is to study the properties of aggregated likelihood functions, that is
all the coherent extensions g of the assessment {f(E|Hi) : Hi 2 L} to the events
E|K, with K belonging to the additive set H = hLi \ {;} spanned by L.

The interest derives by inferential problems in which the available information
consists of a (probabilistic or possibilistic) “prior” on a partition {Kj} and a likelihood
related to the events of another partition refining the previous one.

In what follows g : {E} ⇥H ! [0, 1] denotes a function such that the restriction
g|{E}⇥L of g to {E}⇥L coincides with f , while B = h{E}[Hi is the Boolean algebra
generated by {E} [H.
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Theorem 3. If g is either a coherent conditional probability or a coherent T -conditional
possibility, then the following condition holds for every K 2 H:

(L2) min
Hi✓K

f(E|Hi)  g(E|K)  max
Hi✓K

f(E|Hi).

Proof. For coherent conditional probability, condition (L2) is proved in [3].
Let g(E|·) be a coherent T -conditional possibility assessment, then there is an

extension ⇧(·|·) on B ⇥H. For every K 2 H it is

⇧(E|K) = max
Hi✓K

T (⇧(E|Hi),⇧(Hi|K))  max
Hi✓K

⇧(E|Hi).

Moreover, taking � = min
Hi✓K

⇧(E|Hi)

⇧(E|K) = max
Hi✓K

T (⇧(E|Hi),⇧(Hi|K)) � max
Hi✓K

T (�,⇧(Hi|K))

= T

✓
�, max

Hi✓K
⇧(Hi|K)

◆
= T (�, 1) = � .

Condition (L2) implies that both probabilistic and possibilistic aggregated likeli-
hood are monotone, with respect to ✓, only if the extension is obtained, for every K,
as max

Hi✓K
f(E|Hi). In this case the aggregated likelihood is a capacity.

Similarly they are anti-monotone if and only if their extensions are obtained as
min
Hi✓K

f(E|Hi).

The next Theorem 4 assures the coherence of the extensions, obtained by using
operators max and min, in both probabilistic and possibilistic frameworks.

Theorem 4. If for all K1,K2 2 H

g(E|K1 _K2) = max{g(E|K1), g(E|K2)} (1)

g⇤(E|K1 _K2) = min{g⇤(E|K1), g
⇤(E|K2)} (2)

then the following statements hold:

i) g and g⇤ are coherent conditional probabilities;

ii) g and g⇤ are coherent T -conditional possibilities (for every t-norm T ).

Proof. The proof of i) is in [3]. Concerning ii) to prove the statement for g consider
as a solution of system S⇧

0 in Theorem 1 the possibility assigning ⇧0(E ^ Hi) =
f(E|Hi) and ⇧0(Hi) = 1, for any Hi 2 L. Regarding g⇤ suppose without loss of
generality f(E|H1)  · · ·  f(E|Hn). Then it is su�cient to consider the class P =
{⇧0, . . . ,⇧n�1} of possibilities on B such that ⇧i�1(E^Hi) = f(E|Hi), ⇧i�1(Hi) = 1
and ⇧i�1(E) = 0 for all E 2 B such that E ^Hi = ;, with i = 1, . . . , n.
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Remark: Theorem 4 states that g(E|·) is a coherent T -conditional possibility, but
it is not necessarily a normalized possibility even if

g(E|K1 _K2) = max{g(E|K1), g(E|K2)}

for every K1,K2 2 H since g(E|⌦) can be strictly less than 1.

Actually, g(E|⌦) is 1 if and only if there is an event Hi with f(E|Hi) = 1: this
condition could seem natural since it claims the existence of an event Hi supporting
the evidence E.

It is easy to see from characterization theorems, that, if we extend a likelihood
function f only to one new event K obtained by disjunction of some elements of L,
then condition (L2) is not only necessary but also su�cient for the coherence of the
extension with both conditional probability and possibility. Nevertheless if we extend
to more than one event of the additive set H, then condition (L2) is no more su�cient:

Example 1. Consider the partition L = {H1, H2, H3} together with the logically
independent event E and the likelihood assessment

f(E|H1) =
4

5
, f(E|H2) =

2

5
, f(E|H3) =

1

5
.

Let Ci = E ^Hi, Ci+3 = Ec ^Hi, i = 1, 2, 3 be the atoms spanned by {E} [ L. The
following extension g of f

g(E|H1 _H2) =
3

5
, g(E|H1 _H3) =

1

2
, g(E|H2 _H3) =

3

10
, g(E|⌦) = 2

5
,

is obtained taking the median of the relevant f(E|Hi)’s (for an even number of Hi’s,
the arithmetic mean of the two median values is taken).

Clearly, g satisfies condition (L2), anyway it is not coherent with a conditional
probability since the following system with unknowns x0

r � 0, r = 1, . . . , 6,

SP
0 =

8
>>>>>>>>>><

>>>>>>>>>>:

x0
1 = 4

5 (x
0
1 + x0

4)
x0
2 = 2

5 (x
0
2 + x0

5)
x0
3 = 1

5 (x
0
3 + x0

6)
x0
1 + x0

2 = 3
5 (x

0
1 + x0

2 + x0
4 + x0

5)
x0
1 + x0

3 = 1
2 (x

0
1 + x0

3 + x0
4 + x0

6)
x0
2 + x0

3 = 3
10 (x

0
2 + x0

3 + x0
5 + x0

6)
x0
1 + x0

2 + x0
3 = 2

5 (x
0
1 + x0

2 + x0
3 + x0

4 + x0
5 + x0

6)
x0
1 + x0

2 + x0
3 + x0

4 + x0
5 + x0

6 = 1

is not compatible. Indeed, the subsystem obtained removing the seventh equation has
the unique solution x0

1 = x0
6 = 4

15 , x
0
2 = 2

15 , x
0
3 = x0

4 = 1
15 , x

0
5 = 1

2 , which contradicts
the seventh equation.

Moreover, g is not coherent with a T -conditional possibility (with T an arbitrary
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t-norm): the following system with unknowns x0
r � 0, r = 1, . . . , 6,

S⇧
0 =

8
>>>>>>>>>><

>>>>>>>>>>:

y01 = T
�
4
5 ,max{x0

1, x
0
4}
�

x0
2 = T

�
2
5 ,max{x0

2, x
0
5}
�

x0
3 = T

�
1
5 ,max{x0

3, x
0
6}
�

max{x0
1, x

0
2} = T

�
3
5 ,max{x0

1, x
0
2, x

0
4, x

0
5}
�

max{x0
1, x

0
3} = T

�
1
2 ,max{x0

1, x
0
3, x

0
4, x

0
6}
�

max{x0
2, x

0
3} = T

�
3
10 ,max{x0

2, x
0
3, x

0
5, x

0
6}
�

max{x0
1, x

0
2, x

0
3} = T

�
2
5 ,max{x0

1, x
0
2, x

0
3, x

0
4, x

0
5, x

0
6}
�

max{x0
1, x

0
2, x

0
3, x

0
4, x

0
5, x

0
6} = 1

is not compatible. In fact, only the unknowns x0
4, x0

5 and x0
6 can assume value 1.

Assigning x0
4 = 1, the first equation implies x0

1 = 4
5 , but this contradicts the fourth

equation. Analogously, putting x0
5 = 1, from the second equation it follows x0

2 = 2
5 , but

this contradicts the sixth equation. By assigning x0
6 = 1, the third and fifth equations

imply x0
3 = 1

5 and x0
1 = 1

2 , which contradicts the seventh equation.

Condition (L2) is su�cient for the coherence of extensions when also the new
events are mutually incompatible and exhaustive. For any set of events E we denote
by hEi the algebra spanned by E .
Theorem 5. Let f : {E} ⇥ L ! [0, 1] be a likelihood function and K = {Kh},
(h = 1, . . . , r) a partition of ⌦ whose elements are contained in hLi. Then, for the
function g : {E}⇥ (L [K) ! [0, 1] extending f , the following statements hold:

i) g is a coherent conditional probability if and only if condition (L2) is satisfied
for every Kh 2 K;

ii) g is a coherent T -conditional possibility (for every t-norm T ) if and only if
condition (L2) is satisfied for every Kh 2 K.

Proof. The proof of both conditions i) and ii) is based on the relevant characterization
in terms of solvability of the class of systems. In this case the sets of atoms related
to the events Kh are disjoint and so the relevant equations are independent. Then
every system has a solution if and only if each equation has solution. Therefore every
system has solution if and only if (L2) holds.

3.1 Scale monotonicity

In order to compare possibilistic and probabilistic aggregated likelihood functions we
introduce the notion of scale and then a relevant local form of monotonicity.

Definition 2. Let L = {H1, . . . , Hn} be a finite partition of ⌦ and H = hLi \ {;}
the additive set spanned by L. A scale of H is every partition H = {H0, . . . ,Hk} of
H, such that each H↵ (↵ = 0, . . . , k) is an additive set containing at least an event
Hi 2 L and every H ◆ Hi, with H 62 H� with � < ↵.

The next result shows that every T -conditional possibility ⇧(·|·) on B⇥H induces
a suitable scale of H.
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Lemma 1. Let L = {H1, . . . , Hn} be a finite partition of ⌦, H = hLi \ {;} the
additive set spanned by L, B = h{E} [ Hi and ⇧ : B ⇥ H ! [0, 1] a T -conditional
possibility. Then, there exists a scale H = {H0, . . . ,Hk} of H such that for ↵ =
0, . . . , k, ⇧(H|H↵

0 ) = 1 for every H 2 H↵, where H↵
0 =

W
Hi2

S
��↵ H�

Hi.

Proof. Define H0
0 = ⌦ and H0 = {H 2 H : ⇧(H|H0

0 ) = 1}. For ↵ = 1, . . . , k,
put H↵

0 =
W

Hi /2
S

�<↵ H� Hi and H↵ = {H 2 H : ⇧(H|H↵
0 ) = 1}. The class

H = {H0, . . . ,Hk} is a partition of H and each H↵ is an additive set, and since
⇧(·|H↵

0 ) is a possibility, there exists Hi 2 L such that ⇧(Hi|H↵
0 ) = 1 = ⇧(H|H↵

0 ) for
any H ◆ Hi. Therefore H is a scale of H.

Definition 3. Let L = {H1, . . . , Hn} be a finite partition of ⌦ and H = hLi \ {;}. A
function ' : H ! [0, 1] is said to be H-scale monotone with respect to the scale H =
{H0, . . . ,Hk} of H if '|H↵ is monotone with respect to implication ✓ for ↵ = 0, . . . , k.

Example 2. Let L = {H1, H2, H3} be a partition of the sure event and denote by
H the additive set spanned by L. It is easy to prove that the set H = {H0,H1} with
H0 = {H2, H1 _H2, H2 _H3,⌦} and H1 = {H1, H3, H1 _H3} is a scale.

Consider now the assessment '(H1) = 0.3, '(H2) = 0.5, '(H3) = 0.8, '(H1 _
H2) = 0.5, '(H1 _H3) = 0.8, '(H2 _H3) = 0.7 and '(⌦) = 0.75.

For every K 2 H, condition (L2) holds and '(·) is H-scale monotone.

The following theorem shows that any coherent T -conditional possibility g(E|·) is
H-scale monotone with respect to some scale H of H.

Theorem 6. If g is a coherent T -conditional possibility on {E}⇥H, then there exists
at least one scale H = {H0, . . . ,Hk} of H such that g(E|·) is H-scale monotone.

Proof. Let ⇧(·|·) be a T -conditional possibility extending g(E|·) on B ⇥H. Consider
the scale H = {H0, . . . ,Hk} of H satisfying condition of Lemma 1, for all ↵ = 0, . . . , k,
if H,H _K 2 H↵, then ⇧(H|H↵

0 ) = ⇧(H _K|H↵
0 ) = ⇧(H|H _K) = 1. From that

⇧(E|H _K) = max{T (⇧(H|H _K),⇧(E|H)), T (⇧(K|H _K),⇧(E|K))}
= max{⇧(E|H), T (⇧(K|H _K),⇧(E|K))} � ⇧(E|H).

Notice that for coherent conditional probabilities a similar result does not hold as
the following example shows.

Example 3. Let L = {H1, H2, H3} be a partition of the sure event, E an event logi-
cally independent of the events in L and consider the likelihood assessment: P (E|H1) =
1
2 , P (E|H2) =

1
4 and P (E|H3) =

1
8 .

A coherent extension of the above likelihood (obtained by giving P (Hi) = 1
3 , for

i = 1, 2, 3) is

P (E|H1 _H2) =
3

8
, P (E|H1 _H3) =

5

16
, P (E|H2 _H3) =

3

16
, P (E|⌦) = 7

24
.
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This aggregated likelihood is not scale monotone. In fact, the set H0 would contain
an element of L and all its supersets and this is not possible since P (E|H1) > P (E|H1_
H2), P (E|H2) > P (E|H2 _H3) and P (E|H1 _H3) > P (E|H1 _H2 _H3).

This example highlights a first di↵erence between the possibilistic and the prob-
abilistic framework. The next one shows that the existence of a scale H and the
relevant H-scale monotonicity is not su�ciemt to characterize possibilistic aggregated
likelihood as a coherent extension of a point likelihood, even when (L2) holds.

Example 4. Consider the scale H and the function ' of Example 2. Let E be an
event logically independent of the events of the partition L and let Ci = E ^ Hi,
Ci+3 = Ec ^ Hi (i = 1, 2, 3) be the atoms spanned by E and the Hi’s. In order to
show that ' is not a coherent conditional possibility assessment, consider the following
system with unknowns x0

r � 0 for r = 1, . . . , 6:

S⇧
0 =

8
>>>>>>>>>><

>>>>>>>>>>:

x0
1 = min{0.3,max{x0

1, x
0
4}}

x0
2 = min{0.5,max{x0

2, x
0
5}}

x0
3 = min{0.8,max{x0

3, x
0
6}}

max{x0
1, x

0
2} = min{0.5,max{x0

1, x
0
2, x

0
4, x

0
5}}

max{x0
1, x

0
3} = min{0.8,max{x0

1, x
0
3, x

0
4, x

0
6}}

max{x0
2, x

0
3} = min{0.7,max{x0

2, x
0
3, x

0
5, x

0
6}}

max{x0
1, x

0
2, x

0
3} = min{0.75,max{x0

1, x
0
2, x

0
3, x

0
4, x

0
5, x

0
6}}

max{x0
1, x

0
2, x

0
3, x

0
4, x

0
5, x

0
6} = 1

System S⇧
0 has no solution: in fact, only x0

4, x
0
5 and x0

6 can assume value 1, but the
seventh equation forces to be x0

4 < 1 and x0
6 < 1 in the fifth one, while the sixth

equation implies x0
5 < 1 in the seventh.

Similarly, it is possible to prove that ' is not a coherent T -conditional possibility,
for any strict t-norm T .

Given a H-scale monotone function g(E|·) with respect to a scale H of H, it
is always possible to derive two sequences of elements of L, useful to characterize
a coherent T -conditional possibility assessment. In fact by them we can establish
whether the scale H is induced by a T -conditional possibility ⇧ extending g (and so
satisfying condition of Lemma 1).

Definition 4. Assume g(E|·) is H-scale monotone with respect to the scale H =

{H0, . . . ,Hk} of H. Define the sequences K = {K0, . . . ,Kk} and K = {K 0
, . . . ,K

k}
generated by H as follows. For ↵ = 0, . . . , k put:

• K↵ = {Hi 2 L \ H↵ : Hi ✓ H 2 H↵, g(E|H) > max
Hj✓H
j 6=i

f(E|Hj)};

• K
↵
=

S↵
�=0 K� \S↵

�=0 H�.

Remark: If g(E|·) is a coherent T -conditional possibility, by Theorem 3 in K↵

there are events Hi 2 H� (� > ↵) such that f(E|Hi) � g(E|H), where H ◆ Hi and
H 2 H↵.
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In particular, for a strict t-norm T , K↵ contains Hi with Hi ✓ H 2 H↵ such that
f(E|Hi) > g(E|H). In fact, f(E|Hi) � g(E|H) and when f(E|Hi) = g(E|H) one
would have ⇧(Hi|H↵

0 ) = ⇧(H|H↵
0 ) = 1 and this is not possible.

When the minimum t-norm is considered, for Hi 2 K↵, one has ⇧(Hi|H) =
⇧(Hi|H↵

0 ) � g(E|H) and the equality must hold for f(E|Hi) > g(E|H).
Note that, for ↵ = 0, . . . , k, K

↵
contains all the elements Hi of some K� (�  ↵)

such that 0 < ⇧(Hi|H↵
0 ) < 1.

In order to deepen the similarities between conditional probability and T -conditional
possibility we present the following result related to the sequences K and K. For this
aim we introduce the following condition:

(S1) for every H↵ 2 H, if K1,K2 2 H↵, then

g(E|K1 _K2) = max{g(E|K1), g(E|K2)}.

Theorem 7. If g(E|·) is H-scale monotone with respect to a scale

H = {H0, . . . ,Hk} of H, satisfies property (S1), and the associated K = {K 0
, . . . ,K

k}
is such that K

↵
= ; for every ↵ = 0, . . . , k, then the following statements hold:

i) g is a coherent conditional probability;

ii) g is a coherent T -conditional possibility (for every t-norm T ).

Proof. Requirements on g imply the validity of condition (L2). Define H0
0 = ⌦ and

H↵
0 =

W
Hi2

S
��↵ H�

Hi for ↵ = 1, . . . , k.

i) For ↵ = 0, . . . , k, if L \ H↵ = {Hi1 , . . . , Hit}, without loss of generality we
can suppose f(E|Hi1) � . . . � f(E|Hit). Put H↵

0,1 = H↵
0 and for j = 1, . . . , t � 1,

H↵
0,j+1 =

Wt
l=j+1 Hil _H↵+1

0 . Define P (·|H↵
0,j) as:

• P (E ^Hij |H↵
0,j) = f(E|Hij );

• P (Hij |H↵
0,j) = 1;

• P (Ec ^Hij |H↵
0,j) = 1� f(E|Hij ) if E

c ^Hij 6= ;;
• P (C|H↵

0,j) = 0 for every atom C * Hij in B.
It is straightforwardly verified that probabilities P (·|H↵

0,j) for increasing ↵ and j de-
termine a conditional probability on B ⇥H extending g(E|·).

ii) For ↵ = 0, . . . , k, for every Hi 2 H↵, define ⇧(·|H↵
0 ) as:

• ⇧(E ^Hi|H↵
0 ) = f(E|Hi);

• ⇧(Hi|H↵
0 ) = 1;

• ⇧(Ec ^Hi|H↵
0 ) = 1 if Ec ^Hi 6= ;;

• ⇧(C|H↵
0 ) = 0 for every atom C *

W
Hi2H↵ Hi in B.
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Since g satisfies (S1), it follows that ⇧(·|H↵
0 ) is a possibility. Theorem 1 implies that

the class of possibilities P = {⇧↵} with ⇧↵(·) = ⇧(·|H↵
0 ) determines a T -conditional

possibility on B ⇥H extending g(E|·).
Remark: Theorem 4 assures extendability of an aggregated likelihood assessment

either as a T -conditional possibility or as a conditional probability. Theorem 7 covers
as particular cases both the monotone and the anti-monotone aggregation. Moreover,
it generalizes Theorem 4 by considering also some neither monotone nor anti-monotone
cases.

The following example shows an aggregated likelihood assessment satisfying con-
dition expressed in Theorem 7.

Example 5. Consider the partition L = {H1, H2, H3, H4} and an event E with H1 ✓
E and E ^H4 = ;.

Given the likelihood assessment

f(E|H1) = 1, f(E|H2) =
1

2
, f(E|H3) =

4

5
, f(E|H4) = 0,

consider the following aggregated likelihood assessment:

• g(E|H) = 4
5 for all H 2 H such that H ◆ H3;

• g(E|H) = 1 for all H 2 H such that H ◆ H1 and H + H3;

• g(E|H) = 1
2 for all H 2 H such that H ◆ H2 and H + H1 and H + H3;

• g(E|H4) = 0.

Note that g extends f and fulfills condition (L2). Moreover, g(E|·) is neither monotone
nor anti-monotone with respect to implication. Indeed, H1 ✓ H1 _H3 but g(E|H1) =
1 > 4

5 = g(E|H1_H3), and also H2 ✓ H2_H3 but g(E|H2) =
1
2 < 4

5 = g(E|H2_H3).
This assessment is H-scale monotone with respect to the scale H = {H0,H1} of H

defined as follows.

H K K

H0 = {H3, H1 _H3, H2 _H3, H3 _H4, . . .} K0 = ; K
0
= ;

H1 = {H1, H2, H4, H1 _H2, H1 _H4, H2 _H4, . . .} K1 = ; K
1
= ;

Being K
0
= K

1
= ;, Theorem 7 implies g(E|·) is simultaneously a coherent

T -conditional possibility and a coherent conditional probability.

Notice that Theorem 7 provides only a su�cient condition as shown by the follow-
ing example.

Example 6. Let L = {H1, H2, H3} be a partition and E an event logically independent
of L. The generated atoms are Ci = E ^Hi and Ci+3 = Ec ^Hi, for i = 1, 2, 3.

Consider the likelihood assessment

f(E|H1) =
1

5
, f(E|H2) =

1

2
, f(E|H3) =

4

5
.

The following aggregated likelihood assessment g extending f as:
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• g(E|H1 _H2) = g(E|H1 _H3) = g(E|⌦) = 1
5 ;

• g(E|H2 _H3) =
3
5 ;

satisfies condition (L2).
The only scale of H with respect to g(E|·) is H-scale monotone is H = {H0,H1,H2}

defined as follows.

H K K

H0 = {H1, H1 _H2, H1 _H3,⌦} K0 = ; K
0
= ;

H1 = {H2, H2 _H3} K1 = {H3} K
1
= {H3}

H2 = {H3} K2 = ; K
2
= ;

Being K
1 6= ;, Theorem 7 cannot be applied. Anyway, g(E|·) can be extended on

B ⇥ H either as a T -conditional possibility (with T = min or strict t-norm) or as a
conditional probability.

Indeed, a min-conditional possibility ⇧(·|·) extending g on B⇥H is induced by the
following class of unconditional possibilities on B

C1 C2 C3 C4 C5 C6

⇧(·|H0
0 )

1
5 0 0 1 0 0

⇧(·|H1
0 ) 0 1

2
3
5 0 1 3

5
⇧(·|H2

0 ) 0 0 4
5 0 0 1

where H0
0 = ⌦, H1

0 = H2 _H3 and H3
0 = H3.

Finally, a conditional probability P (·|·) extending g on B ⇥ H is induced by the
following class of unconditional probabilities on B

C1 C2 C3 C4 C5 C6

P (·|H0
0 )

1
5 0 0 4

5 0 0
P (·|H1

0 ) 0 1
3

4
15 0 1

3
1
15

where H0
0 = ⌦, H1

0 = H2 _H3.
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[11] J. Vejnarová, Conditional independence relations in possibility theory. Int. J.
Uncert., Fuzziness and Knowledge-Based Systems, 8, pp. 253-269, 2000.

[12] L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and
Systems, 1, pp. 3-28, 1978.

[13] L.A. Zadeh, Toward a generalized theory of uncertainty (GTU)–an outline, In-
formation Sciences, 172, pp. 1–40 2005.

[14] L.A. Zadeh, Toward a perception-based theory of probabilistic reasoning with
imprecise probabilities, Journal of Statistical Planning and Inference, 105(1), pp.
233–264, 2002.



Introduction to Algebra of Belief

Functions on Three-element Frame

of Discernment — A General Case

Milan Daniel⇤

Institute of Computer Science

Academy of Sciences of the Czech Republic

milan.daniel@cs.cas.cz

Abstract

This contribution presents the second part of the introductive study of alge-
braic structure of belief functions (BFs) on 3-element frame of discernment.

Algebraic method by Hájek & Valdés for BFs on 2-element frames is general-
ized to larger frame of discernment. Due to complexity of the algebraic structure,
the study is divided into 2 parts, the present one is devoted to a case of general
BFs.

The definition of Dempster’s semigroup (an algebraic structure) of BFs on
3-element frame is recalled from the first part of the study. Results related
to Bayesian and quasi Bayesian BFs from the first part are also briefly recalled.
Further substructures related to another subsets of general BFs are described and
analyzed (including idempotents, simple complementary BFs, generalizations of
subsemigroups Si’s) and subalgebras isomorphic to Dempster’s semigroup on
2-element frame of discernment.

Ideas and open problems for future research are presented.

1 Introduction

Belief functions (BFs) are one of the widely used formalisms for uncertainty represen-
tation and processing that enable representation of incomplete and uncertain knowl-
edge, belief updating, and combination of evidence. They were originally introduced
as a principal notion of the Dempster-Shafer Theory or the Mathematical Theory of
Evidence [18].

When combining belief functions by the conjunctive rules of combination, conflicts
often appear, which are assigned to ; by un-normalized conjunctive rule \� or nor-
malized by Dempster’s rule of combination �. Combination of conflicting BFs and
interpretation of conflicts is often questionable in real applications, thus a series of

⇤This research is supported by the grant P202/10/1826 of the Grant Agency of the Czech Republic.
Partial institutional support RVO: 67985807 is also acknowledged.
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alternative combination rules was suggested and a series of papers on conflicting belief
functions was published, e.g. [1, 6, 9, 11, 17, 19].

A need of algebraic analysis of belief functions on frames of discernment with
more then two elements comes from our previous study of conflicting belief functions
(a decomposition of BFs into their non-conflicting and conflicting parts, requires a
generalization of Hájek-Valdés operation ”minus”) [12] which was motivated by series
of papers on conflicting belief functions [1, 6, 9, 17, 19]. Inspired by this demand
we start with a generalization of the algebraic analysis of BFs in this study. Due to
exponential growth of a complexity of a structure of belief functions with respect to
the size of corresponding frame of discernment, we are starting on 3-element frame.

Method by Hájek & Valdés for BFs on 2-element frames [15, 16, 20] is generalized
to larger frame of discernment here. Due to complexity of the algebraic structure,
the study is divided into 2 parts; the first one [13] is devoted to the special simplified
case of quasi Bayesian BFs (i.e., to the case of very simple BFs, which are analogy of
non-normalized probability); this is the second part, which is devoted to general BFs.

This part starts with brief recalling of Hájek-Valdés definition of Dempster’s semi-
group (an algebraic structure) of BFs on 2-element frame and also of the recent defini-
tion on 3-element frame from [13] (Section 2). Further a study of general subalgebras
of Dempster’s semigroup follows (Section 3); it includes idempotents, (simple) comple-
mentary BFs, brief overview of the principal results on Bayesian and quasi Bayesian
BFs, a generalization of subalgebra S and that of S0

is, and substructures isomorphic
to Dempster’s semigroup on 2-element frame.

Ideas and open problems for future research are presented in Section 4.

2 Preliminaries

2.1 General Primer on Belief Functions

We assume classic definitions of basic notions from theory of belief functions [18] on
finite frames of discernment ⌦n = {!1,!2, ...,!n}. A basic belief assignment (bba)
is a mapping m : P(⌦) �! [0, 1] such that

P
A✓⌦ m(A) = 1; the values of the bba

are called basic belief masses (bbm). m(;) = 0 is usually assumed. A belief function
(BF) is a mapping Bel : P(⌦) �! [0, 1], Bel(A) =

P
;6=X✓A m(X). A plausibility

function Pl(A) =
P

;6=A\X m(X). There is a unique correspondence among m and
corresponding Bel and Pl thus we often speak about m as about belief function.

A focal element is a subset X of the frame of discernment, such that m(X) > 0.
If all the focal elements are singletons (i.e., one-element subsets of ⌦), then we speak
about Bayesian belief function (BBF); if all the focal elements are either singletons
or whole ⌦ (i.e. |X| = 1 or |X| = |⌦|), then we speak about quasi Bayesian belief
function (qBBF); if all focal elements are nested, we speak about consonant belief
function; if all focal elements have non-empty intersection, we speak about consistent
belief function.

Let us recall Un the uniform Bayesian belief function [9], i.e., the uniform prob-
ability distribution on ⌦n, and normalized plausibility of singletons of Bel: the BBF
Pl P (Bel) such, that (Pl P (Bel))(!i) =

Pl({!i})P
!2⌦ Pl({!}) [2, 8]. An indecisive BF is a
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BF, which does not prefer any !i 2 ⌦n, i.e., BF which gives no decisional support
for any !i, i.e., BF such that h(Bel) = Bel � Un = Un, i.e., Pl({!i}) = const., i.e.,
(Pl P (Bel))({!i}) = 1

n , [10].
Let us define exclusive BF as a BF such that Pl(X) = 0 for some ; 6= X ⇢ ⌦; BF

is non-exclusive otherwise. (Simple) complementary BF has up to two focal elements
; 6= X ⇢ ⌦ and ⌦ \X. (Simple) quasi complementary BF has up to 3 focal elements
; 6= X ⇢ ⌦, ⌦ \X and ⌦.

2.2 Belief Functions on 2-Element Frame of Discernment; Demp-

ster’s Semigroup

Let us suppose, that the reader is slightly familiar with basic algebraic notions like
a semigroup (an algebraic structure with an associative binary operation), a group
(a structure with an associative binary operation, with a unary operation of inverse,
and with a neutral element), a neutral element n (n ⇤ x = x), an absorbing element a
(a ⇤ x = a), an idempotent i (i ⇤ i = i), a homomorphism f (f(x ⇤ y) = f(x) ⇤ f(y)),
etc. (Otherwise, see e.g., [4, 7, 15, 16].)

We represent belief functions on ⌦2 = {!1,!2} by Dempster’s pairs (d1, d2) =
(m({!1}),m({!2})) as m({!1,!2}) = 1� d1 � d2, see Figure 1, and analogously BFs
on ⌦3 = {!1,!2,!3} by Dempster’s 6-tuples or d-6-tuples1 (d1, d2, d3, d12, d13, d23) =
(m({!1}),m({!2}),m({!3}),m({!1,!2})m({!1,!3}), m({!2,!3})), where 0  di, dij 
1 and

P3
i=1 di +

P23
ij=12 dij  1. We can represent d-6-tuples by a six-dimensional

’triangle’, see Figure 2.
Extremal d-pairs are the pairs corresponding to BFs for which either m({!1})= 1

or m({!2}) = 1, i.e., ? = (0, 1) and > = (1, 0). The set of all non-extremal d-pairs
is denoted as D0; the set of all non-extremal Bayesian d-pairs (i.e., d1 + d2 = 1) is
denoted as G; the set of d-pairs such that a = b is denoted as S (set of indecisive2

d-pairs), the set where b = 0 as S1, and analogically, the set where a = 0 as S2 (simple
support BFs). Vacuous BF is denoted as 0 = (0, 0).

Dempster’s (conjunctive) rule of combination � is given as (m1 � m2)(A) =P
X\Y=A Km1(X)m2(Y ) for A 6= ;, where K = 1

1� ,  =
P

X\Y=; m1(X)m2(Y ),

and (m1 �m2)(;) = 0, see [18]; on ⌦2 we have: (a, b) � (c, d) = (1 � (1�a)(1�c)
1�(ad+bc) , 1 �

(1�b)(1�d)
1�(ad+bc) ) [15].

The (conjunctive) Dempster’s semigroup D0 = (D0,�, 0, 00) is the set of non-
extremal d-pairs D0 = {(d1, d2) | 0  d1, d2  1, d1 + d2  1} \ {?,>} endowed with
the binary operation � (i.e. with the Dempster’s rule) and two distinguished elements
0 = (0, 0) and 00 = ( 12 ,

1
2 ).

In D0 it is defined further: �(a, b) = (b, a), h(a, b) = (a, b) � 00 = ( 1�b
2�a�b ,

1�a
2�a�b ),

h1(a, b) = 1�b
2�a�b , f(a, b) = (a, b) � (b, a) = (a+b�a2�b2�ab

1�a2�b2 ,

a+b�a2�b2�ab
1�a2�b2 ); (a, b) 

(c, d) i↵ [h1(a, b) < h1(c, d) or h1(a, b) = h1(c, d) and a  c] 3.

The principal properties of D0 are summarized by the following theorem:

1For simplicity of expressions, we speak often simply on 6-tuples only.
2BFs (a, a) from S are called indi↵erent BFs by Haenni [14].
3Note, that h(a, b) is an abbreviation for h((a, b)), similarly for h1(a, b) and f(a, b).
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Figure 1: Dempster’s semigroup D0. Homomorphism h is in this representation a
projection to group G along the straight lines running through the point (1, 1). All
the Dempster’s pairs lying on the same ellipse are mapped by homomorphism f to the
same d-pair in semigroup S.

Theorem 1 (i) The Dempster’s semigroup D0 with the relation  is an ordered
commutative (Abelian) semigroup with the neutral element 0; 00 is the only non-zero
idempotent of D0.
(ii) G = (G,�,�, 00,) is an ordered Abelian group, isomorphic to the additive group
of reals with the usual ordering. Let us denote its negative and positive cones as G

00

and G

�00 .
(iii) The sets S, S1, S2 with the operation � and the ordering  form ordered commu-
tative semigroups with neutral element 0; they are all isomorphic to the positive cone
of the additive group of reals.
(iv) h is an ordered homomorphism: (D0,�,�, 0, 00,) �! (G,�,�, 00,); h(Bel) =
Bel�00 = Pl P (Bel), i.e., the normalized plausibility of singletons probabilistic trans-
formation.
(v) f is a homomorphism: (D0,�,�, 0, 00) �! (S,�,�, 0); (but, not an ordered
one).

For proofs see [15, 16, 20].

For other properties of D0 see [15, 16, 20] and further [3, 4, 5, 7, 12].

Exclusive d-6-tuples are 6-tuples representing BFs, such that Pl({!i}) = 0 for some
1  i  3, i.e., d-6-tuples(a, b, 0, 1�a�b, 0, 0), (a, 0, b, 0, 1�a�b, 0), (0, a, b, 0, 0, 1�a�b).

Definition 1 The (conjunctive) Dempster’s semigroup D3 = (D3,�, 0, 00) is the set
D3 of all non-exclusive Dempster’s 6-tuples, endowed with the binary operation �
(i.e. with the Dempster’s rule) and two distinguished elements 0 and 00 = U3, where
0 = 03 = (0, 0, ..., 0) and 00 = 003 = U3 = ( 13 ,

1
3 ,

1
3 , 0, 0, 0).

There is homomorphism h : D3 �! BBF3 = {Bel 2 D3 |Bel is BBF} defined by
h(Bel) = Bel � U3, it holds that h(Bel) = Pl P (Bel), see [10].



50 M. DANIEL

Figure 2: General BFs on 3-element
frame ⌦3.

Figure 3: Quasi Bayesian BFs on 3-
element frame ⌦3.

2.3 The extended Dempster’s semigroup

There are only single 2 extremal (categorical, exclusive) d-pairs on ⌦2, thus the exten-
sion of D0 to D+

0 , (where D
+
0 = D0[{?,>} and ?�> is undefined) is important for

applications, but not interesting from the theoretical point of view. Extended Demp-
ster’s semigroup D+

0 has never been explicitly published; implicitly, it is the special
case of the algebraic structure of extended Dempsteroid [16].

There are 6 categorical (exclusive) d-6-tuples in D+
3 (in the set of BFs defined over

⌦3) and many general exclusive 6-tuples (BFs) in D+
3 , thus the issue of extension of

Dempster’s semigroup to all BFs on ⌦3 is more interesting and also more important
than in the case of BFs on ⌦2, because a complex structure of exclusive BFs is omitted
in Dempster’s semigroup of non-exclusive BFs, in the case of ⌦3. Nevertheless, due
to the extent of this study we are concentrating to the non-extended case only in this
text.

3 Subalgebras of Dempster’s semigroup

3.1 Idempotents of Dempster’s semigroup

Let us start with investigation of the idempotents of Dempster’s semigroup, which are
trivial subalgebras of the entire Dempster’s semigroups and also of other corresponding
substructures of it.

There are two simple generalizations of idempotents 0 and 00 from D0. There
is vacuous BF 0 = (0, 0, 0, 0, 0, 0), which is neutral hence also idemponent in D3,
and 00 = U3 = ( 13 ,

1
3 ,

1
3 , 0, 0, 0) which is idempotent in D3, both these idempotents

are mentioned already in [13]. Note that neither indecisive BF ( 16 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ) nor

(0, 0, 0, 1
3 ,

1
3 ,

1
3 ) is idempotent w.r.t. �.

There are simple generalizations of absorbing idempotents? and>: 11 = (1, 0, 0, 0, 0, 0), 12 =
(0, 1, 0, 0, 0, 0), 13 = (0, 0, 1, 0, 0, 0), all of them are exclusive absorbing idempotents,
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thus they are inD+
3 ; similarly for another generalizations of? and>: 112 = (0, 0, 0, 1, 0, 0), 113 =

(0, 0, 0, 0, 1, 0), 123 = (0, 0, 0, 0, 0, 1), which are idempotents in D+
3 , thus out of scope

of this study.
There are another 3 idempotents inD3: (

1
2 , 0, 0, 0, 0,

1
2 ), (0,

1
2 , 0, 0,

1
2 , 0), and (0, 0, 1

2 ,
1
2 , 0, 0).

To complete this subsection we have to mention transformation of 00 from D0 to
three-element frame ⌦3 (

1
2 ,

1
2 , 0, 0, 0, 0) and analogous ( 12 , 0,

1
2 , 0, 0, 0) and (0, 1

2 ,
1
2 , 0, 0, 0)

which are exclusive idempotents, thus in D+
3 . We have to note here that 3 similar BFs

(0, 0, 0, 1
2 ,

1
2 , 0), (0, 0, 0,

1
2 , 0,

1
2 ), and (0, 0, 0, 0, 1

2 ,
1
2 ), are non-exclusive, i.e., in D3 but

they are not idempotents. Similarly 6 analogous non-exclusive BFs ( 12 , 0, 0,
1
2 , 0, 0),

( 12 , 0, 0, 0,
1
2 , 0), (0,

1
2 , 0,

1
2 , 0, 0), (0,

1
2 , 0, 0, 0,

1
2 ), (0, 0,

1
2 , 0,

1
2 , 0) and (0, 0, 1

2 , 0, 0,
1
2 ) are

not idempotents.
Proofs of all the above statements are simple verifications of the properties.
Further it is possible to prove that there do not exist another idempotents w.r.t.

� in D3 and D+
3 .

We can summarize this subsection at it follows. There are just 5 idempotents
w.r.t. � in D3: 0 = (0, 0, 0, 0, 0, 0) which is neutral, and further U3, (

1
2 , 0, 0, 0, 0,

1
2 ),

(0, 1
2 , 0, 0,

1
2 , 0), and (0, 0, 1

2 ,
1
2 , 0, 0).

There are just 9 other idempotents in D+
3 , 3 absorbing ones: 11, 12, 13, and 6

non-absorbing: 112, 113, 123, (
1
2 ,

1
2 , 0, 0, 0, 0), (

1
2 , 0,

1
2 , 0, 0, 0), and (0, 1

2 ,
1
2 , 0, 0, 0).

We have to note that all idempontents form trivial subalgebras (subsemigroups,
subgroups) ofD3, e.g., ({U3},�, Id, U3) for U3, ({( 12 , 0, 0, 0, 0,

1
2 , )},�, Id, ( 12 , 0, 0, 0, 0,

1
2 ))

for ( 12 , 0, 0, 0, 0,
1
2 ), and similarly.

3.2 The subgroups/subalgebras of Bayesian belief functions

Bayesian BFs form a subset of quasi Bayesian BFs, thus investigation of their structure
was included in [13]. Bayesian BFs are represented by the triangle with vertices
11 = (1, 0, 0, 0, 0, 0), 12 = (0, 1, 0, 0, 0, 0), 13 = (0, 0, 1, 0, 0, 0). On the border of the
triangle, there are exclusive BFs, thus only internal part of the triangle is relevant to
this study. We will recall the principal results from [13] in the form of the following
lemma here, and recall also Hypothesis 1.

Lemma 1 (i) G3 = ({(d1, d2, d3, 0, 0, 0) | di > 0,
P3

i=1 di = 1},�, ” � ”, U3) is a
group, i.e., subgroup of D3; where ” � ” is given by �(d1, d2, 1 � (d1 + d2), 0, 0, 0) =
(x1,

d1
d2
x1,

d1
1�(d1+d2)

x1, 0, 0, 0; 0), and x1 = 1/(1 + d1
d2

+ d1
1�(d1+d2)

).

(ii) G2=3 = ({(d1, d2, d2, 0, 0, 0; 0)},�, minus2=3, U3) is subgroup of G3 and of D3,
where minus2=3(d1, d2, d2, 0, 0, 0; 0) = ( 1�d1

1+3d1
,

2d1
1+3d1

,

2d1
1+3d1

, 0, 0, 0; 0). The same holds
true also for analogous structures G1=3 = ({(d1, d2, d1, 0, 0, 0; 0)},�, minus1=3, 003)
and G1=2 = ({(d1, d1, d3, 0, 0, 0; 0)},�, minus1=2, U3).

As we have 3 di↵erent non-ordered elements, without any priority, we have not
any linear ordering of G3 in general, thus neither any isomorphism to additive group
of reals in general. This is a di↵erence of G3 subgroup of D3 from G subgroup of D0.

On the other hand, we can define ordering analogous to that of G ⇢ D0 on all
three subgroups G2=3, G1=3, and G1=2.
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Hypothesis 1 Groups G2=3, G1=3, and G1=2 from Lemma 1 are subgroups of D3

isomorphic to the additive group of reals.

According to ordering defined on the subgroups, they are o-isomorphic to Re with
usual or with inverse ordering.

3.3 The subgroups of (simple) complementary belief functions

Reassigning d2 + d2 of elements G2=3 from singletons {!2} and {!3} to {!2,!3} we
obtain set of BFs (d1, 0, 0, 0, 0, 1 � d1), similarly to G2=3 there is subgroup G1�23 =
({(a, 0, 0, 0, 0, 1 � a) 2 D3},�,minus1�23, (

1
2 , 0, 0, 0, 0,

1
2 )), where

minus1�23(a, 0, 0, 0, 0, 1�a) = (1�a, 0, 0, 0, 0, a), and analogically subgroups G2�13 =
({(0, a, 0, 0, 1� a, 0) 2 D3},�, minus2�13, (0,

1
2 , 0, 0,

1
2 , 0)) and G3�12 = ({(0, 0, a, 1�

a, 0, 0) 2 D3},�, minus3�12, (0, 0,
1
2 ,

1
2 , 0, 0)). There is simple isomorphism z : G1�23 �!

G, z(a, 0, 0, 0, 0, 1�a) = (a, 1�a), and analogous isomorphisms for G2�13 and G3�12,
hence all 3 subgroups G1�23, G2�13, and G3�12 are isomorphic also to the additive
group of reals. Hence we have proved the following lemma:

Lemma 2 Structure G1�23 = ({(a, 0, 0, 0, 0, 1�a) 2 D3},�,minus1�23, (
1
2 , 0, 0, 0, 0,

1
2 )),

where minus1�23(a, 0, 0, 0, 0, 1� a) = (1� a, 0, 0, 0, 0, a), is a subgroup of D3 which is
isomorphic to the additive group of reals (o-isomorphic when appropriate ordering is
defined on G1�23).

The same holds true also for the structures G2�13 = ({(0, a, 0, 0, 1�a, 0) 2 D3},�,

minus2�13, (0,
1
2 , 0, 0,

1
2 , 0)) and G3�12 = ({(0, 0, a, 1 � a, 0, 0) 2 D3},�, minus3�12,

(0, 0, 1
2 ,

1
2 , 0, 0)).

Positive and negative cones of G1�23, G2�13, G3�12 (with and without correspond-
ing neutral elements) are subsemigroups of G1�23, G2�13, G3�12 thus also subsemi-
groups of D3.

3.4 The subsemigroup of quasi Bayesian belief functions

The algebraic structure D3�0 of all non-exclusive quasi Bayesian belief functions
D3�0 = {(a, b, c, 0, 0, 0); 0  a+ b+ c  1, 0  a, b, c, a+b<1, a+c<1, b+c<1} was
particularly studied in [13]. As entire D3�0 and all its subalgebras are substructures
of D3, we can recall summary of [13] here:

Theorem 2 (i) Monoid D3�0 = (D3�0,�, 0, U3) is subsemigroup of D3 with neutral
element 0 = (0, 0, 0, 0, 0, 0) and the only other idempotent 00 = U3 = ( 13 ,

1
3 ,

1
3 , 0, 0, 0).

(ii) Subgroup of non-exclusive BBFs G3 = ({(a, b, c, 0, 0, 0)|a + b + c = 1, 0 <

a, b, c},�, ”� ”, U3) and its subalgebras are subalgebras of D3�0, where ”� ” is given
by �(d1, d2, 1 � (d1 + d2), 0, 0, 0) = (x1,

d1
d2
x1,

d1
1�(d1+d2)

x1, 0, 0, 0; 0), and x1 = 1/(1 +
d1
d2

+ d1
1�(d1+d2)

).

(iii) The set of non-exclusive BFs S0, S1, S2, S3, S1�2, S1�3, S2�3 with the operation
� and VBF 0 form commutative semigroups with neutral element 0 (monoids); they
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are all isomorphic4 to the positive cone of the additive group of reals Re�0 (to Re�0+

extended with 1 in the case of S0).
(iv) Subsemigroups D1�2=3, D2�1=3 and D3�1=2 (with their subalgebras Si’s, G2=3,G1=3

and G1=2) are subsemigroups (resp. subgroups in the case of Gi’s) of D3�0 (hence
also of D3). Assuming validity of Hypothesis 1, D1�2=3, D2�1=3 and D3�1=2 are
isomorphic to Dempster’s semigroup D0.
(v) Semigroups of non-exclusive BFs D1�2 = ({(a, b, 0, 0, 0, 0) 2 D3�0},�), D1�3=
({(a, 0, c, 0,0,0)2D3�0},�), D2�3 = ({(0, b, c, 0,0,0)2D3�0},�), are subsemigroups of
D3�0 and all three are isomorphic to D0 without set of BBFs G.
(vi) h is homomorphism: (D3�0,�, 0, U3) �! (G3,�, ”�”, U3); h(Bel) = Bel�00 =
Pl P (Bel), i.e., the normalized plausibility of singletons probabilistic transformation.

Generalization of the operation � and homomorphism f from D0 to entire D3�0

is still under development.

Let us try to describe subalgebras of D3 in full generality in the next/following
subsections.

3.5 Generalizations of subsemigroup S

There are 3 generalizations of subsemigroup S in D3. At first S0 = ({(a,a,a,0,0,0)
2 D3�0},�) isomorphic to the extended positive cone Re�0+ (already presented in
the previous subsection), second is S = ({(a, a, a, b, b, b) 2 D3},�), similarly with its
subsemigroup S0 with neutral idempotent 0 and absorbing one U3. (note that set of
BFs {(a, a, a, a, a, a) 2 D3} is not closed under �, thus it does not form a semigroup).
The third is SPl = {(d1, d2, ..., d23) 2 D3 | Pl((d1, d2, ..., d23) = U3},�); closeness
w.r.t. � follows commutation of � with Pl [2], both S and S0 are subsemigroups of
SPl.

3.6 Generalizations of subsemigroups S
i

’s

BFs in Si inD0 are qBBFs, simple (support), consonant, consistent, etc., ... According
to these properties there are many di↵erent generalizations of Si’s. Quasi Bayesian
subsemigroups were already mentioned: S1 = ({(d1, 0, 0, 0, 0, 0) 2 D3�0}, �), S2 =
({(0, d2, 0, 0, 0, 0) 2 D3�0},�), S3 = ({(0, 0, d3, 0, 0, 0) 2 D3�0},�).

Simple (support) BFs contain also generalizations S12 = ({(0, 0, 0, d12, 0, 0) 2
D3},�), S13 = ({(0, 0, 0, 0, d13, 0) 2 D3},�), S23 = ({(0, 0, 0, 0, 0, d23) 2 D3},�),
all of them are isomorphic to the positive cone of the additive group of reals via S1

and trivial isomorphism z(0, 0, 0, d12, 0, 0) = (d12, 0) and analogous ones.
Consonant generalizations are S1�12 = ({(d1, 0, 0, d12, 0, 0) 2 D3},�), S1�13 =

({(d1, 0, 0, 0, d13, 0) 2 D3},�), both of them include subsemigroups S1 including neu-
tral element 0, S1�12 has also subsemigroup S12 while S1�13 has also subsemigroup S13.
Analogously there are subsemigroups of consonant BFs S2�12, S2�23, S3�13, S3�23.

All focal elements of a consistent generalization contain one of !0
is, thus we have

({(d1, 0, 0, d12, d13, 0)2D3},�), ({(0, d2, 0, d12, 0, d23)2D3},�), etc.

4
o-isomorphic as in the case of D0 in fact, see Theorem 1. There is no ordering of elements of ⌦3,

thus we are either not interesting in ordering of algebras Si in this text.



54 M. DANIEL

Another generalizations of Si’s contain BFs assigning masses only to singletons
upto one element of ⌦3. Thus we have quasi Bayesian subsemigroups mentioned in
Theorem 2 (v).

Another generalizations are such that the only focal element containing one of
elements of ⌦3 is entire ⌦3 (i.e. nothing is assigned to any proper subset of ⌦3

containing the given element). Thus we have subsemigroups {(d1, d2, 0, d12, 0, 0) 2
D3,�)}, {(d1, 0, d3, 0, d13, 0) 2 D3,�)} and {(0, d2, d3, 0, 0, d23) 2 D3,�)}.

Another generalizations are such that Bel of one of elements of ⌦ is zero5 thus
for !3 we have {(d1, d2, 0, d12, d13, 0) 2 D3,�)}, {(d1, d2, 0, d12, 0, d23) 2 D3,�)} and
analogically {(d1, 0, d3, d12, d13, 0) 2 D3,�)}, {(d1, 0, d3, 0, d13, d23) 2 D3,�)} for !2,

and {(0, d2, d3, d12, 0, d23)2D3,�)},{(0, d2, d3, 0, d13, d23)2D3,�)} for!1.

3.7 Subalgebras isomorphic to Dempster’s semigroup D0

We can mention subsemigroups of quasi Bayesian BFs from Theorem 2 (iv), isomor-
phicity of which depends on Hypothesis 1, and those from Theorem 2 (v) again,
i.e. non-exclusive BFs from D1�2, D1�3, D2�3, ({(a, b, 0, 0, 0, 0)},�), ({(a, 0, c, 0, 0,
0)},�), ({(0, b, c, 0, 0, 0)},�); note that m(⌦3) > 0 here.

Reassigning bbms of ⌦3 to union of other focal elements, we obtain subsemigroups
({(a, b, 0, 1�a� b, 0, 0)},�), ({(a, 0, c, 0, 1�a� c, 0)},�), ({(0, b, c, 0, 0, 1� b� c)},�)
which contain only exclusive BFs, thus they are completely out of our present interest.

More interesting are subsemigroupsD1�23 = ({(d1, 0, 0, 0, 0, d23) 2 D3},�), D2�13

= ({(0, d2, 0, 0, d13, 0) 2 D3},�), D3�12 = ({(0, 0, d3, d12, 0, 0) 2 D3},�). Let us turn
our focus to D1�23 = ({(d1, 0, 0, 0, 0, d23)},�) now. There are only two the exclu-
sive BFs (1, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1) in D+

1�23, D1�23 has subsemigroups S1, S23

both isomorphic to the positive cone Re�0, there is another subsemigroup S1�23 =
({(d1, 0, 0, 0, 0, d1) 2 D3},�), it is isomorphic to Re�0+ using S and simple isomor-
phism z : S1�23 �! S, such that z(d1, 0, 0, 0, 0, d1) = (d1, d1). There is subgroup
G1�23 = ({(d1, 0, 0, 0, 0, 1 � d1)}, �,minus1�23, (

1
2 , 0, 0, 0, 0,

1
2 )), where minus1�23

(d, 0, 0, 0, 0, 1 � d) = (1 � d, 0, 0, 0, 0, d). The mapping z we can use also as isomor-
phism G1�23 �! G, where z(d, 0, 0, 0, 0, 1�d) = (d, 1�d), hence G1�23 is consequently
isomorphic to the additive group or reals Re. We can use mapping z also as more
general isomorphism z : D1�23 �! D0, such that z(d1, 0, 0, 0, 0, d23) = (d1, d23). Thus
D1�23 is subsemigroup of D3 which is isomorphic to D0 using simple isomorphism z

which preserves values, hence D1�23 is Dempster’s subsemigroup of D3. Analogously
for Dempster’s subsemigroups D2�13 and D3�12.

3.8 Summary of subalgebras

Although our overview of subalgebras of D3 is not complete due to complexity of the
structure, we can summarize properties of important subalgebras of D3 as it follows:

Theorem 3 (i) Dempster’s semigroup D3 = (D3,�, 0, U3) of non-exclusive BFs
on ⌦3 is commutative semigroup with neutral element 0 = (0, 0, 0, 0, 0, 0) (i.e. it is
monoid), and with four other idempotents 00 = U3 = ( 13 ,

1
3 ,

1
3 , 0, 0, 0), (

1
2 , 0, 0, 0, 0,

1
2 ),

5Note, that for any !i the set of all such BFs is not semigroup.
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(0, 1
2 , 0, 0,

1
2 , 0), and (0, 0, 1

2 ,
1
2 , 0, 0) (there are no other idempotents there).

(iia) Subgroup of non-exclusive BBFs G3 = ({(a, b, c, 0, 0, 0)|a + b + c = 1, 0 <

a, b, c},�, ”� ”, U3) and its subalgebras are subalgebras of D3.
(iib) G1�23 = ({(d, 0, 0, 0, 0, 1�d)},�,minus1�23, (

1
2 , 0, 0, 0, 0,

1
2 )), where minus1�23(d,

0, 0, 0, 0, 1� d) = (1� d, 0, 0, 0, 0, d) is commutative (Abelian) group isomorphic to the
additive group of reals Re. Similarly for G2�13 and G3�12.
(iic) G2=3 = ({(d, 1�d

2 ,

1�d
2 , 0, 0, 0)},�,minus2=3, 003), where minus2=3(d,

1�d
2 ,

1�d
2 , 0, 0, 0) =

( 1�d
1+3d ,

2d
1+3d ,

2d
1+3d , 0, 0, 0), is subgroup of G3. Analogously for subgroups G1=3 and

G1=2; (existence of isomorphisms of G2=3, G1=3, G1=2 onto the additive group of
reals Re is assumed by Hypothesis 1, but not proved).
(iiia) Besides of subsemigroups S0, S1, S2, S3, S1�2, S1�3, S2�3 isomorphic to the pos-
itive cone of additive group of reals Re�0 [13], there are other subsemigroups S12 =
({(0, 0, 0, d12, 0, 0) 2 D3},�), S13, and S23 isomorphic to Re�0.
(iiib) There is another important subsemigroups S = ({(a, a, a, b, b, b) 2 D3},�) gen-
eralizing S from D0. There are consonant generalizations of Si’s S1�12 = ({(d1, 0, 0, d12, 0, 0) 2
D3},�), S1�13, S2�12, S2�23, S3�13,S3�23, and another generalizations of Si’s.
(iv) There are subsemigroups D1�2=3, D2�1=3 and D3�1=2 isomorphic to D0 assum-
ing Hypothesis 1. Further there are subsemigroups D1�2, D1�3 and D2�3 isomorphic
to D0 without BBFs.
(v) There are subsemigroups D1�23, D2�13 and D3�12 isomorphic to D0.
(vi) h is homomorphism: (D3,�, 0, U3) �! (G3,�, ” � ”, U3); h(Bel) = Bel � 00 =
Pl P (Bel) i.e., the normalized plausibility of singletons [10].

4 Ideas for future research and open problems

The presented introductive study opens a lot of interesting problems related to alge-
braic properties of belief functions on 3-element frame of discernment. Let us mention
some them:

• Elaboration of properties ofD3�0; ideas related to operation ”minus” mentioned
in [13].

• Study of subalgebras ofD+
3 containing all BFs (both exclusive and non-exclusive)

should follow.

• The very interesting and important is a open problem of existence of operation
”minus” in D3 (D+

3 ).

• Study of homomorphisms; generalization of homomorphism f and of all other
homomorphismsm from [12].

5 Conclusion

Dempster’s semigroup of belief functions on 3-element frame of discernment was elab-
orated in this contribution. Its substructures related to important classes of general
belief functions were described and analyzed.
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A basis for a solution of the questions coming from research of conflicting be-
lief functions (e.g. the question of an existence of a generalization of Hájek-Valdés
operation ”minus”) was established.

One of corner-stones for further study of conflicts between belief functions and for
better understanding of a notion of belief function in general was laid.
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Hüllermeier, et al. (eds.) IPMU 2010. LNAI, vol. 6178, pp 696–705. Springer,
Heidelberg.

[10] Daniel M. (2011), Non-conflicting and Conflicting Parts of Belief Functions. In:
Coolen, F., de Cooman, G., Fetz, T., Oberguggenberger, M. (eds.) ISIPTA’11;
Proceedings of the 7th ISIPTA, pp 149–158. Studia Universitätsverlag, Innsbruck.
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Abstract

For the three-state toric homogeneous Markov chain (THMC) model without
loops, initial parameters, and time T , the size of the design matrix is 6⇥3 ·2T�1.
In this paper, we study the behavior of the model polytope, the convex hull of
the columns of its design matrix, when the time T � 3 is arbitrarily large and
we show that the polytope is defined by 24 facets, that do not depend on T .
From this, we deduce that the toric ideal associated with the design matrix is
generated by binomials of degree at most 6. Our proof is based on a result due
to Sturmfels, who gave a bound on the degree of the generators for a toric ideal,
provided the normality of the corresponding toric variety. In our setting, we
established the normality of the toric variety associated to the THMC model by
studying the geometric properties of the model polytope. Moreover, we give a
complete description of the facets for arbitrary T .

1 Introduction

A discrete time Markov chain, Xt for t = 1, 2, . . ., is a stochastic process with the
Markov property, that is P (Xt+1 = y|X1 = x1, . . . , Xt�1 = xt�1, Xt = x) = P (Xt+1 =
y|Xt = x) for any states x, y. Discrete time Markov chains have applications in
several fields, such as physics, chemistry, information sciences, economics, finances,
mathematical biology, social sciences, and statistics [7]. In this paper, we consider a
discrete time Markov chain Xt over a set of states [S] = {1, . . . , S}, with t = 1, . . . , T
(T � 3), focusing on the case S = 3.

Discrete time Markov chains are often used in statistical models to fit the observed
data from a random physical process. Sometimes, in order to simplify the model,
it is convenient to consider time-homogeneous Markov chains, where the transition
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probabilities do not depend on the time, in other words, when

P (Xt+1=y|Xt=x) = P (X2=y|X1=x) 8x, y 2 [S] and for any t = 1 . . . , T.

In order for a statistical model to reflect the observed data, it is necessary to
verify if the model fits the data via a goodness-of-fit test. For instance, for the time-
homogeneous Markov chain model, it is necessary to test if the assumption of time-
homogeneity fits the observed data. In this paper, we study some properties of these
algebraic relations for the toric homogeneous Markov chain (THMC) model, which is
a slight generalization of the time-homogeneous Markov chain model, and which we
explain as follows.

Let w = s1 · · · sT denote a word of length T on states [S]. Let p(w) denote the
likelihood of observing the word w. Since the time-homogeneous Markov chain model
assumes that the transition probabilities do not depend on time, we can write the
likelihood as the product of probabilities

p(w) = ⇡s1ps1,s2 · · · psT�1,sT , (1.1)

where, ⇡si indicates the initial distribution at the first state, and psi,sj are the tran-
sition probabilities from state si to sj . In the usual time-homogeneous Markov chain
model it is assumed that the row sums of the transition probabilities are equal to
one:

PS
j=1 pi,j = 1, 8i 2 [S]. On the other hand, in the toric homogeneous Markov

model (1.1), the parameters pi,j are free and the row sums of the transition prob-
abilities are assumed to be di↵erent to one. This simplifies the model as we can
disregard some information from it. In many cases the parameters ⇡s1 for the ini-
tial distribution are known, or sometimes these parameters are all constant, namely
⇡1 = ⇡2 = · · · = ⇡S = c; in this situation it is no longer necessary to take them in
consideration for the model. Another simplification that arises from practice is when
the only transition probabilities considered are those between two di↵erent states, i.e.
when pi,j = 0 whenever i = j; this situation is referred as the THMC model without
self-loops.

The THMC model is a toric model defined by a linear map with a matrix A. This
matrix is called the design matrix of a model. In the THMC model, the goodness-of-fit
test is encoded by polynomial relations among the probabilities psi,sj . The set of all
these algebraic relations defines the toric ideal associated to the design matrix of the
model. The test of goodness-of-fit is summarized by a Markov basis, a generating set
for the toric ideal associate with the design matrix.

In [10], the authors provided a full description of the Markov bases for the THMC
model in two states (i.e. when S = 2) which does not depend on T , even though the
toric ideal lie on a polynomial ring with 2T indeterminates. Inspired by their work,
we study the algebraic and polyhedral properties of the Markov bases of the three-
state THMC model without initial parameters and without self-loops for time T . As a
result, we showed that for arbitrarily large time T � 3, the model polytope –the convex
hull of the columns of the design matrix– has only 24 facets, that do not depend on
T and we provide a complete description of these facets. In addition, by showing the
normality of the polytope, we deduced that the Markov bases of the model consist of
binomials of degree at most 6.
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The outline of this paper is as follows. In Section 2, we recall some definitions from
Markov bases theory. In Section 3, we explicitly describe the hyperplane representation
of the model polytope for the three-state THMC model for any time T � 3. In Section
4, we show that the model polytope is normal for arbitrary T � 3, this is equivalent to
show that the semigroup generated by the columns of the design matrix is integrally
closed. Finally, using these results, we prove the bound on the degree of the Markov
bases in Section 5; and we conclude that section with some observations based on the
analysis of our computational experiments.

2 Notation

Let hSiT be the set of all words of length T on states [S] such that every word has no
self-loops; that is, if w = (s1, . . . , sT ) 2 hSiT then si 6= si+1 for i = 1, . . . , T � 1. We
define P⇤(hSiT ) to be the set of all multisets of words in hSiT .

Let V
�
hSiT

�
be the real vector space with basis hSiT and note that V

�
hSiT

� ⇠=
RS(S�1)T . We recall some definitions from the book of Pachter and Sturmfels [6]. Let
A = (aij) be a non-negative integer d ⇥m matrix with the property that all column
sums are equal:

dX

i=1

ai1 =
dX

i=1

ai2 = · · · =
dX

i=1

aim.

Write A = [a1 a2 · · · am] where aj are the column vectors of A and define ✓aj =Qd
i=1 ✓

aij

i for j = 1, . . . ,m. The toric model of A is the image of the orthant Rd
�0

under the map

f : Rd ! Rm, ✓ 7! 1Pm
j=1 ✓

aj
(✓a1 , . . . , ✓am) .

Here we have d parameters ✓ = (✓1, . . . , ✓d) and a discrete state space of size m.
In our setting, the discrete space will be the set of all possible words on [S] of
length T without self-loops (hSiT ) and we can think of ✓1, . . . , ✓d as the probabili-
ties p1,2, p1,3, . . . , pS�1,S .

In this paper, we focus on the THMC model without initial parameters and with
no self-loops in three states, (i.e., S = 3), which is parametrized by 6 positive real
variables: p12, p13, p21, p23, p31, p3,2. Thus, the number of parameters is d = 6 and the
size of the discrete space is m = 6T�1, which is precisely the number of words in h3iT .
The model we study is thus the toric model represented by the 6 ⇥ 6T�1 matrix AT ,
which will be referred to as the design matrix for the model on 3 states with time T .
The rows of AT are indexed by elements in h3i2 and the columns are indexed by words
in h3iT . The entry of AT indexed by row �1�2 2 h3i2, and column w = (s1, . . . , sT ) 2
h3iT is equal to the cardinality of the set { i 2 {1, . . . , T � 1} | �1�2 = sisi+1 }.

Example 2.1. Ordering h3i2 and h3iT lexicographically, and letting T = 4, the matrix
A4 is:
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1
2
1
2

1
2
1
3

1
2
3
1

1
2
3
2

1
3
1
2

1
3
1
3

1
3
2
1

1
3
2
3

2
1
2
1

2
1
2
3

2
1
3
1

2
1
3
2

2
3
1
2

2
3
1
3

2
3
2
1

2
3
2
3

3
1
2
1

3
1
2
3

3
1
3
1

3
1
3
2

3
2
1
2

3
2
1
3

3
2
3
1

3
2
3
2

12 2 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0
13 0 1 1 0 0 2 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0
21 1 1 0 0 0 0 1 0 2 1 0 1 1 0 1 0 1 1 0 1 0 0 0 0
23 0 0 0 1 1 0 0 1 0 1 1 0 0 1 1 2 0 0 1 0 0 0 1 1
31 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 1 0 1 0 2 1 1 0
32 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 0 1 1 2

2.1 Su�cient statistics, ideals, and Markov basis

Let AT be the design matrix for the THMC model without initial parameters and
with no self-loops. The column of AT indexed by w 2 h3iT is denoted by a

T
w

. Thus,
by extending linearly, the map AT : V(h3iT ) ! R6 is well-defined.

Let W = {w1, . . . , wN} 2 P⇤(h3iT ) where we regard W as observed data which

can be summarized in the data vector u 2 N6T�1

. We index u by words in h3iT , so
the coordinate representing for the word w in the vector u is denoted by u

w

, and its
value is the number of words in W equal to w. Note since AT is linear then AT

u is
well-defined. We also adopt the notation AT (W ) := AT

u. For W from P⇤(h3iT ), let
u be its data vector, the su�cient statistics for the model are stored in the vector
AT

u. Often the data vector u is also referred to as a contingency table, in which case
AT

u is referred to as the marginals.
The design matrix AT above defines a toric ideal which is of central interest in this

paper, as their set of generators are in bijection with the Markov bases. The toric ideal
IAT is defined as the kernel of the homomorphism of polynomial rings  : C[{ p(w) |
w 2 hSiT }] ! C[{ pij | i, j 2 [3], i 6= j }] defined by  (p(w)) = ps1,s2 · · · psT�1,sT ,
where { p(w) | w 2 hSiT } is regarded as a set of indeterminates.

The set of all contingency tables (data vectors) satisfying a given set of marginals
b 2 Zd

�0 is called a fiber which we denote by F
b

= {x 2 Zm
�0 | AT (x) = b }. A

move z 2 Zm is an integer vector satisfying AT (z) = 0. A Markov basis for our model
defined by the design matrix AT is defined as a finite set Z of moves satisfying that
for all b and all pairs x,y 2 F

b

there exists a sequence z1, . . . , zK 2 Z such that

y = x +
KX

k=1

zk, with x +
lX

k=1

zk � 0, for all l = 1, . . . ,K.

A minimal Markov basis is a Markov basis which is minimal in terms of inclusion. See
Diaconis and Sturmfels[1] for more details on Markov bases and their toric ideals.

2.2 State Graph

We give here a useful tool to visualize multisets of P⇤(h3iT ). Given any multiset
W 2 P⇤(h3iT ) we consider the directed multigraph called the state graph G(W ). The
vertices of G(W ) are given by the states [3] and the directed edges i ! j are given by
the transitions from state i to j in w 2 W . Thus, we regard w 2 W as a path with
T � 1 edges (steps, transitions) in G(W ).
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See Figure 1 for an example of the state graph G(W ) of the multiset W =
{(12132), (12321)} of paths with length 4. Notice that the state graph in Figure 1
is the same for another multiset of paths W = {(13212), (21232)}.

1

2

3

1

Figure 1: The state graph G(W ) of W = {(12132), (12321)}. Also the state graph
G(W ) where W = {(13212), (21232)}.

From the definition of state graph it is clear that it records the transitions in a
given multiset of words and we state the following proposition.

Proposition 2.2 (Proposition 2.1 in [4]). Let A be the design matrix for the THMC,
and W,W 2 P⇤(hSiT ). Then A(W ) = A(W ) if and only if G(W ) = G(W ).

Throughout this paper we alternate between terminology of the multisets of words
W and the graph it defines G(W ).

2.3 Semigroup and Smith Normal Form

Given an integer matrix A 2 Zd⇥m we associate an integer lattice ZA = {n1a1 + · · ·+
nmam | ni 2 Z}. We can also associate the semigroup NA := {n1a1 + · · · + nmam |
ni 2 N}. We say that the semigroup NA is normal when x 2 NA if and only if there
exist y 2 Zd and ↵ 2 Rd

�0 such that x = Ay and x = A↵. The set of vectors A↵ is
called the saturation of NA. See [5, 9] for more details on normality.

For an integer matrix A 2 Zd⇥m, we consider the Smith normal form D of A,
which is a diagonal matrix D for which there exist unimodular matrices U 2 Zd⇥d

and V 2 Zm⇥m, such that UAV = D. The Smith normal form encodes the Z-module
structure of the abelian group ZA := {n1A1 + · · ·+nmAm | ni 2 Z}. Some additional
material about the Smith normal form for matrices with entries over a PID can be
found in the book of C. Yap [11]. The Smith normal form is important for studying
the normality of the toric ideal associated to the model.

Proposition 2.3 (Proposition 3.2 in [4]). Let AS,T be the design matrix for the
THMC without initial parameters and no self-loops on S > 1 states with time T > 0.
For S � 3 and T � 4, the Smith normal form of the design matrix AS,T is D =
diag(1, . . . , 1, T � 1).
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3 Facets of the design polytope

3.1 Polytopes

We recall some necessary definitions from polyhedral geometry and we refer the reader
to the book of Schrijver [8] for more details. The convex hull of {a1, . . . ,am} ⇢ Rn is
defined as

conv(a1, . . . ,am) :=

(
x 2 Rn | x =

mX

i=1

�iai,

mX

i=1

�i = 1, �i � 0

)
.

A polytope P is the convex hull of finitely many points. We say F ✓ P is a face of
the polytope P if there exists a vector c such that F = arg max

x2P c · x. Every face
F of P is also a polytope. If the dimension of P is d, a face F is a facet if it is of
dimension d� 1. For k 2 N, we define the k-th dilation of P as kP := { kx | x 2 P, }.
A point x 2 P is a vertex if and only if it can not be written as a convex combination
of points from P\{x}.

The cone of {a1, . . . ,am} ⇢ Rn is defined as

cone(a1, . . . ,am) :=

(
x 2 Rn | x =

mX

i=1

�iai, �i � 0

)
.

Thus, cone(A) denote the cone over the columns of the matrix A. We are interested
in the polytope given by the convex hull of the columns of the design matrices of our
model. We define the design polytope PT as the convex hull conv(AT ) of the columns
of the design matrix AT . Notice that in this case, PT has dimension 6.

If x 2 R6, we index x by { ij | 1  i, j  3, i 6= j }. We define eij 2 R6 to be the
vector of all zeros, except 1 at index ij. We also adopt the notation xi+ :=

P
j xij

and x+i :=
P

j xji. For any x 2 N6 we can define a directed multigraph G(x) on three
vertices, where there are xij directed edges from vertex i to vertex j. One would like
to identify the vectors x 2 N6 for which the graph G(x) is a state graph. Nevertheless,
observe that xi+ is the out-degree of vertex i and x+i is the in-degree of vertex i with
respect to G(x).

We now give some properties which will be used later for describing the facets
of the design polytope PT given by the design matrix for our model, and to prove
normality of the semigroup associated with the design matrix.

Proposition 3.1 (Proposition 5.1 in [4]). Let AT be the design matrix for the THMC
without loops and initial parameters. If x 2 ZAT \cone(AT ) then

P
i 6=j xij = k(T �1)

for some k 2 N and |xi+ � x+i|  k for all i 2 {1, 2, 3}.

Proposition 3.1 states that for x 2 ZAT \ cone(AT ) the multigraph G(x) will
have in-degree and out-degree bounded by kxk1/(T � 1) at every vertex. This implies
nice properties when kxk1 = (T � 1). Recall that a path in a directed multigraph is
Eulerian if it visits every edge only once.
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Proposition 3.2 (Proposition 5.2 in [4]). If G is a directed multigraph on three ver-
tices, with no self-loops, T � 1 edges, and satisfying

|Gi+ �G+i|  1 i = 1, 2, 3;

then, there exists an Eulerian path in G.

Note that every word w 2 P⇤(h3iT ) gives an Eulerian path in G({w}) containing
all edges. Conversely, for every multigraph G with an Eulerian path containing all
edges, there exists w 2 P⇤(h3iT ) such that G({w})= G. More specifically, w is the
Eulerian path in G({w}). Throughout this paper we use the terms path and word
interchangeably.

Lemma 3.3 (Lemma 5.2 in [4]). Let AT be the design matrix for the THMC. If T � 4,
then conv(AT )\Z6 = AT , where the right hand side is taken as the set of columns of
the matrix AT .

We define

Hk(T�1) :=

8
<

:x 2 R6 |
X

i 6=j

xij = k(T � 1)

9
=

; .

Proposition 3.4 (Proposition 5.3 in [4]). Let AT be the design matrix for the THMC
without initial parameters and no loops.

1. For T � 4 and k 2 N,

k conv(AT ) = cone(AT ) \Hk(T�1).

2. For T � 4,

cone(AT ) \ ZAT =
1M

k=0

�
k conv(AT ) \ Z6

�
.

3.2 Facets

Here we summarize all the inequalities in their original form and in their inhomo-
geneous form. Below we only present one of six of the inequalities with the under-
standing that for each case that any permutation of the labels {1, 2, 3} gives another
facet. The inhomogeneous form is derived by substituting the equality n(T � 1) =
x12+x13+x21+x23+x31+x32 into the original form. Inhomogeneous form is essential
for proving the normality of semigroup associated with the design matrix AT .

For any T � 5 homogeneous

c = [1, 0, 0, 0, 0, 0] · x � 0

For any T � 5, homogeneous

c = [T, T,�(T � 2), 1,�(T � 2), 1)] · x � 0
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inhomogeneous
c = [1, 1,�1, 0,�1, 0] · x � �n.

For any T odd, T � 5, homogeneous

c = [1, 1,�1,�1, 1, 1] · x � 0.

For any T � 4 of the form T = 3k + 1, k � 1, homogeneous

c = [2,�1,�1,�1, 2, 2] · x � 0.

For any T � 5 of the form T = 3k + 2, k � 1, homogeneous

c = [2k + 1,�k,�k,�k, 2k + 1, 2k + 1] · x � 0

inhomogeneous

x12 + x31 + x32 � kn =
T � 2

3
n.

For any T � 6, T :even, homogeneous

c = [
3

2
T � 1,

T

2
,�T

2
+ 1,�T

2
+ 1,�T

2
+ 1,

T

2
] · x � 0

inhomogeneous
3x12 + x13 � x21 � x23 � x31 + x32 � �n.

For T = 6k + 3, homogeneous

c = [5k + 2, 2k + 1,�4k � 1,�k,�k, 2k + 1] · x � 0

inhomogeneous

2x12 + x13 � x21 + x32 � T � 3

3
n.

For T = 6k, homogeneous

c = [10k � 1, 4k,�8k + 2,�2k + 1,�2k + 1, 4k] · x � 0

inhomogeneous

2x12 + x13 � x21 + x32 � T � 3

3
n.

3.3 There are only 24 facets

In the previous section, we give 24 facets of the polytope PT for every T � 3, where
death of the 24 facets depend on T mod 6. Here, we discuss how these 24 facets are
enough to describe the polytope PT (the convex hull of the columns of AT ), depending
on T . Let CT := cone(AT ).

Recall that the columns of AT are on the following hyperplane

HT = {(x12, . . . , x32) | T � 1 = x12 + · · · + x32}.
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Then it is clear by Proposition 3.4 that

PT = CT \HT .

Let FT denote the set of facets of the pointed cone CT . Then the facets F of PT

(within HT ) are of the form F ✓ HT , F ✓ FT .
For every T , let F̃T denote the 24 facets prescribed in the previous section, and let

FT denote the set of all facets of P 3,T . Therefore we have a certain subset F̃T ⇢ FT

and we need to show that F̃T = FT . Let C̃T denote the polyhedral cone defined by
F̃T . It follows that C̃T � CT . Note that F̃T = FT if and only if C̃T = CT . Also let

P̃T = C̃T \HT .

Then P̃T � PT and P̃T = PT if and only if C̃T = CT .
The above argument shows that to prove F̃T = FT it su�ces to show that

P̃T ⇢ PT . (3.1)

Let ṼT be the set of vertices of P̃T . Then in order to show (3.1), it su�ces to show
that

ṼT ⇢ PT .

Hence, if we can obtain explicit expressions of the vertices of ṼT and can show that
each vertex belongs to PT , we are done.

In the previous section, we used only the condition T �1 = x12 + · · ·+x32 to settle
the equivalence between the homogeneous and inhomogeneous inequalities defining
the 24 the facets of PT . Hence the homogeneous and the inhomogeneous inequalities
are equivalent on HT . Therefore, for each r = 0, . . . , 5, there exists a polyhedral region
defined by 24 fixed a�ne half-spaces, say Qr, such that

P̃T = Qr \HT , T = 6k + r, k = 1, 2, . . .

Since Qr is a polyhedral region it can be written as a Minkowski sum of a polytope
P r and a cone Cr:

Qr = P r + Cr.

Please note that r is modulo 6, but T is not. Recall the Minkowski sum of two sets
A,B ✓ Rn is simply { a+b | a 2 A, b 2 B }. For each vertex v of P r and each extreme
ray e of Cr let l

v,e denote the half-line emanating from v in the direction e:

l
v,e = {v + te | t � 0}

Given the explicit expressions of v and e we can solve

[1, 1, 1, 1, 1, 1] · (v + te) = T � 1

for t and get

t := t(T,v, e) =
T � 1 � [1, . . . , 1]v

(1, . . . , 1)e
.
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Then v + t(T,v, e)e 2 HT . Note that

ṼT ⇢ {v + t(T,v, e)e | v : vertex of P r, e : extreme ray of Cr}.

Also clearly

{v + t(T,v, e)e | v : vertex of P r, e : extreme ray of Cr} 2 P̃T = conv(ṼT ).

The above argument shows that for proving F̃T = FT it su�ces to show that

{v + t(T,v, e)e | v : vertex of P r, e : extreme ray of Cr} 2 PT . (3.2)

For proving (3.2) the following lemma is useful.

Lemma 3.5. Let v 2 P r and e 2 C. If v + t(T,v, e)e 2 PT \ Z6 for some T , then
v + t(T + 6k,v, e)e 2 PT+6k for all k � 0.

Proof. If x := v + t(T,v, e)e 2 PT \ Z6 for some T then x corresponds to a path
of length T on three states with no loops (word in h3iT ). Suppose e is a two-loop
(three-loop) e.g. 121 (1231). Then x + (3k)e 2 PT+6k (x + (2k)e 2 PT+6k). That is,
since x is an integer point (a path) contained in PT , we can simply add three (or two
depending on the loop) copies of the loop e and we will be guaranteed to have a path
of the correct length meaning it will be contained in PT+6.

By this lemma we need to compute Cr only for some special small T ’s. We
computed all vertices and all rays for the cases T = 12, 7, 20, 9, 16, 11. The soft-
ware to generate the design matrices can be found at https://github.com/dchaws/
GenWordsTrans and the design matrices and some other material can be found at
http://www.davidhaws.net/THMC.html. By our computational result and Lemma
3.5 we verified the following proposition.

Proposition 3.6. The rays of the cones Cr for r = 0, . . . , 5 are ((1,0,1,0,0,0),
(1,0,0,1,1,0), (0,1,1,0,0,1), (0,1,0,0,1,0), (0,0,0,1,0,1)). In terms of the state graph,
the rays correspond to the five loops 121, 131, 232, 1231, and 1321.

Note that Cr, r = 0, . . . , 5 are common and we denote them as C hereafter. Also
note that the rays of the cone Cr are very simple. Proposition 3.6 implies the following
theorem.

Theorem 3.7. The 24 facets given in above (depending on T mod 6) are all the
facets of PT = conv(AT ).

4 Normality of the semigroup

From the definition of normality of a semigroup defined in Section 2.3, the semigroup
NAT defined by the design matrix is normal if it coincides with the elements in both,
the integer lattice ZAT and the cone cone(AT ).

In this section, we provide an inductive prove on the normality of the semigroup
NAT for arbitrary T .

Theorem 4.1. The semigroup NAT is normal for any T 2 N.
See [3] for the proof.



68 D. HAWS, A. MARTÍN DEL CAMPO, A. TAKEMURA, R. YOSHIDA

5 Discussion

In this paper, we considered only the situation of the toric homogeneous Markov
chain (THMC) model (1.1) for S = 3, with the extra assumption of having non-zero
transition probabilities only when the transition is between two di↵erent states. In
this setting, we described the hyperplane representations of the design polytope for
any T � 4, and from this representation we showed that the semigroup generated by
the columns of the design matrix AT is normal.

We recall from Lemma 4.14 in [9], that a given set of integer vectors {a1, . . . ,an}
is a graded set, if there exists w 2 QS2

such that ai ·w = 1. In our setting, the set
of columns of the design matrix AT is a graded set, as each of its columns add up to
T � 1, so we let w = ( 1

T�1 , . . . ,
1

T�1 ).
In his same book, Sturmfels provided a way to bound the generators of the toric

ideal associated to an integer matrix A, the precise statement is the following.

Theorem 5.1 (Theorem 13.14 in[9]). Let A ⇢ Zd be a graded set such that the
semigroup generated by the elements in A is normal. Then the toric ideal IA associate
with the set A is generated by homogeneous binomials of degree at most d.

In our setting, Theorem 4.1 demonstrates the normality of the semigroup generated
by the columns of the design matrix AT , so as a consequence we obtain the following
theorem:

Theorem 5.2. For S = 3 and for any T � 4, a Markov basis for the toric ideal
IAT associated to the THMC model (without loops and initial parameters) consists of
binomials of degree at most 6.

The bound provided by Theorem 5.2 seems not to be sharp, in the sense that there
exists Markov basis whose elements have degree strictly less than 6. In our compu-
tational experiments, we found evidence that more should be true. Our observations
hold in a more general setting. For any S and T , let AS,T denote the design matrix
for the THMC model in S states.

Conjecture 5.3. Fix S � 3; then, for every T � 4, there is a Markov basis for the
toric ideal IAS,T consisting of binomials of degree at most S�1, and there is a Gröbner
basis with respect to some term ordering consisting of binomials of degree at most S.
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Abstract

In this paper, we investigate the extension principle for graded ill-known
sets. Because a graded ill-known set is characterized by a possibility distribution
in the power set, calculations of function values of graded ill-known sets are
generally complex. To reduce the complexity, lower and upper approximations
of a given graded ill-known set are used at the expense of precision. We give
a necessary and su�cient condition that lower and upper approximations of
function values of graded ill-known sets are obtained as function values of lower
and upper approximations of graded ill-known sets.

1 Introduction

As a model to represent a set whose members known partially, the graded ill-known
set [1, 2] is proposed. A graded ill-known set is characterized by a possibility distri-
bution in the power set of the universe. It can be seen as a possibilistic counterpart
of random set [3] and as an extension of possibility distribution [4]. Then there would
be a lot of research topics about graded ill-known sets in analogy with random sets
and possibility theory.

In this paper, we investigate the function calculations of graded ill-known sets. The
function calculations of graded ill-known sets can be done though an extension princi-
ple. The extension principle, generalizing a function of real numbers to the function of
graded ill-known sets, is indispensable for the applications of graded ill-known sets in
decision making and data analysis under uncertainty. Because a graded ill-known set
is defined in the power set, the calculations of function values of graded ill-known sets
are generally complex. To reduce the complexity, lower and upper approximations of
a given graded ill-known set are often used at the expense of precision. Using those
approximations, we obtain the approximated values, or exact values in some special
cases, are calculated on the universe.

In this paper, we give a necessary and su�cient condition that lower and upper
approximations of function values of graded ill-known sets are obtained by function
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values of lower and upper approximations of graded ill-known sets. We demonstrate
some cases where the condition is satisfied.

Graded ill-known sets are briefly introduced in Section 2. Extension principle for
graded ill-known sets and previous results are described in Section 3. In Section 4,
the main result is shown and applied to a few cases. Concluding remarks are given in
Section 5.

2 Graded Ill-known Sets

Let X be a universe. Let A be a crisp set whose members are not known exactly. To
represent such an ill-known set, collecting possible realizations of A, we obtain the
following family:

A = {A1, A2, . . .}, (1)

where A

i

is a crisp set such that A = A

i

is possible.
Given A, we obtain a set of elements which certainly belong to A, say A

� and a
set of elements which possibly belong to A, say A

+ are defined as

A

� =
\

A =
\

i=1,2,...

A

i

, A

+ =
[

A =
[

i=1,2,...

A

i

. (2)

We call A� and A

+ “the lower approximation” of A and “the upper approximation”
of A, respectively.

In the real world, we may know sure members and sure non-members only. In
other words, we know the lower approximation A

� as a set of sure members and the
upper approximation A

+ as a complementary set of sure non-members. Given A

�

and A

+ (or equivalently, the complement of A+), we obtain a family Â of possible
realizations of A as

Â = {A
i

| A� ✓ A

i

✓ A

+}. (3)

We note that A� and A

+ are recovered by applying (2) to the family Â induced from
A

� and A

+ by (3). On the other hand, A cannot be always recovered by applying (3)
to A

� and A

+ defined by (2).
If all A

i

’s of (1) are not regarded as equally possible, we may assign a possibility
degree ⇡A(A) to each A ✓ X so that

9A ✓ X, ⇡(A) = 1. (4)

A possibility distribution ⇡A : 2X ! [0, 1] can be seen as a membership function of a
fuzzy set A in 2X . Thus, we may identify A with A. The ill-known set having such a
possibility distribution is called “a graded ill-known set”.

In this case, the lower approximation A

� and the upper approximation A

+ are
defined as fuzzy sets with the following membership functions:

µ

A

�(x) = inf
A✓X

x 62A

n(⇡A(A)), µ

A

+(x) = sup
A✓X

x2A

'(⇡A(A)), (5)

where n : [0, 1] ! [0, 1] and ' : [0, 1] ! [0, 1] are non-increasing and non-decreasing
functions such that n(0) = '(1) = 1 and n(1) = '(0) = 0. Dubois and Prade [1]
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defined µ

A

� and µ

A

+ with n(s) = 1� s and '(s) = s, 8s 2 [0, 1]. Inuiguchi [2] defined
µ

A

� and µ

A

+ with n(s) = I(s, 0) and '(s) = T (s, 1), where I and T are implication
and conjunction functions [2], respectively.

We have the following property:

8x 2 X, µ

A

�(x) > 0 implies µ
A

+(x) = 1. (6)

Because the specification of possibility distribution ⇡A may need a lot of informa-
tion, as is in the usual ill-known sets, we may know only the lower approximation A

�

and the upper approximation A

+ as fuzzy sets satisfying (6). To have a consistent
possibility distribution ⇡A for any A

� and A

+, we need to assume that n and ' are
surjective, i.e.,

{n(s) | s 2 [0, 1]} = [0, 1], {'(s) | s 2 [0, 1]} = [0, 1]. (7)

Although (7) is assumed, there are many possibility distributions ⇡A having given A

�

and A

+ as their lower and upper approximations. However, there is the following
maximal possibility distribution ⇡⇤

A(A):

⇡

⇤
A(A) = min

✓
inf
x 62A

n

⇤(µ
A

�(x)), inf
x2A

'

⇤(µ
A

+(x))

◆
, (8)

where we define inf ; = 1 and

n

⇤(a) = sup{s 2 [0, 1] | n(s) � a}, '

⇤(a) = sup{s 2 [0, 1] | '(s)  a}. (9)

Then we identify the maximal possibility distribution ⇡

⇤
A(A) with the given fuzzy

sets A

� and A

+ unless the other information is available. The graded ill-known
set corresponding to ⇡

⇤
A(A) is denoted by hA�

, A

+i and ⇡

⇤
A(A) is written also as

⇡hA�
,A

+i(A).
In what follows, we assume that n and ' are bijective so that we have n

⇤ = n

�1

and '⇤ = '

�1, where n

�1 and '�1 are inverse functions of n and '.

3 Extension Principle for Graded Ill-known Sets

In this paper, we consider graded ill-known sets in real line R and investigate the cal-
culations of graded ill-known sets in R. Graded ill-known sets in real line R are called
“graded ill-known sets of quantities”. The set of graded ill-known sets of quantities is
denoted by IQ.

Because graded ill-known sets are characterized by possibility distributions on the
power set which can be seen as a membership function of a fuzzy set in the power
set, the function values of ill-known sets of quantities can be defined by the extension
principle [5] in fuzzy set theory.

When a function  : (2R)m ! 2R is given, we extend this function to a function
from IQm to IQ in the following definition.

Definition 1. Let A
i

, i = 1, 2, . . . ,m be graded ill-known sets of quantities. Given
a function  : (2R)m ! 2R, the image  (A1,A2, . . . ,Am

) is defined by a graded
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ill-known set of quantities associated with the following possibility distribution:

⇡

 (A1,A2,...,Am)(Y )

=

8
<

:

sup
Q1,Q2,...,Qm✓R
Y= (Q1,...,Qm)

min (⇡A1(Q1),⇡A2(Q2), · · · ,⇡Am(Q
m

)) , if  �1(Y ) 6= ;,

0, if  �1(Y ) = ;,
(10)

where ⇡Ai is a possibility distribution associated with graded ill-known set of quantities
A

i

and  �1 is the inverse image of  .

Note that, function f : Rm ! R can be extended to a function f : (2R)m ! 2R

by f(A1, A2, . . . , Am

) = {f(x1, x2, . . . , xm

) | x
i

2 A

i

, i = 1, 2, . . . ,m}. The extended
function f : (2R)m ! 2R can be further extended to a function f : IQm ! IQ by
Definition 1.

The calculation of  (A1,A2, . . . ,Am

) is very complex because we should consider
all elementary sets of power set 2R. This implies that at least an exponential order
of calculations are requested. In this paper, we investigate the necessary and su�-
cient condition for the lower and upper approximations of  (A1,A2, . . . ,Am

) to be
calculated in smaller order of complexity when  is the extension of f : Rm ! R.

The following theorem about the upper approximation is given by Inuiguchi [6].

Theorem 1. The upper approximation f

+(A1,A2, . . . ,Am

) of f(A1,A2, . . . , Am

)
can be calculated by upper approximations of A

i

, i = 1, 2, . . . ,m. More concretely,
we obtain

µ

f

+(A1,A2,...,Am)(y) = sup
y2Y

'(⇡
f(A1,A2,...,Am)(Y ))

= sup
x1,x2,...,xm2R

y=f(x1,x2,...,xm)

min(µ
A

+
1
(x1), µ

A

+
2
(x2), . . . , µ

A

+
m
(x

m

))) = µ

f(A+
1 ,A

+
2 ,...,A

+
m)(y),

(11)

where µ
f

+(A1,A2,...,Am) is the membership function of f+(A1,A2, . . . ,Am

) and µ

A

+
i
is

the membership function of the upper approximationA

+
i

ofA
i

. Similarly, µ
f(A+

1 ,A

+
2 ,...,A

+
m)

is the membership function of the image f(A+
1 , A

+
2 , . . . , A

+
m

).

For the lower approximation, we only have an inequality as shown in the following
theorem (see Inuiguchi [6]).

Theorem 2. The membership function of lower approximation f

�(A1, A2, . . . ,Am

)
of f(A1,A2, . . . ,Am

) is not smaller than that of f(A�
1 , A

�
2 , . . . , A

�
m

), i.e.,

µ

f

�(A1,A2,...,Am)(y) = inf
y 62Y

n(⇡
f(A1,A2,...,Am)(Y ))

� sup
x1,x2,...,xm2R

y=f(x1,x2,...,xm)

min(µ
A

�
1
(x1), µ

A

�
2
(x2), . . . , µ

A

�
m
(x

m

)) = µ

f(A�
1 ,A

�
2 ,...,A

�
m)(y),

(12)
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where µ

A

�
i

is the membership function of lower approximation A

�
i

of A
i

.

µ

f(A�
1 ,A

�
2 ,...,A

�
m) is the membership function of the image f(A�

1 , A
�
2 , . . . , A

�
m

) of fuzzy

sets A�
1 , A

�
2 , . . . , A

�
m

.

To have the equality of (12), Inuiguchi [6] considered a special class IQci ✓ IQ of
graded ill-known sets of quantities A satisfying the following properties:

8↵ 2 (0, 1], Â(↵) =
\

{Q ✓ R | ⇡A(Q) � ↵} is nonempty, closed and convex,

and there exist convex sets Q
j

, j = 1, 2, . . . , k such that

⇡A(Qj

) � ↵, j = 1, 2, . . . , k and Â(↵) =
\

j=1,2,...,k

Q

j

. (13)

A graded ill-known set of quantities A satisfying (13) can be seen as an extension of
a closed interval in R. Then IQci is considered the set of ill-known closed intervals.

Then Inuiguchi [6] has proved the following theorem.

Theorem 3. Let f : R

m ! R be continuous and monotone (monotonically
increasing or monotonically decreasing with respect to each argument). Let A

i

2 IQci,
i = 1, 2, . . . ,m. If {⇡Ai(A) | A ✓ R} is finite for i = 1, 2, . . . ,m then we have

µ

f

�(A1,A2,...,Am)(y) = inf
y 62Y

n(⇡
f(A1,A2,...,Am)(Y ))

= sup
x1,x2,...,xm2R

y=f(x1,x2,...,xm)

min(µ
A

�
1
(x1), µ

A

�
2
(x2), . . . , µ

A

�
m
(x

m

)) = µ

f(A�
1 ,A

�
2 ,...,A

�
m)(y).

(14)

We note that f(A1, . . . ,Am

) requires the calculations on the power set while
f(A�

1 , . . . , A
�
m

) and f(A+
1 , . . . , A

+
m

) require the calculations on the universe. Therefore,
the most right-hand sides values of (11) and (14) are calculated much more e�ciently
than the most left-hand sides values.

In this paper, to generalize Theorem 3 as well as to capture the essence, we give
the necessary and su�cient condition of (14).

4 The Main Result and Its Applications

We have the following theorem.

Theorem 4. We have f

�(A1, . . . ,Am

) = f(A�
1 , . . . , A

�
m

) if and only if

8↵ 2 [0, 1),
\

{f(Q1, . . . , Qm

) | Q1 2 (A1)↵, . . . , Qm

2 (A
m

)
↵

}

= f

⇣\
(A1)↵, . . . ,

\
(A

m

)
↵

⌘
, (15)

where (A
i

)
↵

= {Q | ⇡Ai(Q) > ↵}.
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(Proof) For the sake of simplicity, we prove when m = 2. In cases where m 6= 2,
it can be proved in the same way. From Theorem 2, we consider the necessary and
su�cient condition of

µ

f

�(A1,A2)(y)  µ

f(A�
1 ,A

�
2 )(y).

This is equivalent to

8↵ 2 (0, 1], µ

f

�(A1,A2)(y) � ↵ implies µ
f(A�

1 ,A

�
2 )(y) � ↵. (⇤)

Then we consider the equivalent condition of (a) µ

f

�(A1,A2)(y) � ↵ and that of (b)
µ

f(A�
1 ,A

�
2 )(y) � ↵.

First let us investigate the equivalent condition of (a). By definition, we have

µ

f

�(A1,A2)(y) � ↵ , inf
Y 63y

n(⇡
f(A1,A2)(Y )) � ↵

, y 62 Y implies ⇡
f(A1,A2)(Y ) � n

�1(↵)

, ⇡

f(A1,A2)(Y ) > n

�1(↵) implies y 2 Y

, sup
Q1,Q2:Y=f(Q1,Q2)

min(⇡A1(Q1),⇡A2(Q2)) > n

�1(↵) implies y 2 Y

, y 2
\�

f(Q1, Q2) | Q1 2 (A1)
n

�1(↵), Q2 2 (A2)
n

�1(↵)

 
.

Now let us investigate the equivalent condition of (b). By definition and the continuity
of n�1, we obtain

µ

f(A�
1 ,A

�
2 )(y) � ↵ , sup

x1,x2:y=f(x1,x2)
min

⇣
µ

A

�
1
(x1), µ

A

�
2
(x2)

⌘
� ↵

, 8" > 0, 9x1, x2, y = f(x1, x2), µ

A

�
1
(x1) > ↵� ", µ

A

�
2
(x2) > ↵� "

, 8" > 0, 9x1, x2, y = f(x1, x2), inf
Qi 63xi

n(⇡Ai(Qi

)) > ↵� ", i = 1, 2

, 8" > 0, 9x1, x2, y = f(x1, x2),

x

i

2
\�

Q

i

| ⇡Ai(Qi

) � n

�1(↵� ")
 
, i = 1, 2

, 9x1, x2, y = f(x1, x2), x

i

2
\�

Q

i

| ⇡Ai(Qi

) > n

�1(↵)
 
, ı = 1, 2

, y 2 f

⇣\
(A1)

n

�1(↵),

\
(A2)

n

�1(↵)

⌘
.

From those equivalent conditions of (a) and (b) and the fact that {n�1(↵) | ↵ 2
(0, 1]} = [0, 1), the necessary and su�cient condition of (⇤) is obtained as

8↵ 2 [0, 1),
\

{f(Q1, Q2) | Q1 2 (A1)↵, Q2 2 (A2)↵}

= f

⇣\
(A1)↵,

\
(A2)↵

⌘
.

(Q.E.D.)

From Theorem 4, we prove a more general su�cient condition for f

�(A1, . . . ,

A
m

) = f(A�
1 , . . . , A

�
m

) than Theorem 3. Before describing it, we define a class IQint ✓
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IQ of graded ill-known sets of quantities A satisfying the following properties:

8↵ 2 [0, 1), A(↵) =
\

(A)
↵

is nonempty and convex, and

there exists a family of convex sets {Q
j

}
j2J

such that Q
j

2 (A)
↵

, j 2 J and A(↵) =
\

j2J

Q

j

. (16)

A graded ill-known set of quantities A satisfying (16) can be seen as an extension of
an interval in R. Then IQint is considered the set of ill-known intervals.

Then we obtain the following theorem.

Theorem 5. Let f : Rm ! R be continuous and monotone (monotonically in-
creasing or monotonically decreasing with respect to each argument). Let A

i

2 IQint,
i = 1, 2, . . . ,m. Then we have (14).

(Proof) By the same reason as Theorem 4, we prove when m = 2. Without loss of
generality, we assume f is monotonically increasing with respect to all arguments.

From A

i

(↵) =
T
(A

i

)
↵

✓ Q

i

for Q

i

2 (A
i

)
↵

, f(A1(↵), A2(↵)) ✓
T
{f(Q1, Q2) |

Q1 2 (A1)↵, Q2 2 (A2)↵}. Then we prove

y 62 f(A1(↵), A2(↵)) implies y 62
\

{f(Q1, Q2) | Q1 2 (A1)↵, Q2 2 (A2)↵}. (⇤)

Because f is continuous and A

i

(↵), i = 1, 2 are nonempty and convex, f(A1(↵),
A2(↵)) becomes an interval (a convex set in the real line). Then we prove (⇤) dividing
into two cases: (a) y  inf f(A1(↵), A2(↵)) and y 62 f(A1(↵), A2(↵)) and (b) y �
sup f(A1(↵), A2(↵)) and y 62 f(A1(↵), A2(↵)).

Because A
i

2 IQint, there exists a family Q
i

of convex sets {Q
ij

}
j2Ji such that

Q

ij

2 (A
i

)
↵

and A

i

(↵) =
T

j2Ji
Q

ij

for i = 1, 2. From the convexity of Q
ij

, j 2 J

i

,

i = 1, 2, there exist subfamilies Q
i

= {Q
ij

}
j2Ji

✓ Q
i

and Q
i

= {Q
ij

}
j2Ji

✓ Q
i

such

that sup
j2Ji

inf Q
ij

= inf A
i

(↵) and inf
j2Ji

supQ
ij

= supA
i

(↵).

From the monotonicity, we obtain

8r1 2 A1(↵), 8r2 2 A2(↵), y < f(r1, r2) implies

9k1 2 J1, 9k2 2 J2, 8q1 2 Q

1k1
, 8q2 2 Q

2k2
, y < f(q1, q2),

8r1 2 A1(↵), 8r2 2 A2(↵), y > f(r1, r2) implies

9l1 2 J1, 9l2 2 J2, 8q1 2 Q1l1 , 8q2 2 Q2l2 , y > f(q1, q2).

Therefore, in case (a) y  inf f(A1(↵), A2(↵)) and y 62 f(A1(↵), A2(↵)), we have
y 62 f(Q

1
, Q

2
). This implies that y 62

T
{f(Q1, Q2) | Q1 2 (A1)↵, Q2 2 (A2)↵}.

Similarly, in case (b) y � sup f(A1(↵), A2(↵)) and y 62 f(A1(↵), A2(↵)), we have
y 62 f(Q1, Q2). This implies that y 62

T
{f(Q1, Q2) | Q1 2 (A1)↵, Q2 2 (A2)↵}.

Hence, (⇤) is proved. (Q.E.D.)

Theorem 5 generalizes Theorem 3. In Theorem 5, {⇡Ai | A ✓ R} can be infinite
and the restriction A

i

2 IQci is relaxed to A
i

2 IQint.
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If A
i

(↵) 2 (A
i

)
↵

, i = 1, 2, . . . ,m for any ↵ 2 [0, 1), we have (15). From Theorem 4,
we have the following corollary.

Corollary 1. If A
i

(↵) 2 (A
i

)
↵

, i = 1, 2, . . . ,m for any ↵ 2 [0, 1), then we have
f

�(A1, . . . ,Am

) = f(A�
1 , . . . , A

�
m

).

When A
i

(↵) 2 (A
i

)
↵

, i = 1, 2, . . . ,m for any ↵ 2 [0, 1), we have (14) without
any condition on f . The strong condition A

i

(↵) 2 (A
i

)
↵

, i = 1, 2, . . . ,m for any
↵ 2 [0, 1) is satisfied by a graded ill-known set of quantities defined by lower and upper
approximations. This can be understood directly from the following proposition.

Proposition 1. Let A be a graded ill-known set defined by lower and upper approx-
imations A� and A

+. Then we have

(A)
↵

=

⇢
A

���� [A
�]

n(↵) ✓ A ✓ (A+)
'(↵)

�
, (17)

where [A�]
�

= {x | µ
A

�(x) � �}, � 2 (0, 1] and (A+)
�

= {x | µ
A

+(x) > �}, � 2 [0, 1).

(Proof) From (8), we obtain the following equivalences:

A 2 (A)
↵

, inf
x 62A

n

�1(µ
A

�(x)) > ↵ and inf
x2A

'

�1(µ
A

+(x)) > ↵

, (x 2 A implies µ
A

+(x) > '(↵)) and (µ
A

�(x) � n(↵) implies x 2 A)

, [A�]
n(↵) ✓ A ✓ (A+)

'(↵).

(Q.E.D.)

From Proposition 1, we know that A(↵) = [A�]
n(↵) if A is defined by lower and

upper approximations A

� and A

+. Because A

+ is not related A(↵), we may have a
weaker su�cient condition for A

i

(↵) 2 (A
i

)
↵

. Namely, we know that A
i

(↵) 2 (A
i

)
↵

is satisfied if the possibility distribution ⇡Ai of a graded ill-known set of quantities A
i

satisfies

⇡Ai(A) = inf
x 62A

n

�1(µ
A

�
i
(x)),

8A such that inf
x 62A

n

�1(µ
A

�
i
(x))  inf

x2A

'

�1(µ
A

+
i
(x)), (18)

where A

�
i

and A

+
i

are lower and upper approximations of A
i

, respectively, and µ

A

�
i

and µ

A

+
i
are their membership functions.

Finally, we investigate whether f(A1, . . . ,Am

) is obtained from f(A�, . . . , A
�
m

)
and f(A+

1 , . . . , A
+
m

) through (8) when A
i

, i = 1, 2, . . . .m are graded ill-known sets
of quantities defined by the lower and upper approximations A

�
i

and A

+
i

. Namely
we consider whether f(hA�

1 , A
+
1 i, . . . , hA�

m

, A

+
m

i) defined by Definition 1 equals to
hf(A�

1 , . . . , A
�
m

), f(A+
1 , . . . , A

+
m

)i.
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Contrary to our expectation, the answer is negative. A counter example is given
as follows. Let f1 : R2 ! R be a function defined by

f1(x1, x2) =

8
<

:

x1 + x2, if x1 + x2  6,
0, if x1 + x2 2 (6, 10],
x1 + x2 � 4, if x1 + x2 > 10.

Let A1 and A2 be ill-known sets defined by lower approximations A

�
1 = [2, 3] and

A

�
2 = [2, 3] and upper approximations A+

1 = [1, 7] and A

+
2 = [1, 8], respectively. Then

we have [4, 8] 62 f1(A1,A2) = f1(hA�
1 , A

+
1 i, hA

�
2 , A

+
2 i) but {0} [ [4, 8] 2 f1(A1,A2) =

f1(hA�
1 , A

+
1 i, hA

�
2 , A

+
2 i). On the other hand, we obtain f1(A

�
1 , A

�
2 ) = [4, 6] and

f1(A
+
1 , A

+
2 ) = {0} [ [2, 11]. Then we have [4, 8] 2 hf1(A�

1 , A
�
2 ), f1(A

+
1 , A

+
2 )i. There-

fore, f1(hA�
1 , A

+
1 i, hA

�
2 , A

+
2 i) = hf1(A�

1 , A
�
2 ), f1(A

+
1 , A

+
2 )i does not always hold.

Even when function is continuous and monotone, we have a similar result. Namely,
let f2 : R2 ! R be a function defined by f2(x1, x2) = x1 + x2. Let A

�
i

and A

+
i

(i = 1, 2) be the same as above, i.e., A�
1 = [2, 3], A�

2 = [2, 3], A+
1 = [1, 7] and A

+
2 =

[1, 8]. We have f2(A
�
1 , A

�
2 ) = [4, 6] and f2(A

+
1 , A

+
2 ) = [2, 15]. Then [4, 6] [ [11, 12] 2

hf2(A�
1 , A

�
2 ), f2(A

+
1 , A

+
2 )i. On the contrary, [4, 6][ [11, 12] 62 f2(hA�

1 , A
+
1 i, hA

�
2 , A

+
2 i).

This is because there is no Q1 ✓ R and Q2 ✓ R such that f2(Q1, Q2) = [4, 6][ [11, 12].
From the examples above, we know that we may have

⇡

f(hA�
1 ,A

+
1 i,...,hA�

m,A

+
mi)(Y ) = ⇡hf(A�

1 ,...,A

�
m),f(A+

1 ,...,A

+
m)i(Y ), (19)

only for Y 2 f(2R, . . . , 2R).
The following theorem shows that (19) holds for a convex set Y ✓ R and a mono-

tone continuous function.

Theorem 6. Let f : R

m ! R be continuous and monotone. Let A

�
i

and A

+
i

be fuzzy sets showing lower and upper approximations of a graded ill-known set A
i

,
i = 1, 2, . . . ,m. Then (19) holds for a convex set Y ✓ R.

(Proof) We prove (19) when m = 2. (19) can be proved in the same way even when
m > 2. Let f�1(Y ) = {(Q1, Q2) | f(Q1, Q2) = Y } for Y ✓ R and f

�1(y) = {(x1, x2) |
f(x1, x2) = y} for y 2 R. For the sake of simplicity, we define graded ill-known sets
A

i

= hA�
i

, A

+
i

i, i = 1, 2 and F = hf(A�
1 , A

�
2 ), f(A

+
1 , A

+
2 )i.

When f

�1(Y ) = ;, we may have two cases: (a) 9y 2 Y , f�1(y) = ;, and (b)
8y 2 Y , f�1(y) 6= ; and 8Q̂1 ⇥ Q̂2 ✓ R

2 such that 8y 2 Y , (Q̂1 ⇥ Q̂2) \ f

�1(y) 6= ;
and f(Q̂1 ⇥ Q̂2) � Y .

Because f is continuous and monotone, if 8y 2 Y , f�1(y) 6= ;, there exists Q̂1 ⇥
Q̂2 ✓ R

2 such that 8y 2 Y , (Q̂1 ⇥ Q̂2) \ f

�1(y) 6= ; and f(Q̂1 ⇥ Q̂2) � Y . Then (b)
is never satisfied if f�1(Y ) = ;. Then f

�1(Y ) = ; if and only if 9y 2 Y , f�1(y) = ;.
When f

�1(Y ) = ;, we have ⇡

f(A1,A2)(Y ) = 0 by Definition 1 and

inf
y2Y

'

�1
⇣
µ

f(A+
1 ,A

+
2 )(y)

⌘
= 0 because µ

f(A+
1 ,A

+
2 )(y) = 0 for f

�1(y) = ; from the

extension principle in fuzzy sets. The latter implies ⇡F (Y ) = 0. Hence, we have (19)
when f

�1(Y ) = ;.
Then we consider a case where f

�1(Y ) 6= ;. Because ⇡F is the maximal possi-
bility distribution of graded ill-known sets having lower and upper approximations
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f(A�
1 , A

�
2 ) and f(A+

1 , A
+
2 ). On the other hand, we have f

�(A1,A2) = f(A�
1 , A

�
2 )

and f

+(A1,A2) = f(A+
1 , A

+
2 ). Then we have ⇡

f(A1,A2)(Y )  ⇡F (Y ). Therefore, we
prove

⇡

f(A1,A2)(Y ) � ⇡F (Y ). (⇤)
We have

⇡

f(A1,A2)(Y ) = sup
Q1,Q2✓R

Y=f(Q1,Q2)

min (⇡A1(Q1),⇡A2(Q2))

= sup
Q1,Q2✓R

Y=f(Q1,Q2)

min

✓
min

✓
inf

x 62Q1

n

�1(µ
A

�
1
(x)), inf

x2Q1

'

�1(µ
A

+
1
(x))

◆
,

min

✓
inf

x 62Q2

n

�1(µ
A

�
2
(x)), inf

x2Q2

'

�1(µ
A

+
2
(x))

◆◆
.

Applying Proposition 1, we obtain

⇡

f(A1,A2)(Y ) > ↵

, 9(Q1, Q2) such that Y = f(Q1, Q2),

[A�
1 ]n(↵) ✓ Q1 ✓ (A+

1 )'(↵) and [A�
2 ]n(↵) ✓ Q2 ✓ (A+

2 )'(↵). (#)

On the other hand, from the extension principle in fuzzy sets, we obtain

⇡F (Y ) = min

0

B@ inf
y 62Y

n

�1

0

B@ sup
x1,x22R

y=f(x1,x2)

min
⇣
µ

A

�
1
(x1), µ

A

�
2
(x1)

⌘
1

CA ,

inf
y2Y

'

�1

0

B@ sup
x1,x22R

y=f(x1,x2)

min
⇣
µ

A

+
1
(x1), µ

A

+
2
(x1)

⌘
1

CA

1

CA .

Then we obtain

⇡F (Y ) > ↵ ,
\

">0

f([A�
1 ]n(↵)�"

, [A�
1 ]n(↵)�"

) ✓ Y ✓ f((A+
1 )'(↵), (A

+
2 )'(↵)). (⇤⇤)

Now we prove (⇤) by showing

⇡F (Y ) > ↵ implies ⇡
f(A1,A2)(Y ) > ↵.

For lower and upper approximations A

�
i

and A

+
i

, we have µ

A

�
i
(x) > 0 implies

µ

A

+
i
(x) = 1. Then we obtain [A�

i

]
n(↵) ✓ [A�

i

]
n(↵)�"

✓ (A+
i

)
'(↵) for any " > 0

and for i = 1, 2.
Assume ⇡F (Y ) > ↵, from (⇤⇤), we obtain f([A�

1 ]n(↵), [A
�
1 ]n(↵)) ✓ Y . From the

continuity and monotonicity of f , the convexity of Y and (⇤⇤), Q
i

, i = 1, 2 can be
enlarged continuously from Q

i

= [A�
i

]
n(↵) to Q̄

i

, i = 1, 2 such that Y = f(Q̄1, Q̄2)
in (A+

i

)
'(↵). Therefore, we have Q̄

i

(i = 1, 2) such that [A�
i

]
n(↵) ✓ Q̄

i

✓ (A+
i

)
'(↵)

and Y = f(Q̄1, Q̄2) (see Figure 1). Hence, from (#), we obtain ⇡

f(A1,A2)(Y ) > ↵.
(Q.E.D.)
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Figure 1: [A�
i

]
n(↵) ✓ Q̄

i

✓ (A+
i

)
'(↵)

5 Concluding Remarks

We have shown the necessary and su�cient condition that lower and upper approx-
imations of function values of graded ill-known sets are obtained by function values
of lower and upper approximations of graded ill-known sets. Using this condition, we
have weakened the previously obtained su�cient condition. We have shown also that
lower and upper approximations of function values of graded ill-known sets defined by
lower and upper approximations are always obtained by function values of the given
lower and upper approximations. Moreover, we have demonstrated that function val-
ues of graded ill-known sets defined by lower and upper approximations are not always
obtained from function values of the given lower and upper approximations while their
lower and upper approximations are. Degrees of their possibility distributions can take
same values only for function values of sets. We have given a su�cient condition that
those possibility degrees are equal. The necessary and su�cient condition and other
su�cient conditions would be future topics in the calculations of graded ill-known sets.
The results obtained in this paper are valuable for applications of graded ill-known
sets to systems optimization, decision making, data analysis and so on.
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Abstract

Relations between two Boolean attributes derived from data can be quan-

tified by functions defined on four-fold tables corresponding to pairs of the at-

tributes. In the paper, a class of ratio-implicational quantifiers is investigated.

The method of construction of the a�liated (logically nearest) double implica-

tional and equivalence quantifiers to a given implicational quantifier is recalled

and applied to ratio-implicational quantifiers. Possible truth-configurations of

the obtained set of seven formulae (given data and some treshold) are discussed

in details.

1 Introduction

Assume having a data file and consider two Boolean (binary, dichotomic) attributes '
and  . A four-fold table < a, b, c, d > corresponding to these attributes is composed
from numbers of objects in data satisfying four di↵erent Boolean combinations of at-
tributes:

 ¬ 
' a b

¬' c d

a - number of objects satisfying both ' and  ,
b - number of objects satisfying ' and not satisfying  ,
c - number of objects not satisfying ' and satisfying  ,
d - number of objects not satisfying ' and not satisfying  .

Four-fold table quantifier ⇠ is a function with values from the interval [0, 1] defined on
the set of all four-fold tables < a, b, c, d >. Several classes of quantifiers (implicational,
equivalency) have been studied in the theory of the GUHA method ([2],[3]).

A quantifier ⇠ (a, b) is implicational if ⇠ (a0, b0) �⇠ (a, b) when a

0 � a, b

0  b. The
most common example of implicational quantifier is the quantifier of basic implication
(corresponds to the notion of a confidence or accuracy of an association rule used in
data mining, see [1],[8]):

)
�

(a, b) =
a

a+ b

.
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In the paper, a subclass of ratio-implicational quantifiers is investigated. The
method of construction of the a�liated (logically nearest) double implicational and
equivalence quantifiers to a given implicational quantifier is recalled and applied to
the subclass of ratio-implicational quantifiers. Possible truth-configurations of the
obtained set of seven formulae (given data and some treshold) are discussed in details.

2 Ratio-implicational quantifiers

This is one of the main properties of the basic implicational quantifier: the greater the
ratio a/b, the greater the value of the quantifier. This property is stronger than that
used in the definition of implicational quantifiers. Therefore we introduced a subclass
of implicational quantifiers with this property [6]:

A quantifier ⇠ (a, b) is ratio-implicational, if ⇠ (a0, b0) �⇠ (a, b) when a

0
b � ab

0.
For any ✓ > 0 the following quantifier is ratio-implicational:

)
✓

(a, b) =
a

a+ ✓b

.

It is clear that each ratio-implicational quantifier is also implicational. There are
some other properties of ratio-implicational quantifiers proved in [6]:

(i) if a0b = ab

0 then )⇤ (a0, b0) =)⇤ (a, b).

(ii) there are numbers m⇤
,M

⇤ from [0, 1] such that

m

⇤ =)⇤ (0, b) for all b > 0,

M

⇤ =)⇤ (a, 0) for all a > 0,

m

⇤ )⇤ (a, b)  M

⇤ for all a, b > 0.

(iii) there is a non-decreasing function g

⇤ defined on non-negative rationals and 1
such that

)⇤ (a, b) = g

⇤
⇣

a

b

⌘

.

The function g* is defined as follows:

g

⇤(0) = m

⇤
, g

⇤(1) = M

⇤
, g

⇤
✓

i

j

◆

=)⇤ (i, j) for all integers i, j > 0.

Correctness of this definition follows from (i), (ii); monotonicity follows from the def-
inition of ratio-implicational quantifiers.

The class of ratio-implicational quantifiers is a proper subclass of the class of impli-
cational quantifiers. For a counterexample, let us observe that statistically motivated
quantifier )?

p

(where p is a parameter, 0 < p < 1)

)?
p

(a, b) =
a

X

i=0

(a+ b)!

i! (a+ b� i)!
p

i (1� p)a+b�i
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is implicational (see [3]), but is not ratio-implicational because for instance

)?
p

(0, b) = (1� p)b 6=)?
p

(0, b+ 1) = (1� p)b+1
.

Another important property of ratio-implicational quantifiers is their special re-
lation to fuzzy implications. Let us recall that in fuzzy logic (see e.g. [4]), a binary
operator I on the unit interval is called fuzzy implication if

I(0, 0) = I(1, 1) = 1, I(1, 0) = 0,

and for all x, x0
, y, y

0 the following property holds:

if x0  x and y

0 � y then I(x0
, y

0) � I(x, y).

The next theorem (proved in [6]) shows the correspondence between ratio-implicational
quantifiers and fuzzy implications.

Theorem

(i) Let I be a fuzzy implication. Then

)0
I

(a, b) = I

✓

b

a+ b

,

a

a+ b

◆

is ratio-implicational quantifier with m

⇤ = 0,M⇤ = 1.

(ii) Let )⇤ be a ratio-implicational quantifier with m

⇤ = 0,M⇤ = 1. Extend the
associated function g

⇤ �a

b

�

=)⇤ (a, b) to reals by

g

⇤(r) = sup
n

g

⇤
⇣

a

b

⌘

:
a

b

 r

o

,

and define

I

⇤(x, y) = g

⇤
⇣

q

(1�x)y
x(1�y)

⌘

for x, y 2 [0, 1], x 6= 0, y 6= 1,

I

⇤(0, y) = I

⇤(x, 1) = 1 for x, y 2 [0, 1].

Then I

⇤ is a fuzzy implication such that

)⇤ (a, b) = I

⇤
✓

b

a+ b

,

a

a+ b

◆

.

3 A�liated double-implication and equivalency quan-

tifiers

In the paper [5], the method of construction of triads of quantifiers is described.
Starting from an implicational quantifier )⇤, a�liated double-implicational quan-

tifier ,⇤ is given by the formula

,⇤ (a, b, c) =)⇤ (a, b+ c),
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and a�liated equivalency quantifier ⌘⇤ is given by the formula

⌘⇤ (a, b, c, d) =)⇤ (a+ d, b+ c).

Double-implicational quantifier ,⇤ measures the validity of bi-implication (' )
 ) ^ ( ) ') in data taking into account only cases where ' or  is satisfied. Equiv-
alency quantifier ⌘⇤ measures the validity of equivalency ' ⌘  in the whole data.
Both a�liated quantifiers ,⇤

,⌘⇤ naturally extend quantification of implication (given
by a definition of particual implicational quantifier )⇤) for covering also two types of
symmetric relations between ' and  in data.

It is proved that the above constructed double-implicational quantifier ,⇤ is in
some sense the least strict one (out of the class of so-called ⌃-double implication
quantifiers, see [7], [5]) satisfying required inequality:

,⇤ (a, b, c)  min()⇤ (a, b), )⇤ (a, c)).

Analogically, the above constructed equivalency quantifier ⌘⇤ is in some sense the
most strict one (out of the class of so-called ⌃-equivalency quantifiers, see [7], [5])
satisfying inequality:

⌘⇤ (a, b, c, d) � max(,⇤ (a, b, c),,⇤ (d, b, c)).

In the case when the starting quantifier )⇤ is ratio-implicational, the next theorem
shows further useful connections between it and a�liated equivalency quantifier ⌘⇤.

Theorem

Let )⇤ be a ratio-implicational quantifier and ⌘⇤ be its a�liated equivalency quanti-
fier. Then for all a, b, c, d the value ⌘⇤ (a, b, c, d) lies both

(i) between the values )⇤ (a, b), and )⇤ (d, c);

(ii) between the values )⇤ (a, c), and )⇤ (d, b).

Proof.

Recall that the a�liated equivalency quantifier ⌘⇤ is defined by

⌘⇤ (a, b, c, d) =)⇤ (a+ d, b+ c).

(i) Let us discuss possible relations between multiplications of frequencies ac, bd:

Let bd � ac. Then bd+ ab � ac+ ab, so b(a+ d) � a(b+ c).

Applying the defining property of ratio-implicational quantifiers for a, b, a

0 =
a+ d, b

0 = b+ c, we obtain from the last inequality

)⇤ (a+ d, b+ c) �)⇤ (a, b).

Also bd+ cd � ac+ cd, so d(b+ c) � (a+ d)c, hence

)⇤ (d, c) �)⇤ (a+ d, b+ c).
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Let bd  ac. Using the same steps but with opposite inequalities, we obtain

)⇤ (a, b) �)⇤ (a+ d, b+ c) �)⇤ (d, c).

(ii) The proof is analogical as for point (i) - is based on possible relations between
ab, and cd.

4 Discussion of possible truth configurations

Let )⇤ be a ratio-implicational quantifier, ,⇤ and ⌘⇤ be its a�liated double-implica-
tional and equivalency quantifiers. Assume some truth treshold t from [0, 1] is given.
A formulae ' ⇠  is treated as true in data if the value of the quantifier ⇠ in the
four-fold table < a, b, c, d > corresponding to the attributes ', is greater or equal
to t. Using inequalities presented in the previous paragraph, we shall discuss possible
truth configurations of the set of formulae

Implications: ')⇤
 ,  )⇤

', ¬')⇤ ¬ , ¬ )⇤ ¬';
Double-implications: ',⇤

 , ¬',⇤ ¬ ;
Equivalency: ' ⌘⇤

 .

There are formally 27 = 128 configurations, but we shall show that most of them are
not possible in any data.

4.1 Discussion according to truthfullness of equivalency

e0) ' ⌘⇤
 is not true. Then

• at most two implications could be true (but excluding the pair ' )⇤

 ,¬')⇤ ¬ , and the pair  )⇤
',¬ )⇤ ¬');

• no double implications is true.

e1) ' ⌘⇤
 is true. Then

• at least two implications are true;

• 0,1 or 2 double-implications could be true.

4.2 Discussion according to truthfullness of double-implications

d0) Both ',⇤
 ,¬',⇤ ¬ are not true. Then

• the equivalency ' ⌘⇤
 could be true or not;

• 0,1,2,3 or 4 implications could be true.

d1) One of double-implications is true. Then

• the equivalency is true;

• at least two implications are true.
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d2) Both double-implications are true. Then

• the equivalency is true;

• all implications are true.

4.3 Discussion according to truthfullness of implications

This discussion will be provided in details with distinction of di↵erent situations.
Types of configurations will be described by numbers i, d, e of true implications,
double-implications and equivalency, respectively. Each type of configuration will be
provided with an apropriate example of four-fold table < a, b, c, d > quantified by the
triad of the basic quantifiers

)⇤ (a, b) =
a

a+ b

, ,⇤ (a, b, c) =
a

a+ b+ c

, ⌘⇤ (a, b, c, d) =
a+ d

a+ b+ c+ d

with the list of true formulae given the treshold t = 0.7.

i0) No implication is true. Then no formulae of double-implication or equivalency
could be true.
Type: 0/0/0 Example: 10,6,5,9.

i1) Exactly one implication is true. Then no formulae of double-implication or
equivalency could be true.
Type: 1/0/0 Example: 10,4,7,9 ')⇤

 .

i2) Exactly two implications are true. Two pairs out from six pairs of implications
are excluded (namely the pair ')⇤

 ,¬')⇤ ¬ and the pair  )⇤
',¬ )⇤

¬', because in these cases also the equivalency would be true, hence some third
implication also would be true). Remaining four possible pairs of true implica-
tions lead to two di↵erent cases:

i2a) Either ' )⇤
 , )⇤

' are true or ¬' )⇤ ¬ ,¬ )⇤ ¬' are true. Then
corresponding double-implication (either ' ,⇤

 or ¬' ,⇤ ¬ ) could be
true and also the equivalency could be true. Possible types of configurations:
Type: 2/0/0 Example: 10,1,4,1 ')⇤

 ,  )⇤
'.

Type: 2/0/1 Example: 10,2,3,2 ')⇤
 ,  )⇤

', ' ⌘⇤
 .

Type: 2/1/1 Example: 10,1,1,2 ')⇤
 ,  )⇤

', ',⇤
 ,

' ⌘⇤
 .

i2b) Either ' )⇤
 ,¬ )⇤ ¬' are true or  )⇤

',¬' )⇤ ¬ are true. Then
no double-implication could be true. Possible types of configurations:
Type: 2/0/0 Example: 10,3,8,9 ')⇤

 , ¬ )⇤ ¬'.
Type: 2/0/1 Example: 10,1,8,11 ')⇤

 , ¬ )⇤ ¬',' ⌘⇤
 .

i3) Exactly three implications are true. Then the equivalency is true and at most
one double-implication is true. Possible types of configurations:
Type: 3/0/1 Example: 10,1,4,3 ')⇤

 ,  )⇤
', ¬ )⇤ ¬',

' ⌘⇤
 .

Type: 3/1/1 Example: 10,1,3,3 ')⇤
 ,  )⇤

', ¬ )⇤ ¬',
',⇤

 , ' ⌘⇤
 .
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i4) All four implications are true. Then the equivalency is true and 0,1, or 2 double-
implications could be true. Possible types of configurations:
Type: 4/0/1 Example: 10,3,4,13 ')⇤

 ,  )⇤
', ¬ )⇤ ¬',

¬')⇤ ¬ , ' ⌘⇤
 .

Type: 4/1/1 Example: 10,2,3,15 ')⇤
 ,  )⇤

', ¬ )⇤ ¬',
¬')⇤ ¬ , ¬',⇤ ¬ , ' ⌘⇤

 .
Type: 4/2/1 Example: 10,2,1,17 ')⇤

 ,  )⇤
', ¬ )⇤ ¬',

¬')⇤ ¬ , ',⇤
 , ¬',⇤ ¬ ,

' ⌘⇤
 .

Summary of discussion: only 10 types of configurations are possible out from 5·3·2 = 30
formally existing types. More detailed analysis would show that there are exactly 27
possible configurations out of 128 formally existing ones.

5 Conclusions

In the paper, the class of ratio-implicational quantifiers was introduced and following
properties were presented:

• each ratio-implicational quantifier can be represented by a non-decreasing func-
tion on rationals;

• there is a correspondence between ratio-implicational quantifiers and fuzzy im-
plications;

• there are double-implication and equivalency quantifiers a�liated to a given
ratio-implicational quantifier which leads to the set of seven formulae

')⇤
 , )⇤

',¬ )⇤ ¬',¬')⇤ ¬ ,',⇤
 ,¬',⇤ ¬ ,' ⌘⇤

 

connected by the set of inequalities among their values in data;

• number of possible truth-configurations of these formulae in data given some
treshold is significantly reduced.
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[3] Hájek, P., Havránek, T., Chytil, M. (1983): Metoda GUHA. Academia, Praha, 314
p. (in Czech)
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Abstract

When proposing and processing uncertainty decision making algorithms of

various kinds and purposes we meet more and more often probability distribu-

tions ascribing to random events non-numerical uncertainty degrees. The reason

is that we have to process systems of uncertainties for which the classical con-

ditions like �-additivity or linear ordering of values are too restrictive to define

su�ciently closely the nature of uncertainty we would like to specify and process.

For the case of non-numerical uncertainty degrees at least the two criteria may be

considered. First systems with rather complicated, but sophisticated and non-

trivially formally analyzable uncertainty degrees. E.g., uncertainties supported

by some algebras or partially ordered structures. Contrary, we may consider

more easy non-numerical, but on the intuitive level interpretable relations. Well-

known examples of such structures are set-valued possibilistic measures. Some

perhaps interesting particular results in this direction will be introduced and

analyzed in the contribution.

1 Introduction

In the measure theory and, consequently, in probability theory, the sizes of sets and
uncertainty (in the sense of randomness as well as of fuzziness and possibility degrees)
were quantified by numbers, going from finite natural numbers to rational and then real
(or, perhaps, complex-valued numbers). The development of real-valued probability
theory took their tops by Kolmogorov axiomatic theory of probability as systematically
explained and applied in [4], [6] or elsewhere.

On the other side, the correctness and legality of application of the classical prob-
ability theory and its consequences (mathematical statistics, Shannon entropy and
information theory, . . . ) to problems from real life is based on the assumption that
certain non-trivial assumptions are satisfied and verified (the precise knowledge of apri-
ori probabilities, statistical independence of some random variables and/or precisely

⇤This research is supported by the grant P202/10/1826 of the Grant Agency of the Czech Republic.
Partial institutional support RVO: 67985807 is also acknowledged.
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known type and degrees of their dependencies together with the detailed conditional
probabilities, . . . ).

Qualitatively di↵erent models of uncertainty quantification and processing, even
if still with numerical degrees, are real-valued fuzzy sets, defined by mappings taking
the basic space ⌦ into the unit interval [0, 1], hence, extending the binary-valued
characteristic functions of standard set, to functions with values in the closed interval
[0, 1].

The pioneering Zadeh’s idea of fuzzy sets emerged in 1965 in [13, 5] and, as soon
as in 1967. J. A. Goguen entered on scene with the further step – fuzzy sets with non-
numerical membership degrees. In particular, J. A. Goguen considered uncertainty,
in the sense of fuzziness degrees, as elements of complete lattice, let us recall that
complete lattice is defined as the p.o.set (partially ordered set) in which for each
nonempty subset supremum and infimum are defined.

When quantifying sizes by numbers we have to keep in mind that this introduces
into the model the complete ordering of numbers which need not correspond to sizes
of pieces of uncertainty in question. Among the structures working with uncertainties
and keeping in mind the idea to classify as incomparable also set-quantified degrees of
uncertainty with the same values of real-valued measures, set-valued possibilistic mea-
sures seem to be su�ciently elastic and resilient to be taken as intuitively acceptable
non-numerical size-quantifying mathematical model.

Let us survey, very briefly, the contents of particular sections. Our aim will be to
minimize the quantity and complexity of preliminaries necessary for a non-fully ori-
ented reader in order to understand the text. In Section 2 we introduce the structures
for quantifying uncertainty (or uncertainties) by set values. It is perhaps worth being
so-called just now that probability measure and probability theory is based on stan-
dard combination of set-valued uncertainty quantification (random events are sets)
with also the standard real-valued quantification of the set-valued random events.

In Section 3 we introduce three alternative ways how to define mappings keeping at
least some properties of conditional probabilities. This problem seems to be promising
for some new and interesting results In Section 4 we define and analyze set-valued en-
tropy function over set-valued possibilistic function with the aim to solve the problem
arising when the possibilistic distribution takes the maximum value 1T (= X) for at
last two di↵erent arguments. Analogously to the case of real-valued probability mea-
sure the Shannon entropy function [11] takes the maximum value 1T (= X) so that
the qualities of this entropy function cannot be used as a tool for neither a partial
ordering of di↵erent alternatives of possibilistic distrubution when choosing the best
one for the application in question. Very roughly speaking, the idea is to modify the
space of values in which set-valued entropy function takes its values, in such a way
that the supremum value of the set-valued entropy function is taken for just one value
!0 from the basic space ⌦ of the possibilistic distribution in question.

2 Set-valued possibilistic distributions

Let ⌦ and X be nonempty sets, let P(X) be the set of all subsets of X (the power-set
over X), let ⇡ : ⌦ ! P(X) be a mapping ascribing to each ! 2 ⌦ a subset ⇡(!) ⇢ X
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(i.e., ⇡(!) 2 P(X)). The mapping ⇡ is called set-valued possibilistic distribution on ⌦,
if
S

!2⌦ ⇡(!) = X.

For each A ⇢ ⌦, set ⇧(A) =
S

!2A ⇡(!). The mapping ⇧ : P(!) ! P(X) is called
the P(X)-valued possibilistic measure induced on P(⌦) by the set-valued possibilistic
distribution ⇡ on ⌦. The important characteristic of the P(X)-valued possibilistic
distribution ⇡ (and of the related P(X)-valued possibilistic measure ⇧ induced by ⇡)
is the so called possibilistic (or Sugeno) entropy defined by the Sugeno integral I(⇡).
For the particular case of the set-valued possibilistic distribution ⇡ on ⌦ defined as
above the definition reads as follows:

I(⇡) =
[

!2⌦

[⇧(⌦� {!}) \ ⇡(!)] ⇢ X. (2.1)

E.g., in the most simple case when ⌦ = X and ⇡(!) = {!}, we obtain that ⇧(A) =
S

!2A ⇡(!) =
S

!2A{!} = A. For the entropy I(⇡) we obtain that

I(⇡) =
[

!2⌦

[⇧(⌦� {!}) \ ⇡(!)] =
[

!2⌦

((⌦� {!}) \ {!}) = ; (2.2)

let us recall that the empty subset of X denotes the zero element of the complete
lattice (complete Boolean algebra, as a matter of fact) hP(X),✓i.

Fact 2.1 Let ⌦ and X be nonempty sets, let ⇡ : ⌦ ! P(X) be a P(X)-valued possi-

bilistic distribution on ⌦ such that, for each !1,!2,!1 6= !2, ⇡(!1) \ ⇡(!2) = ; holds.

Then for each A,B ⇢ X,A \B = ;, we obtain that ⇧(A) \⇧(B) = ; holds.

Proof: An easy calculation yields that

⇧(A) \⇧(B) =

 

[

!2A

⇡(!)

!

\
 

[

!2B

⇡(!)

!

=

=
[

!12B

" 

[

!2A

⇡(!)

!

\ ⇡(!1)

#

=
[

!12B

[

!2A

(⇡(!1) \ ⇡(!)) = ;, (2.3)

as the sets A and B are disjoint. The assertion is proved. ⇤

Lemma 2.1 Let ⌦ and X be nonempty sets, let ⇡ : ⌦ ! P(X) be a P(X)-valued
possibilistic distribution on ⌦. Then I(⇡) = ; i↵ ⇡(!1) \ ⇡(!2) = ; for each !1,!2 2
⌦,!1 6= !2.

Proof: If ⇡(!1) \ ⇡(!2) = ; for each !1,!2 2 ⌦,!1 6= !2, then

I(⇡) =
[

!2⌦

[⇡(⌦� {!}) \ ⇡(!)] =
[

!2⌦

[⇡(⌦� {!}) \⇧({!})] = ; (2.4)

holds, due to Fact 2.1.
On the other side, let !1,!2 2 ⌦,!1 6= !2, be such that ⇡(!1) \ ⇡(!2) 6= ; Then

!2 2 ⌦� {!1} holds, so that
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⇧(⌦� {!1}) \ ⇡(!1) � ⇡(!2) \ ⇡(!1) 6= ;, (2.5)

consequently,

I(⇡) � ⇧(⌦� {!1}) \ ⇡(!1) � ⇡(!2) \ ⇡(!1) 6= ;, (2.6)

follows. The assertion is proved. ⇤

Theorem 2.1 Let ⌦ and X be nonempty sets, let ⇡1, ⇡2 be P(X)-valued possibilistic

distributions such that, for each ! 2 ⌦,⇡1(!) ⇢ ⇡2(!) holds. Then I(⇡1) ⇢ I(⇡2)
holds.

Proof: By definition,

I(⇡1) =
[

!2⌦

[⇡1(⌦� {!}) \ ⇡2(!)]. (2.7)

For each ! 2 ⌦, the inclusion

⇧1(⌦� {!}) =
[

!⇤2⌦�{!}

⇡1(!
⇤) ⇢

[

!⇤2⌦�{!}

⇡2(!
⇤) = ⇧2(⌦� {!}) (2.8)

is valid, as ⇡1(!⇤) ✓ ⇡2(!⇤) holds for each !

⇤ 2 ⌦. Consequently, the inclusion

⇧1(⌦� {!}) \ ⇡1(!) ⇢ ⇧2(⌦� {!}) \ ⇡2(!) (2.9)

holds for each ! 2 ⌦, so that the inclusion I(⇡1) immediately follows. The assertion
is proved. ⇤

Lemma 2.2 Let ⌦, X be nonempty sets, let ⇡ : ⌦ ! P(X) be a P(X)-valued possi-

bilistic distribution. If there are !1,!2 2 ⌦,!1 6= !2, such that ⇡(!1) = ⇡(!2) = X,

then I(⇡) = X = 1P(X).

Proof: Let !1,!2 2 ⌦,!1 6= !2, be such that ⇡(!1) = ⇡(!2) = X, consider the set
⇧(⌦� {!1}) \ ⇡(!1). Then !2 2 ⌦� {!1} holds, hence,

⇧(⌦� {!1}) =
!⇤2⌦�{!1}

_

⇡(!⇤) � ⇡(!2) = X (2.10)

holds and ⇧(⌦ � {!1}) = X follows. Replacing mutually !1 and !2 we obtain that
⇧(⌦� {!2}) = X holds as well, hence,

X = ⇧(⌦� {!j}) \ ⇡(!j) =
[

!2⌦

[⇧(⌦� {!}) \ ⇡(!)] = I(⇡) (2.11)

holds for any j and the assertion is proved. ⇤
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Denote by Q the set of all P(X)-valued possibilistic distributions on ⌦. If ⇡1,⇡2 are
P(X)-possibilistic distributions on ⌦ such that ⇡1(!) ⇢ ⇡2(!) holds for each ! 2 ⌦,
we write ⇡1  ⇡2 and say that ⇡1 is majorized by ⇡2 or that ⇡2 is an upper bound for
⇡1. As proved in Theorem 2.1 if ⇡1  ⇡2 holds, then I(⇡1) ✓ I(⇡2) holds as well.

The universe implication does not hold in general, i.e., if I(⇡1) ✓ I(⇡2) is valid,
then ⇡1  ⇡2 need not hold. For entropy I(⇡1) we obtain that

I(⇡1) =
[

!2⌦

[⇧1(⌦� {!}) \ ⇡2(!)] =

= [⇧1(⌦� {!1}) \ ⇡1(!1)] [ [⇧1(⌦� {!2}) \ ⇡1(!2)] =

= (⇡1(!2) \ ⇡1(!1)) [ (⇡1(!1) \ ⇡1(!2)) =

= (; \X) [ (X \ ;) = ;. (2.12)

For I(⇡2) the calculations and the results are the same, so that I(⇡1) = I(⇡2), but
neither ⇡1  ⇡2 nor ⇡2  ⇡1 holds.

Lemma 2.3 Let ⇡ be a P(X)-valued distribution on ⌦. Then for each S ⇢ P(⌦) the
relation

⇧
⇣

[

S
⌘

= ⇧
⇣

[

{A : A 2 S}
⌘

=
T
_

n

⇡(!) : ! 2
[

S
o

=

=
[

{{⇡(!) : ! 2 A} : A 2 S} : A 2 S} =

=
T
_

{⇧(A) : A 2 S} =
[

{⇧(A) : A 2 S} (2.13)

holds.

Proof: Obvious. ⇤

Let us denote by Q(⌦, X) the space of all P(A)-valued possibilistic distributions
over the space ⌦, in symbols,

Q(⌦, X) = {⇡ : ⇡ : ⌦ ! P(X),
[

{⇡(!) : ! 2 ⌦} = 1T = X}. (2.14)

Let ⇤ be the binary relation, on Q(⌦, X), i.e., the subset of the Cartesian product
Q(⌦, X)⇥Q(⌦, X) defined in this way: for each ⇡1,⇡2 2 Q(⌦, X),⇡1 <

⇤
⇡2 holds i↵

⇡1(!) ✓ ⇡2(!) holds for each ! 2 ⌦. It is possible that ⇡1 <

⇤
⇡2 holds for two P(X)-

distribution ⇡1,⇡2 such that ⇡1(!) ⇢ ⇡2(!) is the case for some ! 2 ⌦ and, of course,
⇡1(!⇤) ✓ ⇡2(!⇤) holds for two P(X)-distributions ⇡1,⇡2 such that ⇡1(!) ⇢ ⇡2(!) is
the case for some ! 2 ⌦ and, of course, ⇡1(!⇤) ✓ ⇡2(!⇤) holds for each !

⇤ 2 ⌦.

Lemma 2.4 The ordered pair D = hQ(⌦, X),⇤i is a p.o.set which defines a complete

upper semilattice, so that for each nonempty subset E ⇢ D the supremum ⇡(E) =
WD{⇡ : ⇡ 2 E} is defined. Given explicitly, ⇡

E
is the mapping which takes ⌦ into

P(X) in such a way that for each ! 2 ⌦
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⇡

E(!) =
[

{⇡ 2 E : ⇡(!)} (2.15)

This mapping obviously defines a ⇡-valued possibilistic distribution on ⌦.

Proof: Obvious. ⇤

However, the situation with the infimum of a set E of P(X)-distributions is not

dual to
WD

E. We may define the mapping M(E) : ⌦ ! P(X) in such a way that,
for each ! 2 ⌦, M(E)(!) =

T

{⇡(!) : ⇡ 2 E}, but this mapping does not meet the

condition
WD{M(E)(!) : ! 2 ⌦} = 1P(X) = X.

Lemma 2.5 Let E ⇢ Q be a nonempty set of P(X)-distributions, for each ⇡ 2 Q let

⇧⇡ : P(⌦) ! P(X) denote the corresponding induced P(X)-possibilistic measure on

P(⌦). Then, for each A ⇢ ⌦, the relation ⇧⇡E(A) =
WT {⇧⇡(A) : ⇡ 2 E} holds.

Proof: For each A ⇢ ⌦ we obtain that

T
_

{⇡⇡(A) : ⇡ 2 E} =
T
_

{{
T
_

⇡(!) : ! 2 A} : ⇡ 2 E} =

=
T
_

{⇡(!) : ! 2 ⌦,⇡ 2 E} =
T
_

{{
T
_

⇡(!) : ⇡ 2 E} : ! 2 A}

=
T
_

{⇡E(!) : ! 2 A} = ⇧⇡E (A). (2.16)

The assertion is proved. ⇤

According to the way in which P(X)-valued possibilistic measure ⇧ on P(⌦) in-
duced by a P(X)-valued possibilistic distribution ⇡ on ⌦ is defined, the set function ⇧

is extensional with respect to the supremum operation
WT on T = P(X) in the sense

that for each nonempty system A of subsets of ⌦ the identity

⇧
⇣

[

A
⌘

=
T
_

{⇧(A) : A 2 A} (2.17)

holds. In particular, for A = {A1, A2}, ⇧(A1)[⇧(A2) = ⇧(A1[A2). For the operation
of infimum the relation dual to (2.17) is not the case, in general, only the inclusion
⇧(A \ B) ✓ ⇧(A) \ ⇧(B) is valid, as ⇧(A \ B) ⇢ ⇧(A) and ⇧(A \ B) ⇢ ⇧(B) holds
trivially.

As the most simple P(X)-valued possibilstic distribution ⇡ for which the induced
P(X)-measure ⇧ on P(⌦) is extensional also w.r.to the operation of infimum

V

let
us consider the identity mapping on P(⌦). Take ⌦ = X, take ⇡(!) = {!} for every
! 2 ⌦, so that, for each A ⇢ ⌦, ⇧(A) =

T

A2A ⇧(A) follows, in particular, ⇧(A\B) =
⇧(A) \⇧(B) holds.
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Definition 2.1 P(X)-valued possibilistic distribution ⇡ taking a nonempty set ⌦ into

the power-set P(X) over a nonempty set X is called completely extensional, if for each

nonempty system A of subsets of ⌦ the relation

⇧
⇣

\

A
⌘

= ⇧

 

\

A2A
A

!

=
\

A2A
⇧(A) (2.18)

holds. The P(X)-distribution ⇡ is called extensional, if

⇧(A \B) = ⇧(A) \⇧(B) (2.19)

holds for each A,B ⇢ ⌦.

Lemma 2.6 Let ⇡ be a P(X)-valued possibilistic distribution defined on a nonempty

space ⌦, taking its values in the power-set P(X) over a nonempty space X and such

that ⇡(!1) \ ⇡(!2) = ; holds for each !1,!2 2 ⌦,!1 6= !2. Then the induced P(X)-
possibilistic measure on P(⌦) is extensional in the sense that ⇧(A)\⇧(B) = ⇧(A\B)
is valid for each A,B ⇢ ⌦.

Proof: First of all, let us consider the case when the sets A,B are disjoint. Then

⇧(A) \⇧(B) =

 

_

!12A

⇡(!1)

!

\
 

_

!22B

⇡(!2)

!

=

=
[

h!1,!2i,!12A,!22B

(⇡(!1) \ ⇡(!2)) = ; =

= ⇧(;) = A \B = ⇧(A \B), (2.20)

as for each !1 2 A,!2 2 B,!1 6= !2 and ⇡(!1) \ ⇡(!2) = ; holds.
For each A,B ⇢ ⌦, A = (A�B) [ (A \B), B = (B �A) [ (A \B) holds, so that

⇧(A) \⇧(B) = [⇧((A�B) [ (A \B))] \ [⇧((B �A) [ (A \B))] =

= [⇧(A�B) [⇧(A \B)] \ [⇧(B �A) [⇧(A \B)] =

= [⇧(A�B) \⇧(B �A)] [ [⇧(A \B) \⇧(B �A)] [
[ [⇧(A \B) \⇧(A�B)] [⇧(A \B) = ⇧(A \B), (2.21)

as

(A�B) \ (B �A) = (A \B) \ (B �A) = (A \B) \ (A�B) = ;, (2.22)

so that, due to (2.20)

⇧(A�B) \⇧(B �A) = (A \B) \ (B �A) = (A \B) \ (A�B) = ;, (2.23)

The assertion is proved. ⇤
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3 Conditioned set-valued possibilistic

distributions and measures

Conditioned (or conditional) probability distributions are very important tools in prob-
ability theory. Within the framework of the standard Kolmogorov axiomatic proba-
bility theory the mathematical formalization of this transformation is very simple and
well-known. Let h⌦,A, P i be a probability space. Subsets of ⌦ belonging to A are
called random events, hence, for each A 2 A the real number P (A) 2 [0, 1] is ascribed
and called the probability of (the random event) A. Given another random event B 2 A
such that P (B) > 0 holds, the conditioned probability of (the random event) A under
the condition that (the random event) B holds is denoted by P (A/B) and defined by
the well-known formula

P (A/B) = P (A \B)/P (B). (3.1)

This definition cannot the immediately translated into the model and language
of T -valued possibilistic distributions because of the fact that operation of division
between the values P (A\B) and P (B) cannot be defined in T . Let us proceed in this
way: we introduce three alternative approaches and for each of them we will examine
its role when taken as conditioned probability and measure.

So, let T = hX,✓i,⌦,⇡ : ⌦ ! P(X) such that
S

!2⌦ ⇡(!) = X = 1T and
⇧ : P(⌦) ! P(X) defined by ⇧(A) =

S

!2A ⇡(!) for each A ⇢ X be as above. Given
B ⇢ ⌦, let us define three mappings ⇡i(!/B) : ⌦ ! P(X) in this way.

(i) ⇡

1(!/B) = ⇡(!) \⇧(B), (3.2a)

(ii) ⇡

2(!/B) = ⇡(!), if ! 2 B,⇡

2(!/B) = ;(= ;T ),
if ! 2 ⌦�B, (3.2b)

(iii) ⇡

3(!/B) = ⇧(⌦�B) [ ⇡(!) = ⇧((⌦�B) [ {!}). (3.2c)

Let us investigate the most elementary properties of these three mappings. Define,
for each i = 1, 2, 3 and each B ⇢ ⌦ the mapping ⇧i(·/B) : P(⌦) ! P(X) in this way:
for each A ⇢ ⌦,

⇧i(A/B) =
T
_

!2A

⇡

i(!/B) =
[

!2A

⇡

i(!/B). (3.3)

Hence, for each i = 1, 2, 3 we obtain explicitly that

⇧1(A/B) =
[

!2A

⇡

1(!/B) =
[

!2A

(⇡(!) \⇧(B)) =

 

[

!2A

⇡(!)

!

\⇧(B) =

= ⇧(A) \⇧(B), (3.4)

⇧2(A/B) =
[

!2A

⇡

2(!/B) =
[

!2A\B

⇡(!) = ⇧(A \B), (3.5)
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⇧3(A/B) =
[

!2A

⇡

3(!/B) =
[

!2A

(⇧(⌦�B) [ ⇡(!)) =

= ⇧(⌦�B) [
[

!2A

⇡(!) =

= ⇧(⌦�B) [⇧(A) = ⇧((⌦�B) [A) (3.6)

For the extremum values A = ⌦ or B = ⌦ we obtain that

⇧1(⌦/B) = ⇧(⌦) \⇧(B) = ⇧(B),

⇧2(⌦/B) = ⇧(⌦ \B) = ⇧(B),

⇧3(⌦/B) = ⇧((⌦�B) [ ⌦) = ⇧(⌦) = 1T ,

⇧1(A/⌦) = ⇧(A) \⇧(⌦) = ⇧(A),

⇧2(A/⌦) = ⇧(A \ ⌦) = ⇧(A),

⇧3(A/⌦) = ⇧((⌦� ⌦) [A) = ⇧(A), (3.7)

So, ⇡

1(·/B) and ⇡

2(·/B) define T -possibilistic distribution on B (supposing that
B 6= ;),⇡3(·/B) defines a T -possibilistic distribution on ⌦. Moreover, if B = ⌦,
then ⇧i(·/B) is identical with the apriori possibilistic distribution ⇡ on ⌦ for each
i = 1, 2, 3. Let us recall that in standard probability theory, if B ⇢ ⌦ is such that
P (B) = 1, then for each A ⇢ ⌦ the identity P (A/B) = P (A \ B)/P (B) = P (A)
holds. The intuition behind is quite simple – the occurence of certain (i.e., which
the probability 1 valid) random event does not bring any new information, so that
no modification of the apriori probability measure results. All the three set functions
⇧i(·/B), i = 1, 2, 3, also possess this important property.

More generally, not only for A = ⌦, but for each A ◆ B the result ⇧i(A/B) = ⇧(B)
(for i = 1, 2) or ⇧3(A/B) = 1T holds, as may be easily checked by inspection of the
formulas (3.4), (3.5), and (3.6).

When approaching to a more detailed analysis of the three P(X)-valued mappings
⇡

i(!/B), i = 1, 2, 3, let us begin with the mapping ⇡

3(!/B) defined by (3.2c), so that

⇡

3(!/B) = ⇧(⌦�B) [ ⇡(!) = ⇧((⌦�B) [ {!}). (3.8)

Hence, for each A,B ⇢ ⌦,

⇡

3(A/B) =
[

!2A

⇡

3(!/B) =
[

!2A

(⇧(⌦�B) [ (!)) =

= ⇧(⌦�B) [
[

!2A

⇡(!) = ⇧(⌦�B) [⇧(A) =

= ⇧((⌦�B) [A). (3.9)

The reason for this preference given to ⇡

3(·/B) consists in the fact that ⇡

3(!/B) is,
for each B, the only of the three mappings in question which meets the condition of
normalization, i.e., for which



Some results on set-valued possibilistic distributions 99

[

!2⌦

⇡

3(!/B) =
[

!2⌦

(⇡(⌦�B) [ ⇡(!)) =

= ⇧(⌦�B) [
[

!2⌦

⇡(!) = ⇧(⌦�B) [X = X = 1T . (3.10)

So, the P(X)-valued entropy I(⇡3(·/B)) is defined and, writing ⇡̂(!) for ⇡3(!/B) in
order to simplify the rotation, may be written by

I(⇡3(·/B)) = I(⇡̂) =
[

!2⌦

(⇧3(⌦� {!}) \ ⇡̂(!)). (3.11)

Let !0 2 ⌦ be such that ⇡̂(!0) = X. Then

I(⇡3(·/B)) = I(⇡̂)=
[

!2⌦,! 6=!0

⇧̂((⌦� {!}) \ ⇡̂(!)) [ ⇧̂(⌦� {!0}) \ ⇡̂(!0)=

=
[

!2⌦,! 6=!0

(X \ ⇡̂(!)) [ (⇧̂(⌦� {!0}) \X =

=
[

!2⌦,! 6=!0

⇡̂(!) [ ⇧̂(⌦� {!0}) = ⇧̂(⌦� {!0}) =

= ⇧3((⌦� {!0})/B). (3.12)

4 Refined set-valued entropy functions

Let us re-consider and analyse, in more detail, Lemma 2.2. According to this result,
if there are !1,!1 2 ⌦,!1 6= !2, such that ⇡(!1) = ⇡(!2) = X, then I(⇡) = X =
1P(X). Hence, each decision rule picking up just one !0 2 ⌦ must be based on more
input parameters than those expressible by the values of the entropy function I(⇡).
However, the same is the situation in the most simple probability space h⌦,A, P i,
where ⌦ = {!1,!2} and P ({!1}) = P ({!2}) = 1

2 . The following lemma may be taken
as a complementary formulation of the conditions when I(⇡) 6= 1P(X) = X is the case.

Lemma 4.1 Let ⌦, X be nonempty sets, let ⇡ : ⌦ ! P(X) be a P(X)-possibilistic
distribution on ⌦, let !0 2 ⌦ be such that ⇡(!0) = X. Then

I(⇡) = ⇡(⌦� {!0}) (4.1)

holds. Consequently, if ⇧(⌦� {!0}) ( X holds, then I(⇡) ( X follows.

Proof: For I(⇡) we have

I(⇡) =
[

!2⌦

(⇧(⌦� {!}) \ ⇡(!)] =

=
[

!2⌦,! 6=!0

[⇧(⌦� {!}) \ ⇡(!)] [⇧(⌦� {!0}) \ ⇡(!0). (4.2)



100 I. KRAMOSIL

If ! 6= !0, then !0 2 (⌦� {!}) and ⇧(⌦� {!}) = X = ⇡(!0) holds, so that

I(⇡) =

0

@

[

!2⌦,! 6=!0

⇡(!)

1

A [⇧(⌦� {!0}) =

= ⇧(⌦� {!0}). (4.3)

is valid and the assertion is proved. ⇤

An easy corollary of Lemma 4.1 reads as follows. Let ⌦, X and ⇡ be as in
Lemma 4.1, let there exist x0 2 X such that there is only one !0 2 ⌦ with the
property x0 2 ⇡(!0) and ⇧(⌦� {!0}) ( X. Then I(⇡) = ⇧(⌦� {!0}) ( X follows.

For several other results on refined set-valued entropy functions and on set-valued
possibilistic distributions see [10].

5 Conclusions

According to what we told in the introductory section, our aim was to introduce and
analyze some possibilistic distributions and related possibilistic measures with non-
numerical, but intuitive enough uncertainty (in the sense of fuzziness and vagueness)
degrees – as the most simple structure for these purposes we have taken the classical
Boolean algebra over the power-set of all subsets of a basic set ⌦ with sizes of elements
of ⌦ and their collections quantified by subsets of another space X. The contents of
particular sections as scheduled in the introductory one have been more or less tightly
kept and it is why we do not take as necessary to repeat them now, rather focusing
our attention to some inspirations for further developments.
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Abstract

It has been published recently that some of the ideas for representation

of multidimensional distributions in probability theory can be transferred into

Dempster-Shafer theory of Evidence [7], [8]. Namely, they showed that multi-

dimensional basic assignments can be rather e�ciently represented in a form of

so-called compositional models. These models are based on the iterative appli-

cation of the operator of composition, whose definition for basic assignments has

been introduced in [5]. It appears that a software tool supporting computations

within compositional model is necessary for additional theoretical research in this

framework. In this paper we will familiarize the reader with our first attempts

and basic problems of the implementation itself.

1 Introduction

Plenty of applications of Artificial intelligence in the field of quantitative reasoning
and decision under uncertainty is dominated by probabilistic models like Bayesian
networks and their variants. It these models a multidimensional probability distribu-
tion is used to represent the real world problem and capture and represent uncertainty.
We can distinguish two types of uncertainty. The first is variability that arises from
environmental stochasticity, inhomogenity of materials, fluctuations in time, variation
in space, or heterogenity or other di↵erences among components or individuals. This
variability is sometimes called aleatory uncertainty to emphasize its relation to the
randomness in gambling and games of chance. The second kind of uncertainty is
the incertitude that comes from scientific ignorance, measurement uncertainty, inob-
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servability, censoring, or other lack of knowledge. This is sometimes called epistemic
uncertainty.

For situations in which the uncertainty about quantities is purely aleatory, proba-
bility theory is usually preferred and it is su�cient for this purpose. When the gasp
in our knowledge involve both aleatory and epistemic uncertainty, several competing
approaches have been suggested: The common practice is to use probability theory
as well. As another example we would like to mention probability boxes [21] and es-
pecially Dempster-Shafer theory of Evidence (D-S) [1] [15] which we will deal within
this paper.

There is one problem when using probability framework to handle uncertainty. As-
sume that we have no information concerning behavior of a variable. Using probability
theory, one might assume equal priors and distribute the weight of evidence equally
among all possible states of the variable. But, as Shafer pointed out, here one will fail
to distinguish between uncertainty (or lack of knowledge), and equal certainty. And it
is this kind of uncertainty that can be easily captured in the framework of D-S theory.

In this paper we will deal with D-S theory, especially we will work with the no-
tion of Compositional models. Compositional models were originally introduced in
the probability framework. The intention was to create an algebraic alternative to
the well-known Markov graphical models like Bayesian networks. The important ad-
vantage of compositional models is that they can be generalized in the framework of
possibility theory as well as D-S theory by introducing a special operator of composi-
tion [8]. The recent research [7] [8] revealed the necessity of an software tool supporting
compositional models in D-S theory.

The intention of this paper is nothing more than to summarize our initial problems
when attempting to implement such a software tool. Here we describe our first steps,
ideas and preliminary solutions.

2 Notation

For an index set N = {1, 2, . . . , N} let {Xi}i2N be a finite set of finite valued variables,
each Xi having its values in Xi. In this paper we deal with multidimensional frame
of discernment XN = X1 ⇥ X2 ⇥ . . . ⇥ Xn, and its subframes (for K ✓ N) XK =
⇥i2KXi. The symbol XK will denote a group of variables {Xi}i2K . A projection of
x = (x1, x2, . . . , xn) 2 XN into XK will be denoted x

#K , i.e. for K = {i1, i2, . . . , ik}

x

#K = (xi1 , xi2 , . . . , xik) 2 XK .

Analogously, for M ⇢ K ✓ N and A ⇢ XK , A#M will denote a projection of A
into XM :

A

#M = {y 2 XM |9x 2 A : y = x

#M}.
In addition to the projection, in this text we will need also an opposite operation,
which will be called a join1. By a join of two sets A ✓ XK and B ✓ XL (K,L ✓ N)
we will understand a set

A ./ B = {x 2 XK[L : x#K 2 A & x

#L 2 B}.
1This term and notation are taken form the theory of relational databases
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Let use note that if K and L are disjoint, then A ./ B = A ⇥ B, and if K = L

A ./ B = A \B.

The symbol P(XK) will denote the powerset of XK , i.e. the set of all subsets of
XK .

2.1 Basic assignments

The role played by a probability distribution in probability theory is replaced by that
of a set function in D-S theory: belief function, plausibility function, commonality
function, or basic (probability or belief ) assignment. Knowing one of them, one can
derive the remaining three. In this paper we will use almost exclusively basic assign-
ments.

If m(A) > 0, then A is said to be a focal element of m. The set of focal elements
will be denoted by S. A basic assignment (bpa) m in XK (K ✓ N) is a function

m : P(XK) ! [0, 1],

for which X

;6=A✓XK

m(A) = 1.

The quantity m(A) is a measure of that portion of the total belief committed exactly
to A, where A is an element of P(XK) and the total belief is 1. The portion of belief
cannot be further subdivided among the subsets of A and does not include portions
of belief committed ti subsets of A. Since belief in a subset certainly entails belief in
subsets, containing that subset, it would be useful to define a function that computes
a total amount of belief in A. Such a function is called belief function.

On the contrary, plausible function characterizes the degree in which a proposal
A is plausible based on available evidence B expressed by each basic assignment that
contributes to realization of A. Commonality function doesnt have a simple interpre-
tation but it allows a simple statement of Dempsters combination rule [1].

2.2 Operator of composition

Compositional models theory has been introduced in the framework of probability the-
ory [6] as an algebraic alternative to well known and widely used Bayesian networks
for e�cient representations of multidimensional measures more than twelve years ago.
Compositional models are based on recurrent application of an operator of composi-
tion. Later, the operator of composition was introduced also within the framework of
D-S theory in [5]:

Definition 2.1. For two arbitrary bpa m1 on XK and m2 on XL (K,L 6= ;), a
composition m1Bm2 is defined for each C ✓ XK[L by one of the following expressions:

a) if m#K\L
2 (C#K\L

> 0 and C = C

#K
./ C

#L then

(m1 Bm2)(C) =
m1(C#K) ·m2(C#L)

m

#K\L
2 (C#K\L)
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b) if m#K\L
2 (C#K\L) = 0 and C = C

#K ⇥XL\K then

(m1 Bm2)(C) = m1(C
#K);

c) in all other cases (m1 Bm2)(C) = 0.

In the D-S theory, there exists several way how to combine di↵erent sources of
evidence and the above defined operator of composition seems to be one of them. But
this is not the case. The classical way is represented by Dempster’s combination rule
[1]. A criticism of this rule appeared later caused by its behavior when combining two
conflicting evidences and several additional combination rules were designed. Recall
for example Yager’s rule [23], Inagakis rule [4], Zhangs rule [25], or Dubois and Prades
Disjunctive Consensus [2]. However, the intention of the operator of composition is
not to be another combination rule and combine di↵erent sources of evidence. Its
intention is completely di↵erent.

Despite the success of D-S theory of evidence as a well founded and general model
of human reasoning under uncertainty, belief functions are rarely used in concrete ap-
plications. One of the most significant arguments raised against using belief functions
in practice is their relatively high computational complexity, especially in comparison
with methods based on classical probability theory. E.g. combining evidence using
relatively simple Dempster’s rule of combination is known to be #P-complete in the
number of evidential sources. Recall that bpa (as well as belief function, plausibility
function, and commonality function) is a set function. We work with the powerset
of possible events and the number of sets that can be focal elements of a bpa can be
superexponential within the number of involved variables.

To overcome these computational limitations, di↵erent approximation methods
have been proposed. Previous work can be divided into two categories [3]. The first
category consists of Monte-Carlo techniques [22]. The idea is to estimate exact values
of belief and plausibility by ratios of di↵erent outcomes relative to randomly generated
samples. The second category consist of simplification procedures. They are motivated
by the fact that the most algorithms involving belief functions have a complexity
polynomial in the number of focal elements. The underlying idea is therefore to restrict
in di↵erent ways the number of focal elements. A simple method is called Bayesian
approximation [20], where only singletons are allowed - which corresponds to the
restriction on probability distributions only. Other methods like k-l-x approximation
[19], summarization [10], and others try to reduce the number of focal elements by
taking the first k-most important assignments. The sum of the omitted assignments
is then redistributed in di↵erent ways depending on the respective method.

The idea of operator of composition goes in a di↵erent way: Practically all meth-
ods for e�cient computations with multidimensional models take advantage of the
fact that the model in question in a way factorizes. It means that it is possible to de-
compose the model into its low-dimensional parts, each of which can be defined with a
reasonable number of parameters. This is the basic idea for computation with proba-
bilistic Graphical Markov Models. Such a factorization not only decreases the storage
requirements for representation of a multidimensional distribution but it usually also
induces possibility to employ e�cient computational procedures.
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Since we need e�cient methods for representation of probabilistic distributions,
which require exponential number of parameters, the more we need of e�cient methods
for representation of an evidence, which cannot be represented by a point function.
For such a representation we need a set function, and thus its space requirements are
superexponential.

2.2.1 Compositional models

The factorizable evidence will be then represented in a form of the so-called composi-
tional model. Assume a system of low-dimensional basic assignments m1,m2, . . . ,mn

defined on XK1 ,XK2 , . . . ,XKn , respectively. Composing them together by multiple
application of operator of composition, one get multidimensional basic assignment
on XK1[K2[...[Kn . Note that the operator of composition is neither commutative,
nor associative. By ”composing them together” we understand that the operator of
composition is performed successfully from left to right and m1 B2 B . . . B mn =
(. . . ((m1 Bm2)Bm3)B . . .)Bmn.

2.2.2 New Concept of Conditional Independence

For belief functions, two type of factorization were designed in the literature. One
is based on various combination rules mentioned above, the other use an operator of
composition [5]. It has been shown in [7] that approach concerning Dempster’s rule
and the operator of compositions are equivalent each other in case of unconditional
factorization.

The idea of factorization is closely related to the notion of (un)conditional inde-
pendence in probabilistic modeling. However, as pointed out by Studený, the origi-
nal definition of conditional independence (published in [24]) was not consistent with
marginalization. That is why a new definition of conditional independence was intro-
duced in D-S theory in [7]:

Definition 2.2. Let m be a basic assignment on XN and K,L,M ⇢ N be disjoint,
K,L 6= ;. We say that groups of variables XK and XL are conditionally independent
given XM with respect to m (and denote it by K??L|M [m]), if the equality

m

#K[L[M (A) ·m#M (A#M ) = m

#K[M (A#K[M ) ·m#K[L(A#K[L)

holds for any A ✓ XK[L[M such that A = A

#K[M
./ A

#L[M , and m(A) = 0 other-
wise. If M = ; then we say that groups of variables XK and XL are independent with
respect to m (in symbol K??L[m]).

Above that, it has been shown in [8] that the above defined conditional indepen-
dence satisfies semigraphoid properties and that there is a link between operator of
composition and conditional independence:

Theorem 2.3. Let m be a joint basic assignment on XM , K,L ✓ M . Then (K \
L)??(L \K)|(K \ L)[m] i↵ m

#K[L(A) = (m#K Bm

#L)(A) for any A ✓ XK[L.

This theorem justifies the usage of the operator of composition when factorizing
an evidence.
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3 Implementation

To evaluate various hypotheses and support accelerate further theoretical research, it is
necessary to create an experimental tool for calculations with compositional models in
the framework of D-S theory. In this section we would like to describe several problems
when attempting to implement such a tool. The tool itself is developed as an extension
package for R-Project2 and it is available at http://dar1.utia.cas.cz/mudim altogether
with another tool supporting compositional models in the probability framework.

During our survey of existing implementation of D-S theory we found out that
there is no successful universal tool supporting theoretical research. The majority of
existing implementations is usually single purpose and base on restricted assumptions.
One can find not very up-to-date, but exhausted overview of applications of D-S theory
in [14].

The key problem of the implementation is the representation of belief structures.
Restrict ourselves to finite sets. For a finite set P of possible outcomes (P ✓ XN )
with cardinality |P |, there are at most 2|P | unique basic probability assignments. We
assume that rarely is a full set of 2|P | unique bpa used in practice. It corresponds
to the limited sources of information. Within the research literature there exists four
common subclasses of bpa for finite sets [9]:

1. The trivial case of total ignorance where m(P ) = 1 and m(A) = 0 i↵ A 6= P .
This is highlighted as a more accurate representation of total ignorance when
compare to traditional probability theory, which must apply Laplace’s principle
of indi↵erence in these circumstances.

2. Every assignment is made to a singleton of the set P . This corresponds to a
traditional probability measure on the set P .

3. Every assignment is made to a nested set. In other words, for every two sets
A and B such that m(A) > 0 and m(B) > 0, then A ⇢ B or B ⇢ A. This
arrangement of is known as possibility theory.

4. Every assignment can be made to an arbitrary set.

In our case we focus on the most general case - the last one. However, we step aside
the fact that involved variables can be either contiguous (discrete or continuous), or
categorical. Each of these data types requires a special representation in a computer
memory. In a survey of real-world application of D-S theory to infinite sets [16] it
has been published that the contiguous frame of elements assigns basic probability
statements to the closed intervals [xia , xib ] as a rule. Thus, in case of contiguous
variables, we will store the interval boundaries. See the overview of various data types
in Table 1.

2R is a free software environment for statistical computing and graphics. It compiles and runs on
a wide variety of UNIX platforms, Windows and MacOS. To download R, please visit http://www.r-
project.org/
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data type example implementation
continuous finite data age - integer interval boundaries
cont. infinite data sensor output - real number interval boundaries
categorical data sex {male, female} set of elements

Table 1: Implementation of various variable types

Problems

Let A ✓ XK , B ✓ XL, bpa m on XK , and S set of focal elements of m. The key
problem of the implementation itself is the fact that we have to store every focal
element A 2 S of m and pair it with the value m(A). This does not sound very
di�cult unless we realize that S is a set of sets of vectors and that every set of vectors
A 2 S is of various cardinality. The implementation of data structure will will have
an enormous impact on overall system performance.

The most basic operation which will be instantly used is the checking whether a
set A is a focal element, i.e. whether A 2 S. It is logical to assume that if the data
structure will be optimized with respect to this operation, then the system performance
allows to add additional functionalities like operator of composition etc.

There are multiple ways of implementing set (and map) functionality, that is:

• ordered (e.g. tree-based) approaches, and

• unordered (e.g. hash-based) approaches

Here we propose the unordered (hash-based) approach, which naturally builds on
top of the value-indexed array technique. The problem here is that we have set of
sets of vectors, which significantly complicates the implementation of respective hash
function.

However, in this attempt, we simply store the evidence in multidimensional arrays
(tables) of vectors and we implement the search of a set in a set of sets simply as a full
table scan - i.e. the algorithm gradually passes through all elements of S and compares
them with set A. Such a comparison is described in Algorithm 1. A,B are two sets
of possible outputs. Note that we employ the definition A = B , A ✓ B&B ✓ A.
Then, in case of checking e.g. A ✓ B (Algorithm 2) we simply check whether 9b 2 B

such that a = b for all a 2 A. In the worst case scenario, the complexity is 2 · |A| · |B|
of vector comparisons. The improvement of this will have an enormous impact on the
e�ciency of the tool. Our idea is either implement a specific hash function, or to use
embedded relational database [17] with optimized index-based search algorithms.

Algorithm 1 MySetEqual(A,B ✓ XK): boolean

1: if MySubset(A,B) and MySubset(B,A) then
2: return TRUE;
3: else

4: return FALSE;
5: end if
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Algorithm 2 MySubset(A,SubA ✓ XK): boolean

1: found: flag if the corresponding element is found in the other set
2: for i = 1 to |SubA| do
3: found=FALSE;
4: for j = 1 to |A| do
5: if SubA[i] == A[j] then
6: found=TRUE; {SubA[i] 2 A}
7: break; {additional search is useless}
8: end if

9: end for

10: if not found then

11: return FALSE; {SubA[i] 62 A ) SubA 6✓ A}
12: end if

13: end for

14: return TRUE;

The other operations that have to be considered when designing a data structure
are:

• marginalization A

#M = {y 2 XM |9x 2 A : y#M = x}

• join operation A ./ B = {x 2 XK[L : x#K 2 A & x

#L 2 B}

Using above defined functions one can implement the operation of composition
specified in Definition 2.1. See Algorithm 3 for the pseudo-code of the implementation.
Here two auxiliary boolean flags are employed - found and marginalComputed. The
first one decides between cases a) and b) of Definition 2.1. The second one highlights
whether the respective marginal m#K\L

2 (C#K\L) from Definition 2.1 has been already
computed or not.

The careful reader notices that the loop on lines 18-22 of the previous algorithm
may be performed for the same set C

#K\L several times. This could be easily im-
proved. Let us define an auxiliary vector m2marginal to store computed marginal
of m2 and index it in the same way as m2. Then it is enough to use the value
m2marginal[k] on line 20 if k < l and break respective cycle (lines 18-22).

Conclusion

Recently, it has been published that some of the ideas for representation of multidi-
mensional distributions in probability theory can be transferred into Dempster-Shafer
theory of Evidence [7], [8]. Namely, they showed that multidimensional basic assign-
ments can be rather e�ciently represented in a form of so-called compositional models.
However, only an application of the theory can show which parts still need to be im-
proved. Our goal is to develop not only an interesting theory but also an e�cient tool
based on these theoretical results. In other words, we intend to create a software tool
which could be used for experiments and additional theoretical research.
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Algorithm 3 B operation of composition: m3 = m1 Bm2

1: input S1: set of focal elements of m1, S1 ✓ P(XK)
2: input m1: set of basic probability assignments m1[i] = m1(S1[i])
3: input S2: set of focal elements of m2, S2 ✓ P(XL)
4: input m2: set of basic probability assignments m2[i] = m2(S2[i])
5: output S3: set of focal elements of m3 = m1 Bm2, S3 ✓ P(XK[L)
6: output m3: set of basic probability assignments m3 = m1 Bm2

7: l = 1;
8: S3 = ;;
9: m3 = ;;

10: for i = 1 to |S1| do
11: marginalComputed = FALSE;
12: found = FALSE;
13: marginalValue = 0;
14: for j = 1 to |S2| do
15: if MySetEqual((S1[i])#K\L

, (S2[i])#K\L) then
16: found = TRUE; {i.e. m2((S2[i])#K\L) > 0}
17: if not marginalComputed then

18: for k = 1 to |S2| do
19: if MySetEqual(S2[k], S2[j]) then
20: marginalValue = marginalValue + m2[k];
21: end if

22: end for

23: marginalComputed = TRUE;
24: end if

25: S3[l] = S1[i] ./ S2[j]; {case a of the Definition 2.1}
26: m3[l] = (m1[i] ·m2[j])/marginalValue;
27: l = l + 1;
28: end if

29: end for

30: if not found then

31: S3[l] = S1[i]⇥XL\K ; {case b of the Definition 2.1}
32: m3[l] = m1[i];
33: l = l + 1;
34: end if

35: end for

36: return m3, S3;
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In this paper we have described our problems when implementing compositional
models in the framework of Dempster-Shafer theory of Evidence. The tool is imple-
mented as an extension package for R-Project and one can find it, altogether with
another tool supporting compositional models in probability framework, at the web-
site http://dar1.utia.cas.cz/mudim. In this paper we described our first steps and
basic problems which we faced during implementation.

The paper contains just a preliminary ideas and gives answers only to very simple
questions. So there are many more that remain to be answered. For example:

• Does it exist an e�cient representation of sets of vectors?

• How does an e↵ective hash function for a set of sets of vectors look like?

• Can be an embedded SQL database used for representation of focal elements?

• Let X2 = {a2, ā2}. Is it reasonable to combine two elements (a1, a2), (a1, ā2)
into (a1,X2) and store the information in this way?
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Abstract

Four di↵erent methods ( SM,MK1,MK2, SK) are used to order a set AM of

admissible marginals ascendingly with respect to wrong classifications. Second,

an algorithm called ”Enhancement” finds, by reduction, the best knowledge base

K (i.e. set of marginals) that used as input for a decision-making algorithm A
results in least number of wrong classifications.Third, certain strategies to cope

with possible inconsistence of marginals and data for which the testing takes

place are suggested.

1 Introduction

The layout of the paper is the following one: After introducing Basic notions four
Ascending sequences are defined and in Mixing marginals, it is shown how to
combine their beginnings to suggest the best knowledge base K0. Then, an multi-
purpose Algorithm Enhancement tries to improve K0, by reduction, to get an
optimized K

opt

. Experimental results describe some details about testing an algo-
rithm A on real data. Empty symptom pattern reminds of an interesting situation
that has to be taken care of in decision making algorithm A. It may appear due to
splitting the available data in learning file L and testing file T .

2 Basic notions

Let (⌦,X , P ) be a probabilistic space
⌘ = ⇠0, ⇠1, ⇠2, . . . ⇠n be finite sets and

⇠
r

: (⌦,X , P ) �! (⇠
r

, 2⇠r ) for r = 0, 1, 2, · · ·n
be measurable functions
The mutual behaviour of all random variables ⌘, , ⇠1, ⇠2 · · · ⇠n is described by joint
probability distribution P

⌘ ⇠1⇠2...⇠n .
Decision making can be interpreted as the diagnostic problem with the following for-
mulation:
Diagnostic problem Find the diagnosis d(s1, s2 · · · sn) 2 ⌘ that is the most probable
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(according to the P
⌘⇠1,⇠2···⇠n ) on the set

{! 2 ⌦ | ⇠1(!) = s1 & ⇠2(!) = s2 & · · · ⇠
n

(!) = s
n

} for a given (i.e. observed) ar-
bitrary combination (s1, s2 · · · sn) of values of symptom variables from the cartesian
product ⇠1 ⇥ ⇠2 ⇥ . . . ⇠n
If we wish to predict the values of diagnostic variable ⌘, the conditional probability
P
⌘|⇠1⇠2...⇠n (derivable from P

⌘ ⇠1⇠2...⇠n) should be used instead.
The optimal decision (i.e. the value of diagnosis d from ⌘ that should be selected if
the values of symptom variables are (s1, s2 · · · sn) to keep the wrong classification of
d as low as possible), called Bayes solution, is given by the formula

d
opt

(s1, s2 · · · sn) = argmax
d2⌘

P
⌘ |⇠1⇠2...⇠n(d|s1, s2 · · · sn) (1)

for each (s1, s2 · · · sn) 2 ⇠1 ⇥ ⇠2 ⇥ . . . ⇠n

So far the theory. Unfortunately, in the ”real world”, we are never given the the-
oretical distribution P

⌘⇠1⇠2···⇠n in full and directly. To compensate for this, we expect
to have some indirect information about P

⌘⇠1⇠2···⇠n that will be called knowledge base

and denoted by K. It is done by postulating a set of conditions that we believe the
theoretical P

⌘⇠1⇠2···⇠n fulfills. Using the concept of marginal problem, see [1], knowledge
base K is given as a set of ”low-dimensional” distributions ( e.g. number of variables
in the distribution does not exceed e.g. 10. ), postulated as theoretical marginal dis-

tributions of the P
⌘⇠1,⇠2...⇠n . Instead of the unknown P

⌘⇠1⇠2···⇠n , we try to construct its

suitable approximation P̂
⌘⇠1⇠2···⇠n that could play its role in the diagnostic problem.

If we want to speak about decision errors, three notions should be defined: statistical
file F , decision-making algorithm A and objective functional M , measuring the classifi-
cation errors. At the same time, it should be explained how the marginals are obtained.

Let (!1,!2, · · ·!s

) be a sequence, where individual !
i

2 ⌦ denote realizations of a
random selection from ⌦,
then the sequence (⌘(!

l

), ⇠1(!l

), ⇠2(!l

) · · · ⇠
n

(!
l

))s
l=1 of points in cartesian product

⌘ ⇥ ⇠1 ⇥ ⇠2 ⇥ . . . ⇠n is a statistical file F of size s (i.e. s = |F |) and (F )
r

is the r-th
member of F .
The file F can be used for calculating the empirical joint distribution PF

⌘ ⇠1⇠2...⇠n
by

the following formula

PF
⌘ ⇠1⇠2...⇠n

(d, s1, s2 · · · sn) = |{r 2 N : (F )
r

= (d, s1, s2 · · · sn)}| / |F |

If we denote by ⌅ the set of all symptom variables and by 2⌅ its potential set, then
the set M of all marginals carrying information about ⌘ can be expressed as M =
{P

⌘j

| j 2 2⌅}.
Then, in its turn, the set{K

w

}
w

of all knowledge bases K is potential set 2M of M
i.e. each K can be expressed as K = {m1,m2, · · ·mr

} ⇢ 2M. Further, let ⌅ denote
cartesian product of all symptom variables i.e. ⌅ = ⇠1 ⇥ ⇠2 ⇥ . . . ⇠n. Now, each



116 O. KŘÍŽ

decision-making algorithm A can be formally defined as

A : 2M ⇥⌅ �! ⌘

(K, (s1, s2 · · · sn)) 7�! d 2 ⌘

The measuring objective functional M evaluates the number of wrong classifications
for each A and for each statistical file F . If we set ((F )

j

)
⇠

= (⇠1(!j

), ⇠2(!j

) · · · ⇠
n

(!
j

))
and ((F )

j

)1 = ⌘(!
j

), then we may describe the testing scheme as a mapping M

M : {A
i

}
i

⇥ 2M ⇥ {F
l

}
l

�! N
(A

i

,K,F ) 7�! |{j 2 N : A
i

(K, ((F )
j

)
⇠

) 6= ((F )
j

)1}|

The key question where do the marginals come from is considered as external to the
marginal problem since their existence as input is just postulated. In theory, they could
”be given” from an authoritative source (experts ?), but practically, they cannot be
obtained otherwise but from a statistical file F . There is a hidden supposition that
while there is not enough data (i.e. size |F | of statistical file F ) to get the theoretical
distribution P

⌘⇠1⇠2···⇠n , the same data is su�cient to get (populate) its marginals.

Marginal problem formulation postulates that marginals of the approximation P̂ are
the same as marginals of the theoretical P distribution since this is the way algorithms
A are constructed. There is a bit suspicious that there is not a quantification of
low-dimensional marginals but if the given marginals are populated from data (i.e.

statistical file F ), they are also marginals of the empirical distribution PF so that for
the given marginals the following equations hold

P̂
⌘⇠j1⇠j2 ···⇠jk = P

⌘⇠j1⇠j2 ···⇠jk = PF
⌘⇠j1⇠j2 ···⇠jk

3 Ascending sequences

In [3], there is described a procedure that generates, in automated way, several thou-
sands admissible marginals AM from F . It seems useful to order them ascendingly
with respect to the number of wrong classifications. In the sequel, there are suggested
four ordering algorithms (SM,MK1,MK2, SK) in form of recursive formulae. It is
obvious that other strategies can be thought of, as well e.g. we could select marginals
that are in the best triplets (i.e. minimizing M(A, {m,,m,,,m,,,}, T ) etc. However,
such strategies are not so easy to realize and not object of this study.
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3.1 SM sequence

(v, w) = argmin
(m,

,m

,,)2AM

2

M(A, {m,,m,,}, T )

(SM)1 = v

(SM)2 = w

U2 = {v, w}

u
l

= argmin
m 2 AM\Ul�1

X

ms 2Ul�1

M(A, {m,m
s

}, T )

(SM)
l

= u
l

U
l

= U
l�1 [ u

l

where l = 3, 4, · · · k

3.2 MK1 sequence

Algorithm MK1 generates the ascending sequence MK1 of prescribed length s
min

.
U
l

is a set of marginals so far selected at l-th step U
l

⇢ AM . u
l

is a pair of marginals
(m

i

,m
j

) 2 AM2 that was constructed at l-th step. It can be expressed alternatively
as u

l

= ((u
l

)1, (ul

)2).

procedure MK1(MK1, smin

)
U0 = ;; s = 0; l = 1

again:

u
l

= argmin
(v,w) 2 AM

2: v 2 AM\Ul�1 or w 2 AM\Ul�1

M(A, {v, w}, T )

U
l

= U
l�1 [ {(u

l

)1} [ {(u
l

)2}
if (u

l

)1 2 AM \ U
l�1 then

s = s+ 1; (MK1)s = (u
l

)1
if (u

l

)2 2 AM \ U
l�1 then

s = s+ 1; (MK1)s = (u
l

)2
endif

else
s = s+ 1; (MK1)s = (u

l

)2
endif
if s < s

min

then
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l = l + 1; goto again
endif

end MK1

3.3 MK2 sequence

Let U be an ordering on set of admissible marginals AM i.e.
U ⇢ AM2 : (m,,m,,) 2 U =) (m,,,m,) 62 U

(m,,m,,) 2 U ; (m,,,m,,,) 2 U =) (m,,m,,,) 2 U
Let U

l

denote a set of pairs of marginals. u
l

denote a pair of marginals where ( u
l

)1
is the first marginal of the pair and ( u

l

)2 is the second marginal of the pair so that
u
l

= (( u
l

)1, ( ul

)2). Further, let V
l

denote a set of marginals, MK2 be a sequence
(vector,array) of marginals from AM and (MK2)

k

denote its k-th member.

procedure MK2

U1 = ; ; {u�1} = ; ;V�1 = ; ; {( u�1)1} = ; ; {( u�1)2} = ;
for l = 0, 1, 2, · · ·min(|AM |, 24)

U
l

= U
l�1 [ {u

l�1}
V
l

= V
l�1 [ {( u

l�1)1} [ {( u
l�1)2}

u
l

= argmin
(m,,m,,) 2 U \ U

l

: m,,m,, 62 V
l

M(A, {m,,m,,}, T )

(MK2)2l+1 = ( u
l

)1
(MK2)2l+2 = ( u

l

)2
next l

end MK2

Then, the sequence MK2 contains 2 ⇤ min(25, |AM |) members. Complexity of
MK2 can be estimated as O(50 ⇤ |AM |2).

3.4 SK sequence

The ascending sequence SK, of length k, is ordered according to wrong classifications
based on individual marginals from AM .

U0 = ;

(SK)
l

= argmin
m 2 AM\Ul�1

M(A, {m}, T )

U
l

= U
l�1 [ {(SK)1}

where l = 1, 2, · · · k
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4 Mixing marginals

The best approximation P̂
⌘⇠1⇠2···⇠n of the theoretical P

⌘⇠1⇠2···⇠n that would yield the
least number of wrong classification in the diagnostic problem is dependent on two
factors. First, it is the algorithm A (decision-making engine) integrating marginals to
get P̂

⌘⇠1⇠2···⇠n and second, it is a set a set of concrete marginals referred to as knowl-
edge base K. The concrete marginals m 2 K are, in its turn, defined by their carrier
m (i.e. variables whose behaviour is described by the marginal m) and second, they
depend on a statistical file F that is used for their populating. In classical marginal
problem [1], the set of marginals from which the joint distribution P

⌘⇠1⇠2...⇠n is to be
”integrated”, is given and fixed ! Leaving aside what di↵erent algorithms can be used
to do it (e.g. Bayes nets or see [2]), one may ask whether selection of a di↵erent (i.e.
better) set of marginals could improve the decision-making. In fact, what is explicitly
given are not the marginals m in K but observed data (i.e. statistical file F ) and what
is left to our free choice is the selection of the carriers m. The best situation would
be if this process could be fully automated. An attempt in this direction was done
in [3] by suggesting an SM algorithm where certain ”orthogonality” of marginals is
respected. It is based on behaviour of pairs of marginals and it generates a sequence
of at most 50 marginals in descending order where the ”best” marginals should stand
at the beginning. Therefore, it seems as a good strategy to select the beginning of the
sequence and hope that it represents the optimal set of marginals. (It still remains an
open question how far to go in the sequence !) To test if the assumption holds would
require to inspect all subsets of the beginning. For 20 marginals, to generate and test
all 220 subsets is unrealistic. Therefore, an heuristical algorithm ”Enhancement” is
suggested in section 5. There are some taciturn assumptions about marginals and
about knowledge base K. Namely, each marginal m from AM should have diagnostic
variable ⌘ in its carrier m and second, none algorithm A can operate on too many
marginals. It would result in time increase when evaluating individual decision and it
is not certain that the more marginals means the better for decision making. In the
meantime, three other algorithms, MK1, MK2 and SK, using di↵erent optimality
criterion, were suggested and ”Enhancement” can be applied to their outputs, too.
At this moment, it seems natural to prolong the procedure even further. Namely, to
apply ”Enhancement” not only to outputs of ”pure type” algorithms (SM, MK1,
MK2 and SK), but also to their mixtures, what justifies the title of the paper. E.g.
the clause ”SM(5)+SK(3)+MK2(10)+ EK(5)” of the control language preparing input
for ”Enhancement” uses as K0 first five marginals from the sequence SM , first three
marginals from SK, ten marginals from MK2 and ”EK(5)” stands for five marginals
whose structure is provided explicitly by experts. In case if some of the first three
marginals from SK have appeared already among the first five from SM , they are
either skipped or it is possible to force out further marginals from sequence SK to
have in the mix three contributions from SK but, this time, not necessarily the first
three ones. (In strategy with skipping, the order in the clause does not matter for
subsequent processing by Enhancement!).
To sum it up, prior to releasing the final version of the knowledge base K, certain time
should be devoted to playing with di↵erent mixtures of marginals and their subsequent
reduction with Enhancement. That is the semi-automated way to adapt K to data
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(i.e. statistical file F ) for each specific problem area.

5 Algorithm Enhancement

The description of the algorithm Enhancement starts with explaining its basic idea.
Then, the denotation of used objects and constructions is presented and finally, the
algorithm is described in form of a procedure written in a symbolic language.

5.1 Basic idea

Let K0 be a finite set of marginals and r 2 N : r <= |K0|. V (K0, r) will denote
r-neighbourhood of K0 so that V (K0, r) = {K ✓ K0 | |K0| � |K| <= r}.We can look
for the best set K

opt

starting from K0. In other words, we construct recursively a
sequence (K

l

)s
l=1.

K
l+1 = argmin

K 2 V (K
l

, r)
M(A,K, T ) l = 0, 1, · · · s (2)

where length s of the sequence (K
l

)s
l=1 of sets K

l

of marginals is given by stopping
condition

s 2 {0} [N : M(A,K
s+1, T ) � M(A,K

s

, T )

.
At this moment, we might finish the algorithm by setting K

opt

= K
s

.
However, in principle, a subset of K0 better than K

s

may still exist. Therefore, we
may reverse the procedure and instead of reducing K0, we may look for optimum by
expanding K

s

up to K0.
Let U(K

s

,K0, r) = {K ✓ K0 | |K|� |K
s

| <= r} be a class of sets of marginals that are
generated from K

s

by adding at most r marginals from K0 \ Ks

. If no improvement
(i.e. minimization) of M(A,K

s

, T ) on U(K
s

,K0, r) can be found, we have finished
setting K

opt

= K
s

. Otherwise, we proceed the expansion creating a sequence K
s

⇢
K

s+1, · · · ⇢ K
s+w

using the recursive procedure

K
s+l+1 = argmin

K 2 U(K
s+l

,K0, r)
M(A,K, T ) l = 0, 1, · · ·w (3)

where length w of the sequence (K
l

)w
l=1 of sets K

l

of marginals is given by stopping
condition

w 2 {0} [N : M(A,K
s+w+1, T ) � M(A,K

s+w

, T ),

and at this moment, we recur to reduction again. But this time, we start not from K0

but from K
s+w

i.e. we set K
j

= K
s+w

and enter the reduction cycle.
This changing from reduction to expansion may happen several times and though it
should finish in finite number of steps due to finiteness of K0, we may explicitely limit
it to say 10 changes by counting the changes in a variable count.
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5.2 Symbolic description

To shorten the description of the algorithm ”Enhancement”, following symbols are
used: a, b, |K|, comb(c, d). Let K = {m1,m2 · · ·ms

} be a set of s marginals, then
K = K = {1, 2 · · · s} is a set of integers denoting indices of marginals from the set
K. Inverse mapping (from indices to marginals) is denoted by upper bar over the set
of integers. E.g. {5, 8, 15} = {m5,m8,m15}. The symbol | . | stands for number of
elements of its argument. E.g. |K | = | K | = s and |m5 | = |m5 | = 4.
|⇠

j

| denotes number of elements of the set ⇠j the random variable ⇠
j

takes its value
from. Curly parentheses denote a set of elements separated by commas. Bold symbol
stands for a sequence. If e is a sequence, (e)

j

is its l-th member that can be, in its
turn, e.g. a set.
If I ⇢ N : | I | < 1 and i 2 N : i  | I |, then function comb(I, i) returns a sequence
of combinations of elements of the set I.

More formally, it is a sequence of length

✓
| I |
i

◆
whose members are sets of i-tuples

from I.
Let us illustrate some constructions in the following example:
K0 = {m1,m2,m3,m4} ; K0 = K0 = {1, 2, 3, 4} ; |K0 | = 4
For i = 2, e = comb(K0, 2) = ({1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4})
f = (K0 \ ( e)

l

)6
l=1 = ({3, 4}, {2, 4}, {2, 3}, {1, 4}, {1, 3}, {1, 2})

For i = 3, (f)
i

= {2, 3} and (f)
i

= {m2,m3}
Finally, the algorithmA operating on the set of marginals ( f)i yieldsM(A, {m2,m3}, T )
wrong classifications for |T | cases from the testing statistical file T .

Algorithm Enhancement (K
opt

,M
opt

)
read K0, read r
if r > |K0|, then r = |K0|
j = 0; M

min

= |F |; M
last

= |F |; count = 0
NewMinus:

for i = 1, min(r, |K
j

|)
e = comb(K

j

, i)

f = (K0 \ ( e)
l

)|e|
l=1

for l = 1, |f |
if M(A, (f)

l

, T ) < M
min

then
M

min

= M(A, (f)
l

, T ); K
min

= (f)
l

endif
next l

next i
if M

min

< M
last

then
j = j + 1; M

last

= M
min

; K
j

= K
min

; goto NewMinus
endif

M
last

= M
min

;w = 0
NewPlus:

K
dif

= K0 \K
min

for i = 1, min(r, |K
dif

|)
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g = comb(K
dif

, i)

h = (K
min

[ ( g)
l

)
|g|
l=1

for l = 1, |g|
if M(A, (h)

l

, T ) < M
min

then
M

min

= M(A, (h)
l

, T ); K
min

= (h)
l

endif
next l

next i
if M

min

< M
last

then
if w = 0 goto RegularEnd

count = count+1
if count > 10 goto IrregularEnd
j = j + 1 ; K

j

= K
min

; goto NewMinus
else

w = w + 1 ;M
last

= M
min

j = 0 ;K
j

= K
min

; goto NewMinus
endif

IrregularEnd:
Print(”After ”,count,” iterations, Enhancement abnormally ended”)
goto RegularEnd

RegularEnd:
Print(”K

min

= ”,K
min

, ”, M
min

= ”,M
min

);
K

opt

= K
min

; M
opt

= M
min

;
End Enhancement

6 Experimental results

Experiments with marginals (selecting, mixing) were performed on a statistical file F
with 4 diagnoses (i.e. |⌘| = 4) and 34 other symptom variables whose ranges have
cardinalities from 2 to 9. The file F with 1089 objects was split (i.e. by random
selection) in 32 complementary subfiles L and T . E.g. a generating control pattern
11212 splits F into 654 cases in L to populate marginals in K and 435 cases in T used
for testing. Improvement achieved by Enhancement was about several percentage
points. First few marginals from di↵erent ascending sequences seem to coincide and
none of sequences (SM ,MK1,MK2,SK ) seems to dominate the others. The
results (i.e. marginals selected to K

opt

and the corresponding number of achieved
wrong classification M(A,K

opt

, T ) are dependent on the type of algorithm A and on
the splitting into L and T

7 Empty Symptom Pattern

Let us suppose that for an object ! 2 ⌦, following symptom values were observed
⇠
i

(!) = s
i

2 ⇠i for i = 1, 2, · · ·n. These values are passed to the decision-making
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algorithm A. The algorithm has, as its knowledge base K, a set of marginals populated
from a learning statistical file L. Let us suppose there is a marginal m = P

⌘⇠i1⇠i1 ···⇠ik
that for its submarginalm⌘ holdsm⌘(s

i1 , si2 , · · · sik) = P
⇠i1⇠i1 ···⇠ik (si1 , si2 , · · · sik) = 0.

This means we cannot select any d 2 ⌘ since there is no previous information about
⌘ from the conditioning set {! 2 ⌦ | ⇠

i1(!) = s
i1 & ⇠

i2(!) = s
i2 & · · · ⇠

ik(!) = s
ik }.

However, we may expect that if the conditioning set is increased, by reducing the num-
ber of conditions, an evidence about ⌘ may appear. This increasing will be done, in
systematic way, by constructing submarginals of m by excluding single symptom vari-
ables, then pairs of them, then triplets of them etc. The process is stopped if an sub-
marginal of m yields a non zero value for respective arguments from (s

i1 , si2 , · · · sik).
If there are more such submarginals with the same number of excluded variables, the
one with minimal entropy (i.e. H(.)) with respect to ⌘ will be selected.
Let U be a finite set, l 2 N : l  |U |, then B(U, l) denotes a sequence whose mem-
bers are l-tuples of elements from U . Further, let m = P

⌘⇠i1⇠i1 ···⇠ik be a marginal
describing behaviour of variables ⌘⇠

i1⇠i1 · · · ⇠ik what can be alternatively expressed
as m = ⌘⇠

i1⇠i1 · · · ⇠ik . Symbol m \ ⌘ denotes a set of symptom variables of m and
B(m \ ⌘, l) is a sequence of all l-tuples created from symptom variables described by

m. The symbol m(B(m\⌘,l))s is the submarginal of the marginal m created by sum-
ming over s-th l-tuple from symptom variables of m. The remaining (active) variables
of this submarginal are m \ (B(m \ ⌘, l))

s

.
As we need to express formally values of the submarginal, we may use the following con-

struction (d, s
i1 , si2 , · · · sik)m\(B(m\⌘,l))w to describe arguments that go over from the

original vector (d, s
i1 , si2 , · · · sik) 2 ⌘⇥ ⇠i1 ⇥ ⇠i2 ⇥ . . . ⇠ik as corresponding arguments

of the submarginal m(B(m\⌘,l))w so that the number P
⌘⇠i1⇠i2 ···⇠ik (d, si1 , si2 , · · · sik) is

transformed to the number

m(B(m\⌘,l))w(d, s
i1 , si2 , · · · sik)m\(B(m\⌘,l))w

.
Similar construction m⌘(B(m\⌘,l))w(d, s

i1 , si2 , · · · sik)m\(⌘[(B(m\⌘,l))w)

describes the probability P ({! 2 ⌦ |&
j2T

⇠
ij (!) = s

ij})
where T = {j 2 N | ⇠

ij 2 {m \ {⌘ [ (B(m \ ⌘, l))
w

}}

Correction of algorithm A to cope with ”Empty Symptom Pattern” consists in the
following procedure: Instead of using ”common” knowledge base K selected according
to mixing marginals strategy described in sections 3, 4 and 5, its modification K0 is
submitted to the A. If L = T = F , then K0 = K.
However, this modification guarantees a decision even if symptom values combination
(s1, s2, · · · sn) was not found in the file F .

K0 = ;
for m 2 K

if m(s1, s2, · · · sn)m\⌘ 6= 0 then
K0 = K0 [ {m}

else
q
min

= ;
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x
min

= |⌘|
k = |m|� 1
for l = 1, k

for w = 1,

✓
k

l

◆

q = (B(m \ ⌘, l))
w

t = m \ q
r = t \ ⌘
h0 = mq(s

i1 , si2 , · · · sik)r
for h0 = 0 then
else
for d 2 ⌘

h
⌘

(d) = mq(d, s
i1 , si2 , · · · sik)t/h0

next d
endif
if x

min

> H(h
⌘

) then
x
min

= H(h
⌘

)
q
min

= q
endif

next w
if q

min

6= ; then
m0 = mqmin ; K0 = K0 [ {m0}; goto MarginalEnd

endif
next l

endif
MarginalEnd:

next m
if K0 = ; then
K0 = P ⇠1⇠2,···⇠n

endif
TotalEnd:

A(K, (s1, s2, · · · sn)) = A(K0, (s1, s2, · · · sn))

8 Conclusion

1. Algorithm Enhancement improves the decision-making by several percentage
points.

2. Changing or setting of di↵erent free parameters may be considered as a part of
tuning or service each decision-making algorithm should be given before being
brought into operation. Bearing in mind that the theoretical joint distribu-
tion P

⌘⇠1⇠2···⇠n is di↵erent for each problem area, the search for optimal input

marginals to get the best approximation P̂
⌘⇠1⇠2···⇠n is fully justifiable.

3. In general, with other parameters unchanged, it is the size of the marginals that
has the greatest influence on the decision.
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4. The software necessary for mixing marginals can be seen as a tool kit that helps
to find the best approximation of the joint distribution describing the problem
area and it is open to further growth if needed.

The author wishes to express his thanks to Jǐŕı Vomlel for comparative runs using
the Huggin software for the same input data and for inspiring discussions about the
danger of overfitting when testing the influence of marginal selection for real data.
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Abstract

When studying entropy functions of multivariate probability distributions,

polymatroids and matroids emerge. Entropy functions of pure multiparty quan-

tum states give rise to analogous notions, called here polyquantoids and quan-

toids. Polymatroids and polyquantoids are related via linear mappings and du-

ality. Quantum secret sharing schemes that are ideal are described by selfdual

matroids. Expansions of integer polyquantoids to quantoids are studied and

linked to that of polymatroids.

1 Introduction

A polymatroid (N, h) consists of a finite ground set N and rank function h on the
subsets of N that is normalized h(;) = 0, nondecreasing h(I) 6 h(J), I ✓ J , and
submodular h(I) + h(J) > h(I [ J) + h(I \ J), I, J ✓ N . A polymatroid is entropic
if there exists a probability measure P on a finite set

Q
i2N Xi such that h(I) equals

Shannon entropy of the marginal of P to
Q

i2I Xi, for all I ✓ N . This means that h
equals the entropy function of P . These functions always induce polymatroids.

In this work, a polyquantoid is introduced as a pair (N, e) with a rank function e
on the subsets of N that is normalized, complementary e(I) = e(N \ I), I ✓ N , and
submodular. A polyquantoid is entropic if there exists a quantum state ⇢ on a complex
Hilbert space

N
i2N Hi of finite dimension such that e(I) equals von Neumann entropy

of the reduction of ⇢ to
N

i2I Hi, for all I ✓ N . This means that e equals the entropy
function on ⇢. These functions always induce polyquantoids, by properties of von
Neumann entropy.

A polymatroid/polyquantoid is integer if all values of its rank function are integer
numbers. An integer polymatroid whose values on singletons equal zero or one is called
matroid. Let quantoid be defined as an integer polyquantoid with this property.

This contribution studies interplay between polymatroids, polyquantoids, matroids,
quantoids and secret sharing schemes, both classical and quantum. In Section 2, du-
ality of set functions is worked out. Section 3 introduces mutually inverse linear

⇤
This work was supported by Grant Agency the Czech Republic under Grant 201/08/0539.
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mappings that provide a one-to-one correspondence between tight selfdual polyma-
troids and polyquantoids, see Theorem 1. This correspondence can serve as a tool for
comparing problems on classical and quantum entropy functions.

In Section 4, secret sharing schemes are lifted to the level of polymatroids/poly-
quantoids. Theorem 2 recalls that the ideal sharing in polymatroids is governed by
matroids. This result is translated to polyquantoids in Theorem 3 that describes the
ideal quantum sharing via those quantoids that correspond to tight selfdual matroids.

Section 5 departs from the notion of expansions of integer polymatroids to ma-
troids. An analogous construction for integer polyquantoids is introduced to provide
expansions of polyquantoids to quantoids, see Theorem 4. Thus, the quantoids play a
role of matroids in quantum settings. In Section 6, remarks and discussion of related
material and literature are collected.

2 Duality

For set functions h with a ground set N , the following definition

h0(I) , h(N \ I) + h(;)� h(N) +
X

i2I

⇥
h(i)� h(;) + h(N)� h(N \ i)

⇤
, I ✓ N ,

gives rise to a duality mapping h 7! h0. A function h is selfdual if h0 = h. The
functions that are complementary, as in polyquantoids, are selfdual.

Let us say that a set function h is tight if h(N \ i) = h(N) for all i 2 N . If h is
normalized and tight then the definition of duality simplifies to

h0(I) = h(N \ I)� h(N) +
X

i2I

h(i) , I ✓ N .

Lemma 1. For any function h on the subsets of N ,
(i) h0(;) = h(;),
(ii) h0(i) = h(i) for i 2 N ,
(iii) h0(N)� h0(N \ i) = h(N)� h(N \ i) for i 2 N ,
(iv) h00 = h,
(v) h is submodular if and only if h0 is so,
(vi) if h is normalized, submodular and h(N) > h(N \ i), i 2 N , then h0 is

nondecreasing.

Proof. First two assertions follow directly from the definition. For K ✓ J the equality

h0(J)� h0(K) = h(N \ J)� h(N \K) +
X

i2J\K

⇥
h(i)� h(;) + h(N)� h(N \ i)

⇤

implies (iii). Choosing K = N \ I and J = N , it rewrites to

h(I) = h0(N \ I) + h(;)� h0(N) +
X

i2I

[h(i)� h(;) + h(N)� h(N \ i)
⇤
, I ✓ N .
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´

U

ˇ

S

By (i), (ii) and (iii), the right-hand side equals h00(I) which proves (iv). If h is
submodular then I 7! h(N \ I) is so whence h0 is submodular. Then, the equivalence
(v) holds by (iv). If h is normalized and h(N) > h(N \ i), i 2 N , then for J ◆ K

h0(J)� h0(K) > h(N \ J)� h(N \K) +
X

i2J\K

h(i) .

If h is also submodular then the right-hand side is nonnegative whence (vi) holds.

Corollary 1. The duality mapping restricts to an involution on the (tight) polyma-
troids.

3 Tight selfdual polymatroids and polyquantoids

Let h and e be set functions with the ground set N . The linear mappings e 7! e^ and
h 7! h_ introduced here by

e^(I) , e(I) +
X

i2I

e(i) and h_(I) , h(I)� 1
2

X

i2I

h(i) , I ✓ N ,

are mutually inverse, (e^)_ = e and (h_)^ = h. They provide a natural link between
the polymatroids and polyquantoids.

Theorem 1. The mappings e 7! e^ and h 7! h_ restrict to mutually inverse bijections
between the polyquantoids and the tight selfdual polymatroids.

Proof. Let (N, e) be a polyquantoid. Since e is normalized e^(;) = 0. The submodu-
larity of e is equivalent to that of e^, and implies e(N \ I) 6 e(N \J)+

P
i2J\I e(i) for

I ✓ J ✓ N . By complementarity, e(I) 6 e(J) +
P

i2J\I e(i), and thus e^(I) 6 e^(J).
Therefore, (N, e^) is a polymatroid. Since e is normalized and complementary

e^(N) =
X

j2N

e(j) = e(N \ i) +
X

j2N\i

e(j) = e^(N \ i) , i 2 N ,

thus e^ is tight. For I ✓ N it follows that

(e^)0(I) = e^(N \ I)� e^(N) +
X

i2I

e^(i)

=
h
e(N \ I) +

X

i2N\I

e(i)
i
�

X

i2N

e(i) + 2
X

i2I

e(i) = e^(I) ,

thus e^ is selfdual.
Let (N, h) be a tight selfdual polymatroid. Since h is normalized h_(;) = 0. Since

h is tight and selfdual h(I) = h(N \ I) � h(N) +
P

i2I h(i), I ✓ N . Then, h(N) is
equal to 1

2

P
i2N h(i). It follows that

h_(N \ I) =
h
h(I)� h(N) +

X

i2N\I

h(i)
i
� 1

2

X

i2N\I

h(i) = h_(I) , I ✓ N ,

thus h_ is complementary. The submodularity of h implies that of h_. Therefore,
(N, h_) is a polyquantoid.
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Remark 1. The above proof provides also arguments for the assertion that the map-
pings e 7! e^ and h 7! h_ restrict to mutually inverse bijections between the class of
normalized complementary functions and the class of normalized tight selfdual func-
tions, dropping submodularity in Theorem 1.

Corollary 2. The mappings e 7! e^ and h 7! h_ induce mutually inverse bijections
between the integer polyquantoids and the integer tight selfdual polymatroids whose
values on all singletons are even.

Corollary 3. The mappings e 7! e^ and h 7! h_ induce mutually inverse bijections
between the quantoids and the integer tight selfdual polymatroids whose values on all
singletons equal zero or two.

4 Ideal secret sharing

Given a polymatroid (N, h), an element 0 of N is perfect if h(0 [I)�h(I) equals h(0)
or zero, for all I ✓ N \ 0 . In the latter case, I is authorized for 0 . By submodularity,

h(0 [ I)� h(I) > h(0 [ J)� h(J) , I ✓ J ✓ N \ 0 .

Hence, h(0 [ I)� h(I) = 0 implies 0 > h(0 [ J)� h(J), and h(0 [ J)� h(J) = h(0)
implies h(0 [ I)� h(I) > h(0). The two inequalities are tight as h is a polymatroid.
Thus, the family of authorized sets for 0 is closed to supersets and the family of sets
I ✓ N \ 0 with h(0 [ I)� h(I) equal to h(0) is closed to subsets. This is referred to
as heredity. If 0 is perfect and h(0) > 0 then the two families are disjoint and cover
all subsets of N \ 0 , which is referred to as dichotomy.

In a polymatroid (N, h) with a perfect element 0 2 N , an element i 2 N \ 0 is
essential for 0 if it belongs to some set I that is authorized for 0 and h(0 [ I \ i) �
h(I \ i) = h(0). As a consequence,

h(i) > h(I)� h(I \ i) = h(0 [ I)� h(I \ i) > h(0 [ I \ i)� h(I \ i) = h(0) ,

since h is submodular and nondecreasing. A perfect element 0 in a polymatroid (N, h)
is ideal if each i 2 N \ 0 is essential for 0 and h(i) = h(0).

For example, in any matroid (N, r) each element is perfect. Given 0 2 N , a set
I ✓ N \ 0 is authorized for 0 if and only if a circuit contained in 0 [ I contains 0 . If
r(0) = 0, thus 0 is a loop, then all i 2 N \ 0 are essential for 0 . Hence, 0 is ideal if
only if r(N) = 0. Otherwise, when r(0) = 1, i is essential for 0 if and only if there
exists a circuit of the matroid containing 0 and i. Therefore, 0 is ideal if only if the
matroid is connected. Each element of any connected matroid is ideal.

When restricting to the entropic polymatroids, the above notions correspond to
the information-theoretical secret sharing schemes.

The following assertion claims that existence of an ideal element implies matroidal
structure. It follows from an existing result, see Section 6, but a self-contained proof
is presented for convenience.

Theorem 2. If a polymatroid (N, h) has an ideal element then there exists a matroid
(N, r) and t > 0 such that h = t r.



130 F. MAT

´

U

ˇ

S

Proof. Let 0 2 N be an ideal element of the polymatroid. If h(0) = 0 then h(i) = 0
for all i 2 N whence (N, h) is a matroid and the assertion holds with any t > 0. Let
h(0) > 0.

The idea is to prove that ‘if L ✓ N is nonempty then there exists ` 2 L such that
h(L)� h(L \ `) equals h(0) or zero’. This implication and an induction argument on
the cardinality of L show that all values of h are multiples of h(0). As a consequence,
h equals a matroid rank function multiplied by t = h(0) > 0.

If L ✓ N contains 0 the implication holds with ` = 0 because 0 is perfect.
If L ✓ N \ 0 is authorized, h(0 [L) = h(L), then h(0 [ I) = h(0) + h(I) for some

I ✓ L, e.g. I = ;. Such a set I is chosen to be inclusion maximal. By dichotomy, I  L.
Let ` 2 L\I. Since I is maximal and 0 perfect, `[I is authorized, h(0[`[I) = h(`[I).
This and submodularity imply

h(0 [ L \ `) + h(0 [ ` [ I) > h(0 [ L) + h(0 [ I) = h(0 [ L) + h(0) + h(I) ,

h(`) + h(I) > h(` [ I) = h(0 [ ` [ I) .

As 0 is ideal, h(0) = h(`), and it follows by adding that h(0 [L\ `) > h(0 [L). Thus,
h(0 [ L \ `) = h(0 [ L) = h(L) because h is nondecreasing and L authorized. This
implies that h(L) � h(L \ `) equals h(0 [ L \ `) � h(L \ `) which is zero or h(0) by
perfectness of 0 . Hence, the implication holds for every L authorized.

By dichotomy, it remains to consider a nonempty subset L of N \ 0 such that
h(0 [L) equals h(0) + h(L). Since 0 is ideal, any ` 2 N \ 0 is essential for 0 . Taking
some ` 2 L there exists an authorized set K, h(0 [K) = h(K), such that ` 2 K and
h(0 [K \ `) equals h(0) + h(K \ `). Such a set K is chosen to obtain the cardinality
of K \ L minimal. By dichotomy, K is not contained in L. For every k 2 K \ L the
minimality implies that the set L [K \ k, containing the chosen `, is not authorized.
In turn, since h is submodular, L [K authorized and h nondecreasing

h(k)+h(L[K \k) > h(L[K) = h(0 [L[K) > h(0 [L[K \k) = h(0)+h(L[K \k) .

The above two inequalities are tight because h(0) = h(k), using that 0 is ideal.
Therefore, h(L [K) = h(k) + h(L [K \ k) for k 2 K \ L. By induction,

h(I [ (K \ L)) = h(I) +
X

k2K\L

h(k) , I ✓ L .

This implies that h(L)� h(L \ `) equals h(L[K)� h((L[K) \ `). The previous part
of the proof is applied to the authorized set K in the role of L and the non-authorized
set K \ ` in the role of I to conclude that h(0 [ K \ `) = h(0 [ K). This implies
that h(0 [ (L [K) \ `) equals h(0 [ L [K) which coincides with h(L [K) because
L[K is authorized. Hence, h(L)� h(L \ `) equals h(0 [ (L[K) \ `)� h((L[K) \ `)
which is zero or h(0) by perfectness of 0 . Thus, the implication holds for all nonempty
L ✓ N \ 0 .

Given a polyquantoid (N, e), an element 0 of N is perfect if e(0 [ I)� e(I) equals
e(0) or �e(0), for all I ✓ N \0 . In the latter case, I is authorized for 0 . The definition
of perfectness does not change when requiring that e^(0 [ I)� e^(I) equals e^(0) or
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zero. Thus, 0 is perfect in (N, e) if and only if it is perfect in the polymatroid (N, e^).
Therefore, supersets of authorized sets are authorized and the equality e(0[I)�e(I) =
e(0) with I ✓ N \ 0 is inherited by the subsets of I. The dichotomy takes place
whenever e(0) > 0.

In a polyquantoid (N, e) with a perfect element 0 2 N , an element i 2 N \ 0 is
essential for 0 if there exists a set I which authorized for 0 , contains i and e(0 [ I \
i)� e(I \ i) = e(0). This is equivalent to saying that i 2 N \ 0 is essential for 0 in the
polymatroid (N, e^). Hence, e(i) > e(0) once i is essential for 0 in (N, e). A perfect
element 0 in a polyquantoid (N, e) is ideal if each i 2 N \ 0 is essential for 0 and
e(i) = e(0).

Theorem 3. If a polyquantoid (N, e) has an ideal element then there exists a tight
selfdual matroid (N, r) and t > 0 such that e = t r_.

Proof. If 0 2 N is ideal in the polyquantoid then 0 is ideal in (N, e^) which is a tight
selfdual polymatroid by Theorem 1. Theorem 2 implies that e^ = t r for t > 0 and a
matroid rank function r. Hence, r is tight, selfdual, and e = (e^)_ = (t r)_ = t r_.

As a consequence, if 0 is an ideal element of a polyquantoid then I ✓ N\0 is authorized
for 0 if and only if 0 2 C ✓ 0 [ I for some circuit C of the tight selfdual matroid that
is assigned to the polyquantoid in Theorem 3.

5 Expansions

A set function h with a ground set N expands to a set function h# with a ground set
N# if there exists a mapping � on N ranging in the family of subsets of N# such that
h#(

S
i2I �(i)) equals h(I) for all I ✓ N .

Each integer polymatroid (N, h) can be expanded to a matroid as follows. Let �
map i 2 N to a set �(i) of cardinality h(i) such that these sets are pairwise disjoint.
Writing �(I) =

S
i2I �(i), I ✓ N , the construction

h� : K 7! min
J✓N

[h(J) + |K \ �(J)| ] , K ✓ �(N) ,

defines a matroid (�(N), h�) called a free expansion of (N, h). The value h�(K) de-
pends onK only through the cardinalities of the sets �(i)\K, i 2 N . The minimization
can be equivalently over the sets that satisfy

{i 2 N : �(i) \K 6= ;} ◆ J ◆ {i 2 N : ; 6= �(i) ✓ K}

since h is nondecreasing and submodular. Such sets J are termed to be adapted to K.
Hence, h�(�(I)) equals h(I) for all I ✓ N , using that {i 2 I : �(i) 6= ;} is the unique
adapted set to �(I), and thus h expands to h�.

For any integer polyquantoid (N, e), an analogous construction is introduced as
follows. Let  map i 2 N to a set  (i) of cardinality e(i) such that these sets are
pairwise disjoint,  (I) =

S
i2I  (i), I ✓ N , and

e : K 7! min
J✓N

[ e(J) + |K M  (J)| ] , K ✓  (N) .
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Let ( (N), e ) be called a free expansion of (N, e). The minimization can be equiv-
alently over the sets adapted to K, using that e is normalized, complementary and
submodular. Therefore, e ( (I)) = e(I), I ✓ N , thus e expands to e indeed.

The following assertion shows that from the viewpoint of expansions, quantoids
are for polyquantoids what matroids are to polymatroids.

Theorem 4. Any free expansion of an integer polyquantoid is a quantoid.

Proof. Let (N, e) be an integer polyquantoid and  a mapping as above. By definition,
e (K) = |K| if K ✓  (i) for some i 2 N . In particular, e is normalized and its values
on singletons equal one.

For J ✓ N adapted to K ✓  (N), the set J 0 = {i 2 N \ J :  (i) 6= ;} is adapted
to  (N) \K and

e(J) + |K M  (J)| = e(J 0) +
��( (N) \K) M ( (J 0))

��

using e(J) = e(N \ J) = e(J 0). Moreover, J 7! J 0 is a bijection between the families
of those sets that are adapted to K, resp. to  (N) \ K. It follows by minimization
that e (K) equals e ( (N) \K), thus e is complementary.

To prove that e is submodular, let K,L ✓  (N) and

e (K) = e(I) + |K M  (I)| and e (L) = e(J) + |L M  (J)|

where I is adapted to K and J is adapted to L. As e(I) + e(J) > e(I [ J) + e(I \ J)
and

|K M  (I)|+ |L M  (J)| = |(K [ L) M  (I [ J)|+ |(K \ L) M  (I \ J)|

the submodularity of e follows.

In the remaining part of this section, expansions of polymatroids and polyquantoids
are compared by means of the mappings e 7! e^ and h 7! h_.

Let (N, h) be an integer polymatroid with h(i) even for all i 2 N and (�(N), h�)
its free expansion. Then, each set �(i) can be partitioned into two-element blocks
m = {k, `} having k, ` 2 �(i) di↵erent. Let �⇤(i) denote the set of all blocks in such a
partition, �⇤(I) =

S
i2I �

⇤(i), I ✓ N , and

h�⇤(M) , h�(
S
M) = min

J✓N
[h(J) + |

S
M \ �(J)| ] , M ✓ �⇤(N) .

This defines a polymatroid (�⇤(N), h�⇤) called here 2-factor of (�(N), h�). By defini-
tions, (N, h) expands to (�⇤(N), h�⇤) which in turn expands to (�(N), h�).

The following assertion indicates a correspondence between the free expansions of
polymatroids and polyquantoids.

Lemma 2. If (N, e) is an integer polyquantoid, h = e^, (�(N), h�) a free expansion of
(N, h) and (�⇤(N), h�⇤) its 2-factor then (�⇤(N), (h�⇤)_) is a free expansion of (N, e).
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Proof. For M ✓ �⇤(N)

(h�⇤)_(M) = h�⇤(M)� 1
2

X

m2M

h�⇤({m}) = h�(
S
M)� |M |

using that h�⇤({m}) = h�(m) = 2. Since e(j) = h(j)/2 = |�⇤(j)| for j 2 N , if J ✓ N
then h(J) = e(J) + |�⇤(J)|. Then, by the definition of polymatroid expansions,

(h�⇤)_(M) = min
J✓N

⇥
e(J) + |�⇤(J)|+ |

S
M \ �(J)|

⇤
� |M |

Here, |
S
M\�(J)| = 2|M\�⇤(J)|. Since |�⇤(J)|+|M\�⇤(J)|�|M | equals |�⇤(J)\M | it

follows from definition of polyquantoid expansions that (h�⇤)_ coincides with e�⇤ .

In the above lemma, the integer polymatroid h = e^ is tight and selfdual, by
Theorem 1. The following two lemmas imply that the expansion h� and its 2-factor
h�⇤ have the same properties. Hence, Theorem 4 can be proved alternatively by
combining Theorem 1 with Lemmas 2, 3 and 4. This argument is more involved but
illustrates the interplay between the two kinds of expansions.

Lemma 3. If an integer polymatroid is tight and selfdual then so are its free expan-
sions.

Proof. Let (N, h) be an integer polymatroid and � a mapping with |�(i)| = h(i),
i 2 N , as above. For k 2 �(N) there exists unique i 2 N such that k 2 �(i).
Assuming that h is tight h�(�(N \ i)) = h(N \ i) = h(N) = h�(�(N)). This implies
h�(�(N) \ k) = h�(�(N)) whence h� is tight.

By definition, h�(K) = |K| if K ✓ �(i) for some i 2 N . Hence, assuming that h is
tight and selfdual, for a set J ✓ N adapted to K ✓ �(N),

h(J) + |K \ �(J)| = h(N \ J)� h(N) + |�(J)|+ |K \ �(J)|
= h(N \ J)� h�(�(N)) + |K|+

��(�(N) \K) \ (�(N \ J))
�� .

Minimizing over the adapted sets, it follows that h�(K) > h�(�(N)\K)�h�(�(N))+
|K|. Since J is adapted to K if and only if J 0 = {i 2 N \ J : �(i) 6= ;} is adapted to
�(N) \K this inequality is tight. Thus, h� is selfdual.

Lemma 4. If an integer polymatroid is tight, selfdual and takes even values on all
singletons then all 2-factors of its free expansions are tight and selfdual.

Proof. Let (N, h) satisfy the assumptions. Keeping the notation of the proof of
Lemma 3, for m 2 �⇤(N) there exists unique i 2 N such that m ✓ �(i). Since h
is tight h�(�(N \ i)) equals h�(�(N)). Hence,

h�⇤(�⇤(N) \ {m}) = h�(�(N) \m) > h�(�(N \ i)) = h�(�(N)) = h�⇤(�⇤(N))

In turn, h�⇤ is tight.
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By Lemma 3, (�(N), h�) is selfdual. Hence, for M ✓ �⇤(N)

(h�⇤)0(M) = h�⇤(�⇤(N) \M)� h�⇤(�⇤(N)) +
X

m2M

h�⇤({m})

= h�(�(N) \
S
M)� h�(�(N)) +

X

k2
S
M

h�(k) = h�(
S
M) = h�⇤(M)

using that h�⇤({m}) = 2 = h�(k) + h�(`) where m = {k, `}.

6 Discussion

The polymatroids [10, 5, 14] have been studied for decades and history of the matroid
theory [16] is even longer. The duality defined in Section 2 is in general di↵erent
from known ones, as those in [14, 16, 20], since it conserves values on singletons, see
Lemma 1(ii). For matroids without loops and coloops, the duality coincides with
the usual one [16, 2.1.9]. Functions called above selfdual are in literature also termed
identically selfdual. Tightness is a notion suitable for this work but not used elsewhere.
A matroid is tight if and only if it has no coloop.

The problem which polymatroid is entropic is of interest for information-theoretical
approaches to networks and cryptography, and beyond, for references see e.g. [21, 11,
12]. Its quantum version, asking which polyquantoid is entropic, has also attracted
considerable attention [17, 9, 3].

Ideal secret sharing schemes were investigated first in a combinatorial setting [2].
Theorem 2 is a consequence of [1, Theorem 2], building on [2, Theorem 1]. The
presented proof is based on the approach of [1]. Quantum secret sharing schemes
go back to [4, 7, 6]. Ideal sharing and matroids were discussed recently in [18, 19].
Theorem 3 solves a question related to [18, Fig. 2]. It implies that the access structure
of any ideal quantum secret sharing scheme must be generated by circuits of a tight
selfdual matroid.

Free expansions were proposed independently by several researchers, see [8, 13, 15].
If an entropic integer polymatroid expands to a matroid then the latter is the limit
of entropic polymatroids [12, Theorem 4]. The quantum analogue of this assertion is
open.
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Abstract

We compute the expected value of the Kullback-Leibler divergence to various

fundamental statistical models with respect to canonical priors on the probability

simplex. This yields information about the scaling of model approximation errors

depending on the cardinality of the sample spaces, and it is a useful reference

for more complicated statistical models such as restricted Boltzmann machines.

1 Introduction

Let p, q be probability distributions on a finite set X . The information divergence or
relative entropy or Kullback Leibler divergence

D(pkq) =
X

i2X
p
i

log
p
i

q
i

is a natural measure of dissimilarity between probability distributions that describes
how easy it is to distinguish two distributions p and q by means of statistical experi-
ments. In this paper we use the natural logarithm. The divergence is related to the
log-likelihood: If p is an empirical distribution, summarizing the outcome of n statisti-
cal experiments, then the log-likelihood of a distribution q equals �n(D(pkq)+H(p)).
Hence, finding a maximum likelihood estimator q within some set of probability dis-
tributions M is the same as finding a minimizer of the divergence D(pkq) with q
restricted to M. The value of D(pkq) quantifies how well, or bad, the data can be
described by q (and by M).

Assume that Mtrue is a set of probability distributions for which we do not have a
simple mathematical description. We are interested in finding a model M which does
not necessarily include all distributions from Mtrue, but which approximates them
relatively well. What error magnitude should we accept from a good model?

To assess the expressive power of a model M, we study properties of the function
p 7! D(pkM) = inf

q2M D(pkq). For example, the problem of finding the maximizers
of this function corresponds to a worst case analysis. The problem of maximizing
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the divergence from a statistical model was first posed, with di↵erent motivation,
in [1]. Since then, a lot of progress has been made, notably in the case where M is
an exponential family [5, 4, 8], but also for discrete mixture models and restricted
Boltzmann machines [6].

This worst case bound is not the only aspect that decides whether a given model
is suited, but also the expected performance and expected error are of interest. This
leads to the mathematical problem of computing the expectation value

hD(pkM)i =
Z

�
D(pkM) (p) dp,

where p is drawn from a probability density  on the probability simplex, called
the prior distribution, or prior for short. The correct prior depends on the concrete
problem at hand and is often di�cult to determine. Given certain conditions on the
prior, we also ask, how di↵erent is the worst case from the average case, and how much
can this behavior be influenced by the choice of the model? We focus on the case that
the prior  is the uniform distribution or a Dirichlet distribution. It turns out that
in most cases the worst-case error is unbounded (as the number of elementary events
grows), while the expected error is bounded. Our analysis leads to integrals that have
been considered in a Bayesian framework for function estimation in [10], and we can
take adventage of the tools developed there.

Our first observation is that, if  is the uniform prior, then the expected divergence
from the uniform distribution is a monotone function of the system size N (the number
of elementary events) and converges to the constant 1� � ⇡ 0.4228 ⇡ 0.6099 log(2) as
N ! 1, where � is the Euler-Mascheroni constant. Many natural statistical models
contain the uniform distribution, and the expected divergence from such models is then
bounded by the same constant. In comparison, for randomly chosen distributions p
and q, the expected divergence hD(pkq)i

p,q

equals 1 � 1/N . We show, for a class
of models including the independence models, partition models, mixtures of product
distributions with disjoint supports [6], and decomposable hierarchical models, that
the expected divergence actually has the same limit 1 � �, provided that the models
remain small with respect to N (this is the case in most applications). In contrast,
the maximum of the divergence from these models is at least log(N/(dimM + 1)),
see [9]. For reasonable choices of the parameters, the results for Dirichlet priors are
similar.

In Section 2 we define the models that we are interested in and collect basic prop-
erties of the Dirichlet priors. Section 3 contains analytical results for expectation
values of entropies and divergences from these models. The results are interpreted in
Section 4. Proofs and calculations are deferred to Appendix A.

2 Preliminaries

2.1 Models from statistics and machine learning

We consider random variables on a finite set of elementary events X , |X | = N . The
set of probability distributions on X is the (N � 1)-simplex �

N�1 ⇢ RN . We call any
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subset M ✓ �
N�1 that can be densely parametrized a model. The support sets of a

model M are the support sets supp(p) = {i 2 X | p
i

> 0} of points p = (p
i

)
i2X in M.

The k-mixture of a model M is the union of all convex combinations of any k of
its points, Mk := {

P
m

i=1 �i

p(i) |�
i

� 0,
P

i

�
i

= 1, p(i) 2 M}. The k-mixture with

disjoint supports is the subset of Mk defined by

Mk

0 =

(
kX

i=1

�
i

p(i) 2 Mk

����� supp(p
(i)) \ supp(p(j)) = ; for all i 6= j

)
.

Let % = {A1, . . . , AK

} be a partition of X . The partition model M
%

consists of all
p 2 �

N�1 that satisfy p
i

= p
j

whenever i, j belong to the same block of %. Partition
models are closures of convex exponential families with uniform reference measure.
The closure of an arbitrary convex exponential family is of the form (see [4])

M
%,⌫

=

(
KX

k

�
k

1
Ak⌫

⌫(A
k

)

������k

� 0,
KX

k

�
k

= 1

)
,

where ⌫ : X ! (0,1) is a positive function on X , called reference measure, and
1
A

is the indicator function of A. Note that all measures ⌫ with equal conditional
distributions ⌫(·|A

k

) yield the same model. In fact, M
%,⌫

equals the K-mixture of the
set {⌫(·|A

k

) : k = 1, . . . ,K}.
For a composite system of n variables, X = X1 ⇥ · · · ⇥ X

n

, |X
i

| = N
i

for all i. A
product distribution is a distribution of the form

p(x1, . . . , xn

) = p1(x1) · · · pn(xn

),

where p
i

2 �
Ni�1. The independence model is the set of all product distributions on

a composite system. The support sets of the independence model are the sets of the
form A = Y1 ⇥ · · ·⇥ Y

n

with Y
i

✓ X
i

for each i.
Let S be a simplicial complex on {0, . . . , n}. The hierarchical model MS consists of

all probability distributions that have a factorization of the form p(x) =
Q

S2S �
S

(x),
where �

S

is a positive function that depends only on the S-components of x. The
model MS is called reducible if there exist simplicial subcomplexes S1,S2 ⇢ S such
that S1[S2 = S and S1\S2 is a simplex. In this case, the set (

S
Y2S1

Y)\(
S

Y2S2
Y) is

called a separator. MS is decomposable if it can be iteratively reduced into simplices.
The reduction can be described by a junction tree (see [2]), which is a tree (V,E) with
vertex set the set of facets of S and such that the following holds: If (X ,Y) is an edge,
then X \ Y is a separator, and if this edge is removed from the tree, then the two
resulting trees are junction trees of two subcomplexes S1 and S2 separated by X \Y.
In general the junction tree is not unique, but the multi-set of separators is unique.
The independence model is an example of a decomposable model.

For most models it is not possible to find a closed formula for D(·kM), since there
is no closed formula for arginf

q2M D(pkq). However, for some of the above mentioned
models a closed formula does exist:

The divergence from the independence model is called multi-information and sat-
isfies

MI(X1, . . . , Xn

) = D(pkM1) = �H(X1, . . . , Xn

) +
nX

k=1

H(X
k

). (1)



140 G. MONTÚFAR, J. RAUH

If n = 2 it is also called the mutual information of X1 and X2. The divergence from
M

%,⌫

equals (see [4, eq. (1)])

D(pkM
%,⌫

) = D(pk
KX

k=1

p(A
k

)⌫(x|A
k

)) . (2)

For a decomposable model MS with junction tree (V,E),

D(pkMS) =
X

S2V

H
p

(X
S

)�
X

S2E

H
p

(X
S

)�H(p). (3)

Here, H
p

(X
S

) denotes the joint entropy of the random variables {X
i

}
i2S

under p.

2.2 Dirichlet prior

The Dirichlet distribution (or Dirichlet prior) with concentration parameter ↵ =
(↵1, . . . ,↵N

), ↵
i

> 0 for all i, is the probability distribution on �
N�1 defined by

Dir↵(p) := 1p
N

�(
PN

i=1 ↵i)QN
i=1 �(↵i)

Q
N

i=1 p
↵i�1
i

for p = (p1, . . . , pN ) 2 �
N�1, where � is the

gamma function. We write ↵ =
P

N

i=1 ↵i

.
We will highlight especially the symmetric case (↵1, . . . ,↵N

) = (a, . . . , a), which
assigns no preferences to the elementary events. Observe that Dir(1,...,1) is the uni-
form probability density on �

N�1. Furthermore, it is known that lim
a!0 Dir(a,...,a)

is uniformly concentrated in the point measures (it assigns mass 1/N to p = �
x

,
x 2 X ), while lim

a!1 Dir(a,...,a) is concentrated in the uniform distribution u :=
(1/N, . . . , 1/N). In general, if ↵ 2 �

N�1, then lim
!1 Dir

↵ is the Dirac delta
concentrated on ↵.

The Dirichlet distributions satisfy the following aggregation property: Consider a
partition % = {A1, . . . , AK

} of X = {1, . . . , N}. If p = (p1, . . . , pN ) ⇠ Dir(↵1,...,↵N ),
then (

P
i2A1

p
i

, . . . ,
P

i2AK
p
i

) ⇠ Dir(Pi2A1
↵i,...,

P
i2AK

↵i), see, e.g., [3]. We write

↵% = (↵%

1, . . . ,↵
%

K

), ↵%

k

=
P

i2Ak
↵
i

for the concentration parameter induced by the
partition %. The aggregation property is useful when treating marginals of composite
systems. Given a composite system with X = X1⇥· · ·⇥X

n

, |X | = N , X
k

= {1, . . . , N
k

}
we write ↵k = (↵k

1 , . . . ,↵
k

Nk
), ↵k

j

=
P

x2X : xk=j

↵
x

for the concentration parameter
of the Dirichlet distribution induced on the X

k

-marginal

 
X

x2X : xk=1

p(x), . . . ,
X

x2X : xk=Nk

p(x)

!
.

Note that
P

Nk

j=1 ↵
k

j

= ↵, and moreover, if ↵
x

= 1 for all x 2 X , then ↵k

j

=
N/N

k

for j = 1, . . . , N
k

. For example, if p is drawn uniformly from the simplex of
joint distributions �

N�1, then the sampled marginal probability distribution p(y
k

) =P
x2X : xk=yk

p(x), y
k

2 X
k

is Dirichlet distributed in �
Nk�1 with concentration pa-

rameter ↵k = (N/N
k

, . . . , N/N
k

).
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3 Expected entropies and divergences

For any k 2 N let h(k) = 1 + 1
2 + · · · + 1

k

be the kth harmonic number. It is known
that for large k,

h(k) = log(k) + � +O(
1

k
),

where � ⇡ 0.57721 is the Euler-Mascheroni constant. Moreover, h(k)�log(k) is strictly
positive and decreases monotonically. We also need the natural analytic extension of
h to the non-negative reals given by h(z) = @

z

log(�(z+1))+�, where � is the gamma
function.

The following theorems present formulas for expectation values of divergences from
models as well as asymptotic results. The results are based on explicit solutions of the
integrals, as done by [10]. The proofs are contained in Appendix A.

Theorem 1. If p ⇠ Dir↵, then:

• hH(p)i = h(↵)�
P

N

i=1
↵i
↵

h(↵
i

)

• hD(pku)i = log(N)� h(↵) +
P

N

i=1
↵i
↵

h(↵
i

)

In the symmetric case (↵1, . . . ,↵N

) = (a, . . . , a),

• hH(p)i = h(Na)� h(a)

=

8
>>><

>>>:

log(Na) + � � h(a) +O(1/Na) for large N and const. a

log(N) +O(1/a) for large a and arb. N

O(aN) as a ! 0 with bounded N

h(c) +O(a) as a ! 0 with aN = c

• hD(pku)i = log(N)� h(aN) + h(a)

=

8
>>><

>>>:

h(a)� log(a)� � +O(1/Na) for large N and const. a

O(1/a) for large a and arb. N

log(N) +O(aN) as a ! 0 with bounded N

log(N)� h(c) +O(a) as a ! 0 with aN = c.

The maximum of the (Shannon) entropy H(p) = �
P

i

p
i

log p
i

on the probability
simplex�

N�1 is attained at the uniform distribution u, which satisfiesH(u) = log(N).
For large N or a, the average entropy is close to the maximum value. It follows that in
these cases the expected divergence from the uniform distribution u remains bounded.
The fact that the expected entropy is close to the maximal entropy makes it di�cult
to estimate the entropy. See [7] for a discussion and possible solutions.

Theorem 2.

• For any q 2 �
N�1, when p ⇠ Dir↵, then

hD(pkq)i =
NX

i=1

↵
i

↵
(h(↵

i

)� log(q
i

))� h(↵) .
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If ↵ = (a, . . . , a), then this becomes

hD(pkq)i = log(N)� h(aN) + h(a) +D(qku) .

When p ⇠ Dir↵ and q ⇠ Dir↵̃, then

• h
P

i2X p
i

log(q
i

)i =
P

N

i=1
↵i
↵

h(↵̃
i

� 1)� h(↵̃� 1),

• hD(pkq)i = �
P

N

i=1
↵i
↵

(h(↵̃
i

� 1)� h(↵
i

)) + h(↵̃� 1)� h(↵).

If ↵ = ↵̃, then hD(pkq)i = N�1
↵

.

• For any q 2 �
N�1, when p is drawn uniformly from �

N�1, then

hD(pkq)i = �
NX

i=1

1

N
log(q

i

)� h(N) + 1 = D(ukq) + 1� � +O(1/N) .

The divergence is unbounded in �
N�1 ⇥ �

N�1, since D(pkq) = +1 if p is not
absolutely continuous with respect to q. Nevertheless, if p, q ⇠ Dir↵, then in the limit
N ! 1 the expected divergence hD(pkq)i remains bounded, provided 1

N

P
N

i=1 ↵i

=
↵/N is bounded from below by a positive constant.

Consider a sequence of distributions q
N

2 �
N�1, N 2 N. As N ! 1 the expected

divergence hD(·kq
N

)i with respect to the uniform prior is bounded from above by
1 � � + ", " > 0 if and only if lim sup

N!1 D(ukq
N

)  ". If q
x

� 1
N

e�" for all
x 2 X , then D(ukq)  ". Therefore, the expected divergence hD(·kq

N

)i is unbounded
only if the sequence q

N

accumulates at the boundary of the probability simplex, and
lim

N!1hD(pkq
N

)i  1� � + " whenever q
N

is in the subsimplex conv{(1� e�")�
x

+
e�"u}

x2X . The relative Lebesgue volume of this subsimplex in �
N�1 is (1�e�")N�1.

Theorem 3. Consider a composite system of n random variables X1, . . . , Xn

with

joint probability distribution p. If p ⇠ Dir↵, then

• hH(X
k

)i = h(↵)�
P

Nk

j=1
↵

k
j

↵

h(↵k

j

),

• hMI(X1, . . . , Xn

)i = (n� 1)h(↵) +
NP
i=1

↵i
↵

h(↵
i

)�
nP

k=1

NkP
j=1

↵

k
j

↵

h(↵k

j

).

If (↵1, . . . ,↵N

) = (a, . . . , a) (symmetric Dirichlet),

• hH(X
k

)i = h(Na)� h( N

Nk
a),

• hMI(X1, . . . , Xn

)i = (n� 1)h(Na) + h(a)�
P

n

k=1 h(
N

Nk
a).

If, moreover, Na/N
k

is large for all k (this happens, for example, when a remains

bounded from below by some " > 0 and (i) all N
k

become large, or (ii) all N
k

are

bounded and n becomes large), then:

• hH(X
k

)i = log(N
k

) +O(N
k

/Na),
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• hMI(X1, . . . , Xn

)i = h(a)� log(a)� � +O(nmax
k

N
k

/Na).

If Na/N
k

is large for all k, then the expected entropy of a subsystem is also close
to its maximum, and hence the expected multi-information is bounded. This follows
also from the fact that the independence model contains the uniform distribution, and
hence D(pkM1)  D(pku).

Theorem 4. Let % = {A1, . . . , AK

} be a partition of X into sets of cardinalities

|A
k

| = L
k

, and let ⌫ be a reference measure on X . If p ⇠ Dir↵, then

hD(pkM
%,⌫

)i =
NX

i=1

↵
i

↵
(h(↵

i

)� log(⌫
i

))�
KX

k=1

↵%

k

↵
(h(↵%

k

)� log(⌫(A
k

))),

where ↵%

k

=
P

i2Ak
↵
i

. If ↵ = (a, . . . , a), and (wlog) ⌫(A
k

) = L
k

/N ,

hD(pkM
%,⌫

)i = h(a)�
KX

k=1

L
k

N
(h(L

k

a)� log(L
k

)) +D(uk⌫),

If furthermore N � K, then

hD(pkM
%,⌫

)i = h(a)� log(a)� � +D(uk⌫) +O(1/N).

Partition models (with ⌫ = u) also contain the uniform distribution, and therefore
the expected divergence is again bounded. In contrast, the maximal divergence is
max

p2�N�1 D(pkM
%

) = max
k

log(N
k

). The result for mixtures of product distribu-
tions of disjoint supports is similar:

Theorem 5. Let X = X1 ⇥ · · · ⇥ X
n

be the joint state space of n variables, |X | =
N , |X

k

| = N
k

. Let % = {A1, . . . , AK

} be a partition of X into support sets of the

independence model of cardinalities |A
k

| = L
k

, and let MK

1,% be the model containing

all mixtures of K product distributions p(1), . . . , p(K)
with supp(p(k)) ✓ A

k

.

• If p ⇠ Dir(↵1,...,↵N ), then the expected divergence to MK

1,% is

hD(pkMK

1,%)i =
NX

i=1

↵
i

↵
(h(↵

i

)� h(↵)) +
KX

k=1

(|G
k

|� 1)
↵%

k

↵
(h(↵%

k

)� h(↵))

�
KX

k=1

X

j2Gk

X

xj2Xj,k

↵k,xj

↵
(h(↵k,xj )� h(↵)),

where ↵%

k

=
P

x2Ak
↵
x

, ↵k,xj =
P

y2Ak : yj=xj
↵
y

, and G
k

⇢ [n] is the set of

variables that take more than one value in the block A
k

.

• Assume that the system is homogeneous |X
i

| = N1 for all i and that, for each

k, A
k

is a cylinder set of cardinality |A
k

| = Nmk
1 , where m

k

= |G
k

|. If

(↵1, . . . ,↵N

) = (a, . . . , a), then

hD(pkMK

1,%)i = h(a) +
KX

k=1

Nmk�n

1 ((m
k

� 1)h(Nmk
1 a)�m

k

h(Nmk�1
1 a)).
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• If

N

mk�1
1 a

mk
is large for all k, then

hD(pkMK

1,%)i = h(a)� log(a)� � +O
�
max

k

m
k

Nmk�1
1 a

�
.

The k-mixture of binary product distributions with disjoint supports is contained
in the restricted Boltzmann machine model with k � 1 hidden nodes, see [6]. Hence
Theorem 5 gives bounds for the expected divergence to these models.

Theorem 6. For a decomposable model MS with junction tree (V,E), if p ⇠ Dir(↵1,...,↵N ),

then

hD(pkMS)i = �
X

S2V

X

j2XS

↵S

j

↵
h(↵S

j

) +
X

S2E

X

j2XS

↵S

j

↵
h(↵S

j

)

+ (|V |� |E|� 1)h(↵) +
NX

i=1

↵
i

↵
h(↵

i

),

where ↵S

j

=
P

x : xS=j

↵
x

for j 2 X
S

. If p is drawn uniformly at random, then

hD(pkMS)i =
X

S2V

(h(N)� h(N/N
S

))�
X

S2E

(h(N)� h(N/N
S

))� h(N) + 1.

If N/N
S

is large for all S 2 V [ E, then

hD(pkMS)i = 1� � +O
�
max

k

m
k

Nmk�1
1 a

�
.

4 Discussion

In the previous section we have shown that the values of hD(pkM)i are very similar
for di↵erent models M in the limit of large N , provided the Dirichlet parameters ↵

i

remain bounded and the model remains “small.” In particular, if ↵
i

= 1 for all i, then
hD(pkM)i ⇡ 1� � holds for large N and M = {u}, for the independence model, for
decomposable models, for partition models and for mixtures of product distributions
on disjoint supports (for reasonable values of the model parameters N

k

and L
k

). Some
of these models are contained in each other, but nevertheless, the expected divergences
do not di↵er too much. The general phenomenon seems to be the following:

• For a low-dimensional model M ⇢ �
N�1 and large N , the expected divergence

is hD(pkM)i ⇡ 1� �, when p is uniformly distributed on �
N�1.

Of course, this is not a mathematical statement, because it is very easy to con-
struct counter-examples: Using space-filling curves, it is possible to construct one-
dimensional models M with an arbitrary low value of hD(pkM)i (for arbitrary N).
However, we expect that the statement is true for most models that appear in prac-
tice. In particular, we conjecture that the statement is true for restricted Boltzmann
machines.
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D(pkM%) D(pkM%)
Q

p

a�1
i

D(pk
S

% M%) D(pk
S

% M%)
Q

p

a�1
i

Figure 1: From left to right: Divergence to a partition model with two blocks on
X = {1, 2, 3}. Same, multiplied by a symmetric Dirichlet density with parameter
a = 5. Divergence to the union of the three partition models with two blocks on
X = {1, 2, 3}. Same, multiplied by the symmetric Dirichlet density with a = 5. The
shading is scaled on each image individually.

In Theorem 4, if ↵ = (a, . . . , a), then the expected divergence from M
%,⌫

is min-
imal, if and only if ⌫ = u. In this case M

%,⌫

is a partition model. We conjecture
that partition models are optimal among all (closures of) exponential families in the
following sense:

• For any exponential family E there is a partition model M of the same dimension
such that hD(pkE)i � hD(pkM)i.

The statement is, of course, true for zero-dimensional exponential families, i.e., mod-
els that consist of a single distribution. The conjecture is related to the following
conjecture from [9]:

• For any exponential family E there is a partition model M of the same dimension
such that max

p2�N�1 D(pkE) � max
p2�N�1 D(pkM).

Our findings may be biased by the fact that all the models treated in Section 3
are examples of exponential families. As a slight generalization we did computer
experiments with a family of models which are not exponential families, but unions of
exponential families.

Let ⌥ be a family of partitions, and let M⌥ =
S

%2⌥ M
%

be the union of the
corresponding partition models. Our interest in these models comes from the fact
that such models are contained in more di�cult models with hidden variables, like
restricted Boltzmann machines and deep belief networks. Figure 1 compares a single
partition model on three states with the union of all partition models for bipartitions.

For a given N and 0  k  N/2 let ⌥
k

be the set of all partitions of {1, . . . , N}
into two blocks of cardinalities k and N � k. For di↵erent values of a and N we
computed D(pkM⌥1) for 10 000 distributions sampled from Dir(a,...,a), D(pkM⌥2) for
20 000 distributions sampled from Dir(a,...,a), and D(pkM⌥N/2

) for 20 000 distributions
sampled from the uniform prior. The results are shown in Figure 2.

In the first two cases the expected divergence seems to tend to the asymptotic value
of hD(pku)i. Observe that hD(pkM⌥1)i � hD(pkM⌥2)i, unless N = 4. Intuitively
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Figure 2: Expected divergence (numerically) from various unions of bipartition models
with respect to Dir(a,...,a), for di↵erent system sizes N and values of the concentration
parameter a. Left: Union of all bipartition models with blocks of cardinalities 1 and
(N � 1). The y-ticks are located at h(a) � log(a) � �, which are the limits of the
expected divergence from single bipartition models, see Theorem 4. Middle: Union of
all bipartition models with blocks of cardinalities 2 and (N � 2). The peak at N = 4
is caused by the fact that there are only 3 di↵erent partitions when N = 4, instead
of

�
N

2

�
. The dashed plot indicates corresponding results from the left figure. Right:

Comparison of the expected divergence from the two previous models and the union
of all

�
N

N/2

�
/2 bipartition models with two blocks of cardinalities N/2, for a = 1 and

even N .

this makes sense for two reasons: First, for %1 2 ⌥1 and %2 2 ⌥2, using Theorem 4 one
can show that hD(pkM

%1)i � hD(pkM
%2)i; and second, the cardinality of ⌥2 is much

larger than the cardinality of ⌥1 if N � 4. For small values of N this intuition may
not always be correct. For example, for N = 8, the expected divergence from M⌥N/2

is larger than the one from M⌥2 , although in this case |⌥
N/2| = 35 and |⌥2| = 28,

see Figure 2 right.
For N = 22 we computed D(pkM⌥N/2

) for 500 uniformly sampled distributions
(in this case |⌥

N/2| = 352 716), and found hD(pkM⌥N/2
)i ⇡ 0.1442 (with variance

0.0032), which is well below the corresponding expectation values for M⌥1 and M⌥2 .
We expect that, for large N , it is possible to make hD(pkM⌥k)i much smaller than
hD(pku)i by choosing k ⇡ N/2. In this case, the model M⌥k has (Hausdor↵) dimen-
sion only one, but it is a union of exponentially many one-dimensional exponential
families.

A Computations and proofs

The analytic formulas in Theorem 1 are [10, Theorem 7]. The asymptotic expansions
are direct.

The proof of Theorem 2 makes use of the following Lemma, see [10, Theorem 3]:

Lemma 7. Let {A1, . . . , AK

} be a partition of X = {1, . . . , N}, let ↵1, . . . ,↵N

be
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positive reals, and let ↵k =
P

i2Ak
↵
i

for k = 1, . . . ,K. Then

Z

�N�1

� X

i2Ak

p
i

�
log

� X

i2Ak

p
i

� NY

i=1

p↵i�1
i

dp =

Z

�K�1

p⇤
k

log(p⇤
k

)
KY

k

0=1

(p⇤
k

0)↵
k0

�1 dp⇤

=
↵k

Q
K

k

0=1 �(↵
k

0
)

�(↵+ 1)
(h(↵k)� h(↵)) .

Proof of Theorem 2. The first statement follows from
Z

�N�1

log(q
i

)p
i

Y

i

pni
i

dp
.Z

�N�1

Y

i

pni
i

dp = log(q
i

)
(n

i

+ 1)

(N + n)

and D(pkq) = �H(p)�
P

i

p
i

log(q
i

). By Lemma 7,
Z

�N�1

log(q
i

)
Y

i

qni
i

dq
.Z

�N�1

Y

i

qni
i

dq = h(n
i

)� h(N + n� 1) ,

and the remaining statements follow.

Theorem 3 is a corollary to Theorem 1, the aggregation property of the Dirichlet
priors and the formula (1) for the multi-information. Theorem 4 follows from (2), and
Theorem 6 follows from (3). Similarly, Theorem 5 follows from the equality

D(pkM0) =
KX

i=1

X

x2Ai

p(x) log
p(x)p(A

i

)n�1

Q
n

j=1(
P

y2Ai:yj=xj
p(y))

,

which can be derived as follows: The unique solution q 2 arginf
q

02M

K
1,%

D(pkq0) satisfies
p(A

i

) = q(A
i

), and q(·|A
i

) 2 arginf
q

02M1
D(p(·kA

i

)kq0).
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Abstract

By postulating the local Markov condition, Bayesian networks can be used
to describe conditional indepencence among di↵erent parts of a system. If we
observe only a subset of variables Y1, Y2, . . . , Yk of a system with an unknown
underlying Bayesian network, the existence of a common ancestor for more than
c nodes out of Y1, Y2 . . . , Yk may be inferred if a particular information theo-
retic quantity Ic(Y1, . . . , Yk) is positive, as shown by Steudel and Ay (2010). We
extend this common cause principle so that it allows a more fine grained dis-
crimination between di↵erent causal hypotheses. Our main result is an upper
bound on Ic for a given causal structure and the proof that this bound is tight
and achieved.

1 Introduction

Finding and describing causal relations between parts of a system is a fundamental
problem in many scientific disciplines. Examples for this task are
(i) in biology the study of genetic data from pedigrees, where the whole system is

the considered family, the parts are the individuals and the causal relations are
given by the inheritance structure [4] and

(ii) in the social sciences the analysis of a group of people as the system, with parts of
the system being the members of the group and the “causal relations” describing
the interactions amongst them.

To deal with such relationships, di↵erent types of probabilistic graphical models have
been introduced [3], [9]. They describe a system as a graph, whose vertices are the
parts of the system. The edges correspond to causal relations between these parts.
Such models allow an e�cient and natural representation of knowledge and are easy



150 P. MORITZ, J. REICHARDT, N. AY

to visualize and manipulate. Bayesian networks use directed graphs and have proven
especially valuable, their directed nature makes them particularly suited for the de-
scription of causes and e↵ects [6].

Ideally, a scientist will construct a causal model of a system by systematic interven-
tion and subsequent observation of the parts. Often, this is not possible and causality
has to be determined by means of observation alone, using methods of statistical in-
ference. Statistical dependencies can be interpreted as causal relations if one employs
additional postulates such as the causal Markov condition [6]. Once this link between
statistical dependence and causal relation is established, tools from information the-
ory prove most valuable for the quantification of correlation and thus causal relations
between variables [1].

A system can be described by a Bayesian network that encodes the relations be-
tween parts of the system. These parts are modeled by random variables X1, . . . , Xn.
Assume that a subset Y1, . . . , Yk of the X1, . . . , Xn is observed and their correlation,
measured by a certain information theoretic quantity, exceeds a bound that depends
on a number c. Then, as shown in [8], in any Bayesian network containing Y1, . . . , Yk,
there exists a common ancestor for a subset of c variables out of the Y1, . . . , Yk. We
build on this result and present a new common cause principle that takes the struc-
ture of the Bayesian network into account and allows to discriminate between di↵erent
causal hypotheses.

The paper is organized as follows: In section 2 we formulate a mathematical model
for the kind of systems that we study. In section 3 we summarize work that has already
been done on the inference of common ancestors. Section 4 is the main part of the
paper and describes our new common cause principle. In section 5 we then conclude
what has been achieved.

2 Describing systems with Bayesian networks

In this section, we define in a rigorous way our notion of a system that was described
in the introduction.

Directed acyclic graphs. A directed acyclic graph (DAG) is a tuple G = (V,E)
consisting of nodes V and edges E ✓ V ⇥V that have to fullfil the additional constraint
of acylicity, specified below. An edge (u, v) 2 E is interpreted as a directed connection
between the nodes u and v, we write u! v in this case. A directed path between two
nodes v1 and vn is a sequence v1, v2, . . . , vn of distinct nodes vj with vj ! vj+1 for
1  j < n. We write v1  vn if there exists a directed path from v1 to vn. We also
admit paths of length 0, so v  v for all v 2 V . An undirected path between v1 and
vn is a sequence v1, v2, . . . , vn of distinct nodes vj with vj ! vj+1 or vj  vj+1 for
1  j < n. We call G acyclic, if there is no sequence v ! · · ·! v for any node v 2 V .

The set of parents of a given node v 2 V , denoted by pa(v) = {u 2 V : (u, v) 2 E},
contains those nodes that point directly towards v. The nodes that have no parents
are collected in the set of root nodes roots(G) = {v 2 G : pa(v) = ?} of G. The
descendants de(u) of a node u 2 V are the nodes v 2 V such that u  v, thus
every v 2 V is a descendant of itself. The non-descendants of u 2 V are given by
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nd(u) = V \de(u) and the ancestral set an(v) consists of all nodes u 2 V with u v.1

The condition of acyclicity means that de(v) \ an(v) = ? for every v 2 V , which is a
natural postulate for a causal model. These concepts are illustrated in Fig. 1.

0

1

2

3

4

5
6

7

Fig. 1. For this example graph G we have roots(G) = {0}, the only root is the square node.
Consider node 5, its parents are pa(5) = {2, 3}, these are dotted. The set of descendants is
de(5) = {4, 5, 6, 7}, which are dashed.

Bayesian networks. Let G = (V,E) be a DAG and {Xv : v 2 V } a set of random
variables, one variable for each node of G (we will sometimes identify nodes with their
random variables). How can we encode the conditional independence structure of the
joint probability distribution that underlies the random variables {Xv : v 2 V } in the
graph G? In the kind of directed models that we study, this can be done as follows.

We call X = (Xv : v 2 V ) a Bayesian network with respect to G, if the joint
probability function p satisfies

p(x) =
Y

v2V

p(xv | xpa(v)). (1)

Here, for A ✓ V , the tuple xA is defined as xA = (xa : a 2 A). This is the so
called factorization definition of the Bayesian network and is best interpreted using
the equivalent [3] local Markov condition. The local Markov condition states that each
variable v 2 V is conditionally independent of its non-descendants nd(v) given its
parent variables. We write this symbolically as

Xv ?? Xnd(v) | Xpa(v) for all v 2 V . (2)

This means p(xv, xnd(v) | xpa(v)) = p(xv | xpa(v)) · p(xnd(v) | xpa(v)).
Another but equivalent [3] version of this definition is the global Markov condition

which tells us for three disjoint sets of nodes A, B and C under which condition XA

is independent of XB given XC , written as XA ?? XB | XC .
To formulate the global Markov condition, we first of all introduce the concept of

d-seperation [6]. An undirected path � in G is d-separated by a set of nodes C if and
only if

1Note that v 2 an(v), we do not follow the standard definition of the set of ancestors from [3]
here, but rather stick to the definition of an ancestral set given in [1], because the latter definition
is more natural in the context of common ancestors that we will study later. The reason for this is
that the theorem from [8] allows a common ancestor of nodes v1, . . . , vn to be one of the v1, . . . , vn
and intuitively one would expect the common ancestor of v1, . . . , vn to be in the set

T
1jn an(vj).
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• � contains a chain i ! m ! j or a fork i  m ! j such that the middle node
m is in C, or

• � contains a collider i ! m  j such that the middle node m is not in C and
such that no descendant of m is in C.

The set C does d-separate the sets A andB if and only if every undirected path between
a node in A and a node in B is d-separated by C. The global Markov condition then
states that XA ?? XB | XC whenever C d-separates A and B.

Partially observed systems. A system is a fixed Bayesian network G of binary
random variables X1, . . . , Xn. A subset Y1, . . . , Yk of these variables is observed, that
means the probability distribution of the Y1, . . . , Yk is the probability distribution of
the X1, . . . , Xn with the unobserved variables marginalized out, so

p(Y1, . . . , Yk) =
X

A

p(X1, . . . , Xn) with A = {X1, . . . , Xn} \ {Y1, . . . , Yk}.

These definitions are illustrated in Fig. 2. A common cause or common ancestor of
the observed nodes Y1, . . . , Yk is then a node Xj with

Xj 2
\

1jk

an(Yj).

In our example of Fig. 2, X2 would be a common ancestor of X2, X4 and X6.

X1

X2

X3

X4

X5
X6

Fig. 2. Example of a system with n = 6 nodes, of which the k = 3 nodes Y1 = X2, Y2 = X4

and Y3 = X6 are observed.

3 Inference of common ancestors

In this section we briefly summarize how information theory can be used to get clues
about the structure of a Bayesian network underlying a given system. The advantage of
these methods is that they do not need intervention into the system but can be applied
to observation data alone. First we discuss Reichenbach’s principle of common cause

which is the most elementary common cause principle.
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Reichenbach’s principle of common cause. Reichenbach’s principle of common
cause is the simplest example for a device that allows us to study the causal structure
of a system by observation alone. Reichenbach formulates it in [7] as “If an improb-

able coincidence has occured, there must exist a common cause”. As an example, he
considers a fire started by lightning and spread by the wind. This coincidence can be
explained by a common cause, the thunderstorm that produced the lightning and the
wind.

A more formal version of the principle states that if we observe that two jointly
distributed random variables X and Y are dependent, then one of the following must
be true: X causes Y or Y causes X or there is a common cause of X and Y . In our
framework, we can understand Reichenbach’s principle in the following way, as noted
by [8]. If X and Y are part of a larger system, modeled by a Bayesian network with
underlying graph G and they are stochastically dependent, then their ancestral sets
must be overlapping, otherwise they would be d-separated by the empty set and thus
be independent.

The extended common cause principle. We will now turn to a quantitative
extension of the common cause principle, initially studied in [1] and later extended in
[8]. Assume that we have a system with variables X1, . . . , Xn which form a Bayesian
network. Out of these variables, a subset Y1, . . . , Yk is observed. On these, we define
the generalized mutual information of degree c as

Ic(Y1, . . . , Yk) =
1

c

kX

j=1

H(Yj)�H(Y1, . . . , Yk). (3)

In the case c = 1, this is the mutual information from [2]. The quantity Ic is a
measure of correlation of the Y1, . . . , Yk and allows the following quantitative extension
of Reichenbach’s principle of common cause, proven in [8].

Theorem 1 (Extended Common Cause Principle). Let X1, . . . , Xn be a system with

observed variables Y1, . . . , Yk. If Ic(Y1, . . . , Yk) > 0 then in any system containing the

Y1, . . . , Yk, there exists a common ancestor of strictly more than c variables out of the

Y1, . . . , Yk.

The importance of this extended common cause principle stems from the fact that it
allows the discrimination between di↵erent causal models for a system by observation
alone, even where Reichenbach’s common cause principle would fail. In Fig. 3 we
show two systems from [8] where this is the case. The Reichenbach principle cannot
distinguish between (a) and (b), because in both models the observed variables X1,
X2 and X3 are not necessarily independent. If we have however I2(X1, X2, X3) > 0,
then model (b) can be refused on grounds of the extended common cause principle,
because it does not contain a common ancestor of 3 nodes.

4 A new common cause principle

In this section, we describe a new common cause principle that is sometimes even
stronger than the one from [8]. This principle works by exploiting the maximum
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0

1 2

3

(a) one common ancestor
of three variables

6

14

2

5 3

(b) three common ancestors
of two varibles each

Fig. 3. Two possible Bayesian networks that could underly the observed variables X1,
X2 and X3 (observed variables are drawn thick, unobserved ones thin). The Reichenbach
principle of common cause cannot discriminate these.

of the generalized mutual information (3) over all probability distributions of the
X1, . . . , Xn compatible with a given directed graph G is, where the subset Y1, . . . , Yk

of the X1, . . . , Xn is observed.
Before we state the result, we want to illuminate the problem with two example

networks, see Fig 4. We generated a symbolic expression for I2 and used a computer
algebra system to maximize I2. There are more than ten variables involved, so the
optimization task is not trivial and sometimes we ran into local maxima. For large
graphs, this procedure is not tractable, so a better understanding of the problem is
crucial. For the example in Fig. 4 (a), the maximum I2 = (3/2) · log 2 was achieved
with

P (X0 = 1) = 1/2, X1 = X2 = X3 = X4 = X0,

where the last equality means that the conditional probabilities are chosen in such a
way that X1 = X2 = X3 = X4 = X0. This can be achieved by setting p(xj = 1 | x0 =
1) = 1, p(xj = 1 | x0 = 0) = 0 for 1  j  3 and p(x4 = 1 | x1 = x2 = x3 = 1) = 1,
p(x4 = 1 | x1 = x2 = x3 = 0) = 0. For the example in Fig. 4 (b), we obtain I2 = log 2
with

P (X0 = 1) = 1/2, P (X1 = 1) = 0, X2 = X3 = X4 = X0.

Both examples refer to the fully observed case. We will now explain these results in
the general case.

In the following theorem and its proof, the set of descendents of a random variable
N (which we identify with the corresponding node in the graph) will again play an
important role. The important concepts that are needed in the following theorem are
summarized in Fig. 5.

We choose the indices in such a way that X1, . . . , Xs are the roots. For 1  j  s,
the set Aj consists of all the observed nodes from de(Xj). These can be overlapping.
Now the first s indices are rearranged such that the sets Aj are ordered in the following
way. The set A1 is the one with most elements in it. The set A2 is chosen such that
|A2 \A1| is maximal, the set A3 such that A3 \ (A1 [A2) contains most elements, and
so on. For a given c, we define the redundancy r of the graph as the number of such
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0

1

2

3

4

(a) One root node

0 1

2 3 4

(b) Two root nodes

Fig. 4. Example graphs for the maximization of Ic

sets with |Aj \ (A1 [ · · · [Aj�1)| > c, so

r = |{Aj : |Aj \ (A1 [ · · · [Aj�1)| > c}|. (4)

In other words, Ar \ (A1 [ · · · [ Ar�1) is the first set in the above order for which
|Aj \ (A1 [ · · · [Aj�1)|  c. We call

a = |A1 [A2 [ · · · [Ar| (5)

the number of essential nodes, that is the number of observed nodes in the sets Aj

with |Aj \ (A1 [ · · · [Aj�1)| > c.
The construction of the Aj sounds a bit technical, but it is easily done for a given

graph. In Fig. 5, one possible choice would for example be A1 = {X1, X6, X9}, A2 =
{X9, X10, X12}, A3 = {X4} and A4 = ?, thus for c = 2 we have r = 1. In Fig. 6 we
could choose A1 = {X7, X8, X9, X16}, A2\A1 = {X3, X13} and A3\(A1[A2) = {X1},
thus for c = 1 we have r = 2.

Before we can determine the maximum of (3), we need the following lemma, which
gives a non-trivial bound on Ic for random variables without constraints. It is a
small but neccessary (for the following theorem) improvement over the trivial bound
Ic(X1, . . . , Xn)  (n/c) · log 2. The special case n = 2 and c = 1 is the well known
H(X) +H(Y )�H(X,Y ) = H(X)�H(X | Y )  log 2.

Lemma 1. For arbitrary binary random variables X1, . . . , Xn we have the bound

Ic(X1, . . . , Xn) 
⇣n
c
� 1

⌘
· log 2 if n � c. (6)

Proof. Define h(p) = �p log(p)� (1� p) log(1� p) and let q be the largest probability
of p↵ = P (X1 = ↵1, . . . , Xn = ↵n) over all binary multi-indices ↵. For every marginal
pj with 1  j  n we have then pj � q or 1 � pj � q, so h(pj)  h(q) because of
symmetry and shape of h, thus we get

nX

j=1

H(Xj) =
nX

j=1

h(pj)  nh(q).

For the second part of (6), we have the bound

H(X1, . . . , Xn) = �
X

↵

p↵ log p↵ = �q log q �
X

rest ↵

p↵ log p↵ � h(q).



156 P. MORITZ, J. REICHARDT, N. AY
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Fig. 5. The nodes X1, X2, X3 and X4 are the roots, the descendants of X1 is the shaded
circle on the left, the descendants of X2 the right one. The node X9 is descendant of both
X1 and X2. The observed nodes Y1, . . . , Yk are green, the unobserved ones red.
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Fig. 6. The set A1 contains the largest number of observed variables, that is 4. Then A2 \A1

contains only 2 variables and A3 \ (A1 [A2) only one. The ordering is not unique, we could
also interchange the names of A2 and A3.
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The last step can be justified in the following way. We build a new probability distri-
bution out of the other p↵. By the non-negativity of entropy

0  �
X

rest ↵

p↵
1� q

log
p↵

1� q
= � 1

1� q

X

rest ↵

p↵ log p↵ + log(1� q).

Altogether the left hand side of (6) is  (n/c� 1) · h(q), and h achieves its maximum
for q = 1/2.

We now have prepared all the neccessary tools for our main theorem, which relates
the structure of G with the maximum of Ic.

Theorem 2 (New Common Cause Principle). Let S be the set of all probability dis-

tributions on binary random variables X1, . . . , Xn that factorize according to a fixed

acyclic graph G, so

S = {p : {0, 1}n ! [0, 1] | p(x1, . . . , xn) =
Q

1jn p(xj | xpa(Xj))}.

(i) For any subset Y1, . . . , Yk of observed nodes we have

sup
p2S

Ic(Y1, . . . , Yk) =
⇣a
c
� r

⌘
· log 2 (7)

where a and r are defined as in (4) and (5).
(ii) Certain deterministic networks, with H(Xj | pa(Xj)) = 0 for all non-root nodes

Xj and a specific probability distribution of the root nodes, attain this supremum.

Proof. First of all construct the probability distribution directly to show that (7) can
be achieved. Then show that we cannot do better.

For the first part, set P (Xj = 0) = 1/2 for 1  j  r, where r is the redundancy,
and for all non-roots from the region of influence of these Xj choose the probability
distribution such that they copy the value of Xj deterministically (for overlapping
regions of influence choose one root from which the value is copied at random). For
all the remaining nodes set P (Xj = 0 | pa(Xj)) = 1. The joint probability dis-
tribution P (X1, . . . , Xn) consists of 2r equiprobable events, these are the events for
(X1, . . . , Xr) 2 {0, 1}r. Because in each Aj for 1  j  r there is at least one ob-
served node, the marginalized distribution P (Y1, . . . , Yk) also consists of 2r equiprob-
able events, so we have

H(Y1, . . . , Yk) = �
2rX

j=1

1

2r
log

1

2r
= r log 2.

On the other hand, H(X) = log 2 for X 2 de(X1)[ · · ·[ de(Xr), all other nodes have
zero entropy by construction. So we conclude

kX

j=1

H(Yj) = a · log 2,



A new common cause principle for Bayesian networks 159

1

4

5

6

2

7

8

9

3
10 11

12

16

13 14

15

R
B

A

Fig. 7. For Rj = de(Xj), that means Aj ✓ Rj (Aj contains only the observed nodes from
Rj), the set R1[R2[ · · · is partitioned into A = R1 \(R2[R3[ · · · ), B = R1\(R2[R3[ · · · )
and the rest R = (R2 [R3 [ · · · ) \R1. Note that XA and XR are independent because they
are d-separated by the empty set (the thick arrows are all pointing in).
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(b) Second hypothesis

Fig. 8. Two possible Bayesian networks that could underly the observed variables X1, X2,
X3 and X4. The extended common cause principle cannot distinguish these.

and Ic(Y1, . . . , Yk) from (7) is achieved.
As for the second part, we use induction on the number of roots. For only one

root, the bound follows from lemma 1. The induction step then proceeds as follows.
The nodes in A1, A2, . . . are partitioned as shown in Fig. 7, so by the chain rule

H(YA, YB , YR) = H(YA, YR) +H(YB | YA, YR) � H(YA, YR),

and because XA and XR are independent and then also YA and YR, it follows that
H(YA, YB , YR) � H(YA)+H(YR). By our induction hypothesis and lemma 1 we then
have

Ic(Y1, . . . , Yk) 
X

j2B

H(Yj)

c
+

X

j2A

H(Yj)

c
�H(YA) +

X

j2R

H(Yj)

c
�H(YR)

 |B|
c

· log 2 +
✓
|A|
c

� 1

◆

| {z }
�0

· log 2 + Ic(YR) 
⇣a
c
� r

⌘
· log 2,

which is the expected bound.

5 Discussion and Conclusion

Now we describe how this theorem can be used as a new common cause principle.
Assume that a scientist measured X1, X2, X3 and X4 from Fig. 8 and now has two
hypotheses for the underlying causal model, the ones from Fig. 8 (a) and (b). With
the extended common cause principle alone, he would not be able to discriminate
between (a) and (b), because in each case there are two of the four observed variables
that have a common ancestor. But the new common cause principle sometimes allows
to decide between (a) and (b). For c = 1 we get r = 2 and a = 4, so I1  2 log 2 for
(a) and r = 1 and a = 2, so I1  log 2 for (b). Thus for I1 in the range from log 2 to
2 log 2 we can reject hypothesis (b), because the correlation is too strong.

Another application of the theorem was studied in [5]. There we showed that if
common causes are to be inferred from empirical data, then the results are statistically
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more significant if Ic is large. Thus, only in the case of large a/c� r we have a chance
of making assertions about common causes reliably. The quantity a/c� r is not large
if the graph consists of many small unconnected components. Or, in other words, the
theorem states that for the prediction of common ancestors to be possible reliably,
we must be able to control most of the graph by only few roots, that is, empirical
inference of common ancestors works only reliably if the redundancy r is small.

In summary, we presented a new version of the common cause principle in Bayesian
networks, originally conceived by [7] and later extended and put in a quantitative form
by [8], using concepts from [1]. The new common cause principle uses an inequality
that gives an upper bound on the generalized information Ic in a partially observed
Bayesian network with fixed causal structure. This common cause principle sometimes
allows a more fine grained discrimination between di↵erent causal hypotheses under-
lying an observation of parts of the Bayesian network. It is still an open problem,
however, if and in what way lemma 1 and theorem 2 can be generalized to systems
with non-binary variables. We hope that this new common cause principle can be of
use in algorithms that try to build the causal structure of a Bayesian network from
observation of the random variables alone.
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Abstract

In this paper, we briefly characterize the main principles and constituents of
the, so called, fuzzy logic in broader sense (FLb) that is part of mathematical
fuzzy logic and extends the fuzzy logic in narrow sense. It is shown that FLb-logic
is a reasonable tool using which various problems specific of artificial intelligence
can be solved.

1 Constituents of mathematical fuzzy logic

Mathematical fuzzy logic includes two branches: Fuzzy Logic in Narrow Sense (FLn)
and Fuzzy Logic in Broader Sense (FLb) which is an extension of the former. FLn
generalizes classical mathematical logic (see [7, 10]), i.e., it has clearly distinguished
syntax and semantics. The syntax consists of precise definitions of a formula, proof,
formal theory, provability, model, etc. Many formal calculi have been developed in
FLn. They usually di↵er from each other on the basis of the assumed structure of
truth values, which then determines properties of the respective calculus.

Fuzzy logic in broader sense is an extension of FLn, which aims at developing a
formal theory of human reasoning that includes mathematical models of meaning of
certain special expressions of natural language and generalized quantifiers with regard
to presence of vagueness. This program was initiated by V. Novák in [9]. It overlaps
with two other paradigms proposed in the literature, namely that of commonsense
reasoning and precisiated natural language.

Commonsense reasoning is an important branch of AI aiming at modeling common
human reasoning and its ability to solve complex tasks. Its main tool is logic. Logical
sentences are used to represent the knowledge, goals and situations of the agent. In
the classical approach, they are represented by sentences of first-order logic, though
other logical systems have also been proposed (cf. [3] and the citations therein). The
main drawback of these formalizations, in our opinion, is neglecting vagueness present
in the semantics of natural language expressions (cf. [5]).
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Precisiated Natural Language introduced in [19] aims at providing an acceptable
and applicable working formalization of the semantics of natural language without
pretension to capture it in full detail and fineness. The methodology is based on two
main premises:

(a) Much of the world knowledge is perception based (the term “perception” is not
considered here as a psychological term but rather as a result of intrinsically
imprecise human “measurement”).

(b) Perception based information is intrinsically vague (fuzzy, imprecise).

PNL methodology requires presence of World Knowledge Database and Multiagent,
Modular Deduction Database. No exact formalization of it, however, has been devel-
oped until recently, and so it should be taken mainly as a reasonable methodology.

The concept of FLb (cf. [13]) is a glue between both paradigms that should consider
the best of each. It is a system of formal theories consisting, so far, of the following:

(a) Formal theory of evaluative linguistic expressions.

(b) Formal theory of intermediate and generalized quantifiers and their syllogisms.

(c) Formal theory of the meaning of fuzzy IF-THEN rules and approximate reason-
ing.

2 Fuzzy type theory as the basic tool for FLb

The first attempt at formalization of FLb has been done by V. Novák on the basis of
first-order fuzzy logic with evaluated syntax (see [17]). More convenient for the goal of
FLb is fuzzy type theory, a higher-order fuzzy logic, because the experience indicates
that first-order logical systems are not powerful enough for the proper formalization
of linguistic semantics.

The role of vagueness in commonsense reasoning has several aspects. First, it en-
ables us to understand the complicated surrounding world, which cannot be known in
complete detail. Thus, vagueness enables us to reduce the necessary amount of infor-
mation and focus only on its relevant constituents. Furthermore, vagueness is quite
often a feature of the information we have at our disposal; in certain circumstances,
either more precise information is not available or obtaining it is too expensive. Thus,
we must cope with the lack of detail and still make relevant conclusions. Vagueness is
quite often even indispensable: it helps us to increase our awareness of the core of the
problem because unnecessary details can be excluded and so we avoid “drowning” in
the problem.

Fuzzy type theory (FTT) is a higher-order fuzzy logic being generalization of clas-
sical type theory initiated by B. Russel, A. Church and L. Henkin (for extensive
presentation see [1]). The extension consists especially in replacement of the axiom
stating “there are two truth values” by a sequence of axioms characterizing structure
of the algebra of truth values.
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The truth values should form an IMTL-algebra or EQ-algebra that is the most fun-
damental structure of truth values for FTT. Recall that the former is a prelinear resid-
uated lattice with double negation while the latter is an algebra E = hE,^,⌦,⇠,1i
where ^ is lattice meet, ⌦ is monoidal product, and ⇠ is a fuzzy equality (equiva-
lence). The most distinguished algebra of truth values for FLb-logic is the standard
 Lukasiewicz� algebra L = h[0, 1],_,^,⌦,�,�,!, 0, 1i. Important concept in FTT is
that of a fuzzy equality, which is a reflexive, symmetric and ⌦-transitive binary fuzzy
relation on a set M , i.e. it is a function

.

=: M ⇥M �! L.
Syntax of FTT is a generalization of the lambda-calculus constructed in a classical

way, but di↵ering from classical type theory by definition of additional special connec-
tives, and in logical axioms. It has been proved that FTT (namely, various cases for
special algebras of truth values) is complete. The details can be found in [12].

3 Constituents of FLb

Evaluative linguistic expressions are expressions of natural language, for example,
small, medium, big, about twenty five, roughly one hundred, very short, more or less
deep, not very tall, roughly warm or medium hot, quite roughly strong, roughly medium
size, etc. They form a small, syntactically simple, but very important part of natural
language which is present in its everyday use any time. The reason is that people
regularly need to evaluate phenomena around them and to make important decisions,
learn how to control, and many other activities based on their evaluation. In FLb,
a special formal theory of FTT has been constructed using which semantics of the
evaluative expressions is modeled. It can be demonstrated that the theory of evaluative
expressions can well capture the vagueness phenomenon. The details can be found in
[11].

In FLb, a special formal theory of FTT has been constructed to capture the mean-
ing of evaluative expressions. We refer to [11] for all technical details. Since it has
been proved that this has a model, the completeness theorem enables to prove the
following.

Theorem 1 The formal theory of evaluative linguistic expressions is consistent.

We can also demonstrate that the theory of evaluative expressions can capture vague-
ness. Besides others, it can well model the known sorites paradox that can be taken as
the typical display of vagueness phenomenon. This result is contained in the following
theorem.

Theorem 2

(a) ` ���Sm(0),

(b) ` (9p)(���¬¬¬Sm(p),

(c) ` ¬¬¬(9n)(���Sm(n)&&&���¬¬¬Sm(n+ 1)),

(d) ` (8n)(Sm(n)))) Almost true(Sm(n+ 1)).
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The statement (a) means that 0 is surely small, (b) means that there is a surely not
small number, (c) means that there is no surely small number n such that n+1 surely
is not small, and (d) means that if n is small then it is almost true that n+ 1 is also
small. Analogous theorem can be proved also about big and medium.

Intermediate quantifiers are expressions such as most, a lot of, many, a few, a
great deal of, large part of, small part of. They were informally studied in depth
by Peterson in [18]. In FLb, intermediate quantifiers are modeled in FLb by special
formulas of fuzzy type theory in a certain extension of the formal theory of evaluative
linguistic expressions. The main idea is that intermediate quantifiers are classical
general or existential quantifiers for which the universe of quantification is modified
and the modification can be imprecise.

Below is formal definition of several specific intermediate quantifiers based on re-
sults in [18].

A: All B are A := (8x)(Bx))) Ax),

E: No B are A := (8x)(Bx))) ¬¬¬Ax),

P: Almost all B are A :=

(9z)((���(z ✓ B)&&&(8x)(zx))) Ax)) ^̂̂ (Bi Ex)((µB)z)),

(extremely big part of B has A)

B: Few B are A :=

(9z)((���(z ✓ B)&&&(8x)(zx))) ¬¬¬Ax)) ^̂̂ (Bi Ex)((µB)z)),

(extremely big part of B does not have A)

T: Most B are A :=

(9z)((���(z ✓ B)&&&(8x)(zx))) Ax)) ^̂̂ (Bi Ve)((µB)z)),

(very big part of B has A)

D: Most B are not A :=

(9z)((���(z ✓ B)&&&(8x)(zx))) ¬¬¬Ax)) ^̂̂ (Bi Ve)((µB)z)),

(very big part of B does not have A)

K: Many B are A :=

(9z)((���(z ✓ B)&&&(8x)(zx))) Ax)) ^̂̂ ¬¬¬(Sm ⌫̄

⌫

⌫)((µB)z)),

(not small part of B has A)

G: Many B are not A :=

(9z)((���(z ✓ B)&&&(8x)(zx))) ¬¬¬Ax)) ^̂̂ ¬¬¬(Sm ⌫̄

⌫

⌫)((µB)z)),

(not small part of B does not have A)

I: Some B are A := (9x)(Bx ^̂̂ Ax),

O: Some B are not A := (9x)(Bx ^̂̂ ¬¬¬Ax).
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4 Human reasoning

For human reasoning it is typical to use natural language so that linguistic semantics is
combined with logical inference rules. We argue that our logical theory is rich enough
to be able to develop su�ciently well working model of human reasoning. One such
possibility was described in [14]. It should be noted that human reasoning is non-
monotonic. In the cited paper, the monotonicity was considered and a model with
conditional linguistic clauses containing evaluative expressions was presented.

One of many facets of human reasoning is syllogistic reasoning with intermediate
quantifiers generalizing the classical Aristotle syllogism. A syllogism in fuzzy logic is
a triple of formulas hP1, P2, Ci such that the following is provable:

` P1&&&P2 ))) C.

Note a syllogism is valid if M(P1)⌦M(P2)  M(C) holds in every model M of our
theory.

Let Q1, Q2, Q3 be intermediate quantifiers and X,Y,M be formulas representing
properties. Analogously as in classical logic, we will consider four figures of syllogisms:

Figure I

Q1 M is Y

Q2 X is M
Q3 X is Y

Figure II

Q1 Y is M

Q2 X is M
Q3 X is Y

Figure III

Q1 M is Y

Q2 M is X

Q3 X is Y

Figure IV

Q1 Y is M

Q2 M is X

Q3 X is Y

In [8] we proved that 105 generalized syllogism analyzed informally in [18] are valid in
our theory, too. Let us only demonstrate few of them on an example:

ATT-I:
All commercials are stupid
Most programs in the in US TV are commercials
Most programs in US TV are stupid

ETO-II:
No lazy people pass exam
Most students pass exam
Some students are not lazy people

PPI-III:
Almost all employed people have a car
Almost all employed people are well situated
Some well situated people have a car

TAI-IV:
Most shares with high value are from computer industry
All shares of computer industry are important
Some important shares have high value

The theory of evaluative expressions is the point of departure for the theory of
fuzzy/linguistic IF-THEN rules. These are conditional clauses of natural language
having the form

IF X is A THEN Y is B, (1)
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where X is antecedent variable (of course, there can be more of them), Y is consequent
variable and A,B in (1) are the above mentioned evaluative linguistic expressions. The
relation between antecedent and consequent is characterized by fuzzy (many-valued)
implication. Sets (finite) of fuzzy IF-THEN rules are called linguistic descriptions.
They represent a piece of text describing various decision, control, and other kinds
of situations. Thus, such a text provides us with more information about the reality.
The details about logical analysis of the fuzzy/linguistic IF-THEN rules can be found
in [15].

The principal method for derivation of conclusions on the basis of linguistic descrip-
tions is a special reasoning method called perception-based logical deduction (PbLD)
[16]. Let us remark that this method is also used in the commonsense reasoning model
in [14].

5 Conclusion

We are convinced that FLb is already su�ciently developed formal theory that can
be very useful for further research in AI. For example, since FTT is generalization of
classical type theory, it includes also classical predicate logic (namely, if we confine
to two truth values only then FTT collapses into classical logic). Since it is not too
complicated to translate classical formalism into FTT-formalism, one may immedi-
ately include vagueness into its special formal system. This holds, for example, for
many systems developed in AI, such as Versatile Event Logic presented in [2] or the
formalization from [6]. Our theory of meaning of evaluative expressions can also be
extended to include, e.g., sophisticated model of meaning of concepts as presented in
[4]. Of course, incorporating features of non-monotonic logic into FLb also causes no
significant obstacle though a lot of research still has to be done.

Acknowledgment. The research was supported by the European Regional Devel-
opment Fund in the IT4Innovations Centre of Excellence project
(CZ.1.05/1.1.00/02.0070).
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Abstract

We investigate residuated lattices as structures with dualities. We formulated
the Principle of Duality for residuated lattice which divides basic properties of
this structure into two groups of dual ones.

1 Introduction

The notion of commutative residuated `-monoid has been introduced in [1] with the
goal “to outline a common framework for a diversity of monoidal structures which
constitute the basis of various papers in fuzzy set theory”. This notion is a bit more
general than the earlier introduced [2] notion of “residuated lattice” for an integral,
residuated, commutative `-monoid. Both papers became fundamental in the literature
related to mathematical fuzzy logic [3, 4, 5], algebraic foundations of fuzzy systems
[6], algebraic foundations of triangular norms [7], etc. Moreover, they had significant
impact on intensive development of various residuated algebraic structures such as
residuated `-groupoids, residuated `-semigroups, etc. (see, e.g. [8]). From the point
of view of applications, residuated structures play an important role, for example, in
mathematical morphology, modeling of linguistic semantics, approximate reasoning,
and elsewhere.

In the proposed contribution, we investigate how residuation manifests itself through
duality. We will see that existence of a pair of dual semimodules of a commutative
semiring implies that its monoidal reduct is a residuated lattice. This result allows to
formulate the Principle of Duality for residuated lattice which divides basic properties
of this structure into two groups of dual ones.

2 Residuated, Commutative `-monoid as a Pair of

Dual Semimodules

In this section, we will see how a residuated, commutative `-monoid can be character-
ized without any reference to the property of residuation. To characterize residuated
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operations, we will use two dually ordered semimodules. Moreover, the existence of two
dually ordered semimodules is a part of the criterion under which a monoidal reduct
of a lattice-ordered commutative semiring is a residuated, commutative `-monoid. We
will formulate and illustrate the Principle of Duality for residuated lattice.

2.1 Semimodules in residuated, commutative `-monoid

Let us recall that a semiring is an algebraic structure with two associative operations
which are connected by distributive laws (cf. [9, 10, 6]). In more details, a semiring
R = (R,+, ·, 0, e) is an algebraic structure with the following properties:

• (R,+, 0) is a commutative monoid,

• (R, ·, e) is a monoid,

• a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c hold for all a, b, c 2 R.

A semiring is called commutative if (R, ·, e) is a commutative monoid. An example of
a commutative semiring, which will be used in the sequel, is as follows.

Example 1 Let L = (L,, ⇤) be a residuated, commutative `-monoid. Then RL
_ =

(L,_, ⇤,?, e), where ? is a bottom element of (L,) and e is the unit with respect to
⇤, is a semiring reduct of L. This easily follows from the fact that for every a 2 L,
the map a ⇤ (·) : L ! L is residuated and therefore, it preserves the join operation, i.e.
for all x, y 2 L, a ⇤ (x _ y) = (a ⇤ x) _ (a ⇤ y) holds.

Let us give a definition of a (left) R-semimodule.

Definition 1 Let R be a semiring. A (left) R-semimodule is an algebra

M = (M,+, 0, (ha)a2R),

where (M,+, 0) is a commutative monoid and each ha : M ! M is a unary operation
so that the following properties are fulfilled:

ha(x+ y) = ha(x) + ha(y), (1)

ha+b(x) = ha(x) + hb(x), (2)

ha·b(x) = ha(hb(x)). (3)

Let us remark that the above definition is di↵erent from those in [9, 6] where there
are additional requirements on zero elements of R and M .

The unary operation ha is usually considered as a (left) scalar multiplication by a.
An R-semimodule is called unital (or unitary) if the unit element e 2 R determines
the identical map on M , i.e. for all x 2 M , he(x) = x.

Example 2 It is easy to see that if R = (R,+, ·, 0, e) is a semiring then MR =
(R,+, 0, (a · (·))a2R) is a unital semimodule where a · (·) : x 7! a · x. We will say that
the semimodule MR = (R,+, 0, (a ·(·))a2R) is induced by a semiring R = (R,+, ·, 0, e).
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Example 3 Let L = (L,, ⇤) be a residuated, commutative `-monoid and RL
_ =

(L,_, ⇤,?, e) its semiring reduct. By Example 2, (L,_,?, (a ⇤ (·))a2L) is a RL
_-

semimodule induced by the respective semiring.

Two R-semimodules M1 and M2 are called isomorphic if there is a bijection ' :
M1 ! M2 which establishes an isomorphism between respective monoids (M1,+, 0)
and (M2,+, 0) and which commutes with every unary operation ha, i.e. for all a 2 R

and for all x 2 M1,

'(ha(x)) = ha('(x)).

Similarly, a homomorphism between M1 and M2 can be defined.
In the below given theorems, we show that any residuated, commutative `-monoid

can be split into two unital left semimodules such that one of them is a homomorphic
image of the other one. As a converse statement, we will prove that existence of
two (dual) unital left semimodules is a criterion under which a monoidal reduct of a
lattice-ordered commutative semiring is a residuated, commutative `-monoid.

Theorem 1 Let RL
_ = (L,_, ⇤,?, e) be a lattice-ordered commutative semiring where

(L,_,^,?,>) is a bounded lattice and e is the unit with respect to ⇤. Then the
monoidal reduct (L, ⇤, e) of RL

_ is a residuated, commutative `-monoid if and only if
there exists a set of unary operations {ha : L ! L | a 2 L} such that (L,^,>, (ha)a2L))
is a RL

_-semimodule and for all a, b 2 L,

a  b , e  ha(b). (4)

Corollary 1 Let L = (L,, ⇤) be a residuated, commutative `-monoid and RL
_ =

(L,_, ⇤,?, e) its semiring reduct. Then

(i) there are two RL
_-semimodules: L_,⇤ = (L,_,?, (a ⇤ (·))a2L) and L^,! =

(L,^,>, (a ! (·))a2L), that split L,

(ii) both RL
_-semimodules L_,⇤ and L^,! are unital,

(iii) the condition (4) in Theorem 1 is equivalent to the fact that e = >, i.e. L is
integral.

In the sequel, we will assume that a given residuated, commutative `-monoid is
integral. For its shorter name we will use the name “residuated lattice”. It will be
denoted by L = (L,, ⇤) with additional operations as follows: ! as a residual of ⇤,
and ? and > as respective bottom and top elements.

Theorem 2 Let L = (L,, ⇤) be a residuated lattice with RL
_ = (L,_, ⇤,?,>) as a

semiring reduct where > is the unit with respect to ⇤. Then the left RL
_-semimodule

L^,! = (L,^,>, (a ! (·))a2R)) is a homomorphic image of the left RL
_-semimodule

L_,⇤ = (L,_,?, (a ⇤ (·))a2L) under the homomorphism ' : L ! L, given by

'(x) = x ! ?.
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2.2 Principle of Duality in Residuated Lattices

Let L = (L,, ⇤) be a residuated lattice and RL
_ = (L,_, ⇤,?,>) its semiring reduct.

By Corollary 1, L splits into two unital RL
_-semimodules L_,⇤ = (L,_,?, (a ⇤ (·))a2L)

and L^,! = (L,^,>, (a ! (·))a2R)). The operations _ in L_,⇤ and ^ in L^,!
determine dual orderings of the same support L of these semimodules:

x  y () x _ y = y,

x � y () x ^ y = y.

Below, we will refer to semimodules L_,⇤ and L^,! as to dual ones. Because both
semimodules are representatives of the same algebraic structure, everything which can
be proved for one of them can be proved for the other one. This is used in the below
formulated Principle of Duality which also uses the fact that both semimodules are
parts of a residuated lattice.

Principle of Duality in residuated, commutative `-monoids

To every theorem that concerns a residuated lattice L = (L,, ⇤) and is formulated
in a language of one of its RL

_-semimodules there is a corresponding theorem that
concerns its dual semimodule. This is obtained by replacing symbols of operations _,
? and (a ⇤ (·))a2L of the semimodule L_,⇤ by the respective dual symbols ^, > and
(a ! (·))a2L of the semimodule L^,!, and vice versa.

The following list contains some pairs of dual statements where the elements of the
semiring RL

_ are denoted by characters a, b to be distinguished from the elements of
the respective semimodules denoted by characters x, y.

a ⇤ (x _ y) = (a ⇤ x) _ (a ⇤ y), a ! (x ^ y) = (a ! x) ^ (a ! y); (5)

(a _ b) ⇤ x = (a ⇤ x) _ (b ⇤ x), (a _ b) ! x = (a ! x) ^ (b ! x); (6)

(a ⇤ b) ⇤ x = a ⇤ (b ⇤ x), (a ⇤ b) ! x = a ! (b ! x). (7)

Remark 1 It is worth stressing that the Principle of Duality is applicable only to
statements in the language of respective semimodules and only to semimodules oper-
ations. It is not applicable to operations of the semiring RL

_. The following example
illustrates this remark.

Example 4 In two dual properties (6),

(a _ b) ⇤ x = (a ⇤ x) _ (b ⇤ x), (a _ b) ! x = (a ! x) ^ (b ! x),

the symbol _ in the term (a _ b) (left-hand side of the left equality) does not corre-
spond to the join operation _ of the semimodule L_,⇤ (it corresponds to the semiring
operation). Therefore, it was not changed in the right (dual) equality above. However,
the same symbol _ in the expression (a ⇤ x)_ (b ⇤ x) (right-hand side of the left equal-
ity) does correspond to the join operation of L_,⇤ and by the Principle of Duality, it
was replaced by ^ in the right (dual) equality above. Moreover, all symbols ⇤ in the
left equality above correspond to (unary) operations of L_,⇤, and therefore, they were
replaced by the respective dual symbols !.
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Let us show how the Principle of Duality can be used for discovery dual forms of
true equalities.

Example 5 Let us consider the following true equality:

(a ⇤ b _ c) ⇤ x = a ⇤ b ⇤ x _ c ⇤ x,
and rewrite it into the language of the semimodule L_,⇤:

(a ⇤ b _ c) ⇤ x = a ⇤ (b ⇤ x) _ c ⇤ x. (8)

In the left-hand side of (8), there is one semimodule operation ⇤ (before x) which
will be replaced by the semimodule operation ! of the dual semimodule L^,!. In the
right-hand side of (8), all operations are semimodule operations and by the Principle
of Duality, they will replaced by respective dual operations. Thus, we will come to the
following dual equality:

(a ⇤ b _ c) ! x = (a ! (b ! x)) ^ (c ! x).

In the below given example, we will show how the Principle of Duality can be used
for simplifying formal expressions written in the language of L^,!.

Example 6 Let us consider the following expression in the language of L^,!:

((a ⇤ b) ! (x ^ y)) ^ (a ! x), (9)

with the purpose to find its simpler form. We propose to rewrite (9) into its dual form,
simplify the dual form and then rewrite it back. Let us remark that there is one non-
semimodule operation in (9) - the first ⇤ in the term (a ⇤ b) (it will not be changed in
the dual form of (9)). By the Principle of Duality, the dual form of (9) is as follows:

((a ⇤ b) ⇤ (x _ y)) _ (a ⇤ x).
The above given expression can be easily rewritten into

(a ⇤ b) ⇤ x _ (a ⇤ b) ⇤ y _ a ⇤ x,
and simplified to

a ⇤ (b ⇤ y _ x).

Finally, after rewriting back into the language of L^,! we will obtain the desired
simplified form of (9):

a ! ((b ! y) ^ x).

3 Conclusion

In this paper, we investigated residuated lattices as structures with dualities. We
proved that the existence of two (dual) unital left semimodules is a criterion under
which a monoidal reduct of a lattice-ordered commutative semiring is a residuated,
commutative `-monoid. We formulated the Principle of Duality for residuated lattices
which divides basic properties of these structures into two groups of dual ones.

Acknowledgments. The author acknowledges that this contribution has been pre-
pared in connection with the project IT4Innovations Centre of Excellence, reg. no.
CZ.1.05/1.1.00/02.0070.
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Fuzzy Set Theory , eds. U. Höhle and E. P. Klement (Kluwer, Dordrecht, 1995)
pp. 53–106.

[2] R. P. Dilworth and M. Ward, Trans. Amer. Math. Soc. 45, 335 (1939).
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Abstract

A simple example is taken as starting point for a discussion concerning ad-

vantages and inconveniences of di↵erent approaches to the concept of conditional

probability (de Finetti’s coherence, classical Kolmogorov’s, on MV-algebras, ...).

The example considers only a finite number of conditional events, involving

conditioning events (di↵erent from the impossible one) of zero probability.

In particular, it is shown that the approach based on coherence allows a

proper and convincing treatment and interpretation of conditioning on null events.

1 Introduction

Consider a young patient B (aged less than 30) with a blurred vision addressing an
ophthalmic hospital for a suspect eye disease.

Let E1 be the event “B has retinitis”, E2 the event “B has blepharitis”, and E3

the event “B has glaucoma”.
Consider the assessment

P (E1) =
3

4
= P (E1|⌦) = P (E1|H1) ,

where ⌦ = H1 is the sure event, and suppose that B undertakes a medical test for
glaucoma (this test has a history of no positive results for patients aged less than 30).
Denoting by H2 the event “the test for glaucoma is negative”, consider the assessment

P (E2|H2) =
1

4
.

Denoting by H3 = Hc
2 the event “the test for glaucoma is positive”, the probability

of the conditional event Ec
3|H3, e.g.

P (Ec
3|H3) =

1

2

(where Ac denotes the contrary of the event A), represents the probability of a false
positive.
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Finally, assume the following logical relations among the given events:

Ei ^ Ej = ; (i, j = 1, 2, 3 , i 6= j) ,

H2 = E1 _ E2 , H3 = E3 _A4 ,

with A4 = Ec
1 ^ Ec

2 ^ Ec
3 . Then the events Ei can be identified with three atoms Ai,

so that
H1 = ⌦ = A1 _A2 _A3 _A4 = H2 _H3 .

This simple example will be the starting point for a discussion concerning advan-
tages and inconveniences of di↵erent approaches to the concept of conditional proba-
bility.

2 Checking coherence

Facing the example given in the Introduction, let Po be a probability on ⌦ and put
xr = Po(Ar), with r = 1, ..., 4 ; consider the system

8
>>>>>><

>>>>>>:

x1 = 3
4 · (x1 + x2 + x3 + x4)

x2 = 1
4 · (x1 + x2)

x3 = 1
2 · (x3 + x4)

x1 + x2 + x3 + x4 = 1

xr � 0 ,

whose only solution is

x1 =
3

4
, x2 =

1

4
, x3 = x4 = 0 .

The above system can be seen as a particular case of the following one

(So)

8
>>>>>><

>>>>>>:

X
r

A
r

✓E
i

^H
i

xr = P (Ei|Hi)
X

r
A

r

✓H
i

xr (i = 1, 2, 3),

X
r

A
r

✓Ho

o

xr = 1

xr � 0 ,

where
Ho

o = H1 _H2 _H3 = ⌦ .

The first three equations correspond to the product rule of conditional probability,
that is, taking Po(Ei|Hi) = P (Ei|Hi),

(1) Po(Ei ^Hi) = P (Ei|Hi)Po(Hi) .
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Notice that if we had required positivity of the probability of conditioning events,
we should have added to the above system also the conditions

Po(A1) + Po(A2) > 0 , Po(A3) + Po(A4) > 0 ,

and this enlarged system (as it is easily seen) has no solutions.
On the other hand, x3 = x4 = 0 means P (H3) = 0 , an assessment which would

not allow to evaluate P (E3|H3) by means of the classical Kolmogorov’s definition.

Remark 1 - The assessment P (H3) = 0 is consistent with the fact that the test
for glaucoma had no positive results for patient aged less than 30.

The problem of evaluating the probability of such kind of events (not yet occurred in
the available data) belongs to the so–called “zero-frequency problems”: for a Bayesian
approach and related references, see, e.g., [13].

Going back to Po(Hi) = 0 (which obviously implies Po(Ei ^Hi) = 0), notice that
the product rule (1) is compatible with any value (even negative or greater than 1)
of the assessment P (Ei|Hi).

This situation occurs – in our example – for the third equation. So we introduce a
“new” probability P1 defined on

H1
o = H3 = A3 _A4

and such that the following system, with unknowns yr = P1(Ar), is compatible

(S1)

8
>>>>>><

>>>>>>:

X
r

A
r

✓E
i

^H
i

yr = P (Ei|Hi)
X

r
A

r

✓H
i

yr (i = 3),

X
r

A
r

✓H1
o

yr = 1

yr � 0 .

Notice that P1 could be seen as the restriction P (·|H1
o ) of the (sought) conditional

probability P (·|·) – just as Po could have been seen as the restriction P (·|⌦) – and the
first equation of system (S1) corresponds to the product rule, but with H1

o playing the
role of the sure event ⌦

(2) P1(Ei ^Hi|H1
o ) = P (Ei|Hi)P1(Hi|H1

o ) .

So in our case the system becomes
8
><

>:

y3 = 1
2 · (y3 + y4)

y3 + y4 = 1

yr � 0 ,

and its only solution is

y3 = y4 =
1

2
.

We wonder whether from the above procedure (i.e., checking the compatibility
of a suitable sequence of linear systems) it follows that the conditional probability



Conditional probability: advantages and inconveniences of di↵erent approaches 179

assessment given in the Introduction is coherent, according to the following (see de
Finetti [9])

Definition – The assessment P (·|·) on an arbitrary family C = C1 ⇥ C2 of condi-
tional events is coherent if there exists C0 ◆ C, with C0 = G⇥Bo (G a Boolean algebra,
B an additive set – i.e. closed with respect to (finite) logical sums – with Bo = B\{;} ,
B ✓ G), such that P (·|·) can be extended from C to C0 as a conditional probability,
i.e. a function P : C ! [0, 1] such that

(i) P (H|H) = 1, for every H 2 Bo ,

(ii) P (· |H) is a (finitely additive) probability on G for any given H 2 Bo ,

(iii) P
�
(E ^A)|H

�
= P

�
E|(A ^H)

�
P (A|H), for any A,E 2 G ,H,E ^H 2 Bo.

Notice that the product rule (2) corresponds to axiom (iii) with E = Ei, A = Hi,
H = H1

o .
In classical approaches, a conditional probability P (E|H) is not introduced as a

direct notion, and so there is no meaning given to E|H itself: de Finetti [8] was the
first to mention “conditional events” outside the function P .

Coherence of the assessments P (Ei|Hi) (i = 1, 2, 3) given in the Introduction
follows from the following Theorem (characterizing coherent assessments), which is
a particular case of a more general one, valid also for arbitrary (infinite) families of
conditional events.

Theorem – Let C be a finite family of conditional events

C = {E1|H1, . . . , En|Hn}

and denote by Ao the set of atoms Ar generated by the (unconditional) events E1, H1,
. . . , En, Hn. For a real function P on C the following two statements are equivalent:

(a) P is a coherent conditional probability on C;
(b) all systems of the following sequence, with unknowns x�

r = P�(Ar) � 0 , Ar 2
A� , and � = 0, 1, 2, . . . , k  n , are compatible:

(S�)

8
>>>>>>>><

>>>>>>>>:

X
r

A
r

✓E
i

^H
i

x�
r = P (Ei|Hi)

X
r

A
r

✓H
i

x�
r ,

⇥
for all Ei |Hi 2 C such that

P
r

A
r

✓H
i

x

��1
r = 0

⇤

X
r

A
r

✓H�

o

x�
r = 1

(put, for all Hi’s ,
P

r
A

r

✓H
i

x�1
r = 0 when � = 0), where Ho

o = Ho = H1 _ . . . _ Hn ,

while x

��1
r denotes a solution of (S��1) and H�

o is, for � � 1, the union of the Hi’s
such that

P
r

A
r

✓H
i

x��1
r = 0 .

Any class {P�} singled–out by the condition (b) is said to agree with the conditional
probability P .

Slightly di↵erent versions of this theorem have been given in recent years (see, e.g.,
[4], [5], the book [6] and [7]).
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3 Coherence vs. Kolmogorov approach

Since we do not presuppose the existence of a probability measure P on the subfamily of
(unconditional) events, a peculiarity of the approach to conditional probability based
on coherence is that, due to the direct assignment of P (E|H) as a whole, the knowledge
– or the assessment – of the “joint” and “marginal” unconditional probabilities P (E^
H) and P (H) is not required. Moreover, the conditioning event H – di↵erent from
the impossible one – may have zero probability, a situation that is not allowed in the
classical Kolmogorov’s definition.

And what about the Radon–Nikodym procedure? It has been proved in [2] and
[1] that there are situations, when P (H) = 0, in which any version of the conditional
distribution of P (E|H) obtained by the classic Radon–Nikodym procedure can violate
a “natural” property such as P (E|H) = 1 if H ✓ E.

But even in a simple (and finite) case such as that discussed in our example,
invoking Radon–Nikodym procedure cannot help, since the corresponding conditional
distribution – as can be easily checked – is anyway “completely free” on sets of measure
zero: in fact (referring to the algebra generated by the atoms A1, ..., A4), we would
get, e.g. (since H3 = A3 _A4),

0 = P (E3 ^H3) = P (E3|A3)P (A3) + P (E3|A4)P (A4) ,

with P (A3) = P (A4) = 0, and so there are no constraints for P (E3|A3) and P (E3|A4),
while they should instead be “compulsorily” assessed equal to 1 and 0, respectively.

Not to mention that Radon–Nikodym procedure requires to refer not just to the
given conditioning event , but rather it needs the knowledge of the whole conditional
distribution: this circumstance is clearly misleading from an inferential point of view,
since a conditional density P (E|x) turns out to depend not only on x, but on the
whole �-algebra in which x is embedded.

Remark 2 – Since P (E3|H3) =
1
2 , another peculiarity of the above example is that

a probability equal to 0 (recall in fact that P (E3) = 0) can be updated by conditioning
(in this case, with respect to H3, and we get the “new” value 1

2 ). The same is true
for probabilities equal to 1 (just consider Ec

3 in place of E3).

In conclusion, there are many aspects (even if we just consider a very simple
example) that render coherent conditional probability a nice generalization of the
classical Kolmogorov approach.

4 A quick glance on conditional probability on MV-

algebras

Another way of generalizing Kolmogorov approach is expressed through the possi-
bility of defining conditional probability on an MV-algebra, which is an important
many–valued generalization of a Boolean algebra, apt to capture di↵erent kinds of
uncertainty.

For the main definitions and results (and also for some relevant literature) we refer
to [12] and [10].
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We just recall here that (just as in the Kolmogorov approach) usually there is no
direct definition on suitable families of conditional events (with a structure of MV-
algebra), but a (so–to–say) “preliminary” introduction of (unconditional) probability
on a Boolean algebra and of the concept of statem on a relevant MV-algebra. Then, for
an MV-algebra M with product · (for details, see [12], [10]), conditioning is introduced
through the concept of conditional state m(a|b) defined (for a, b 2 M) by means of a
relation that is similar to the product rule for probability, i.e. a conditional state is
any solution m(a|b) of the equation

m(b)m(a|b) = m(a · b) .

When the MV-algebra reduces to a Boolean algebra, then the above definition of
conditional state coincides with the classical (Kolmogorov) definition of conditional
probability.

Clearly, this kind of generalization is in a di↵erent sense from that based on coher-
ence. Moreover it cannot be of any help as far as the problem of zero probability for
conditioning events is concerned.

An approach with a direct definition of conditional probability on an MV-algebras
M , taking conditional events as elements of M , is given in [3]. The relevant operations
are defined as follows:

A|B � C|D = (A _ C _ (B ^D))
��(B _D) ,

¬ (A|B) = Bc|Ac .

As it is well–known, by suitably combining these two operations we get another binary
operation ⌦, which reads, in this case, as

A|B ⌦ C|D = (A ^ C)
��((A ^D) _ (B ^ C)) ,

and the neutral elements for � and ⌦ are, respectively, ;|; and ⌦|⌦ .

Among the various results contained in this paper, we mention a re-formulation of
the Theorem characterizing coherence (recalled above, in Sect.2) in terms of “trico-
tomic” conditional atoms (for details, see [3]): these give rise to an MV-partition, in
the sense defined in [11].

In particular, going back to our simple example, we could easily extend the family
Ei|Hi (i=1,2,3) in such a way to make the enlarged family an MV-algebra as that
defined in [3], and then check coherence through the Theorem involving “three–valued”
atoms.

Yet for our elementary example it would just correspond to the use, for unfolding
a nut, of a tank instead of a nutcracker!

So it is better to bear on the principle (the so called “Ockham’s razor”) that states
(in its original Latin form):“Pluralitas non est ponenda sine necessitate”, and could be
interpreted, for scientists, “when you have two competing theories which make exactly
the same prediction, the one that is simpler is the better”.
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tional de Philosophie Scientifique, Hermann, Paris, IV, pp. 1–9.

[9] de Finetti B. (1949), Sull’impostazione assiomatica del calcolo delle probabilità,
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Abstract

We introduce a new algebraic method for the implication problem of con-
ditional independence statements. The method is based on an idea that the
implication problem can be transformed into an easier problem by adding extra
conditional independence statements to a given set of conditional independence
statements.

1 Introduction

In this paper, we deal with the implication problem of conditional independence state-
ments, that is, testing whether a conditional independence statement is derived from
a set of other conditional independence statements.

It is known that there is no finite axiomatic characterization of the conditional
independence implication problem for general discrete probability distributions (Stu-
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dený [7]). The situation is di↵erent if we restrict the class of the conditional indepen-
dence implication problem. It is known that there exists the finite axiomatic character-
ization each for the following restricted conditional independence statements: uncon-
ditional independence statements (Geiger et al. [1], Matúš [4]); saturated conditional
independence statements (Geiger and Pearl [2], Malvestuto and Studený [3]); condi-
tional independence statements represented by Markov networks (Pearl and Paz [5]),
and so forth. See Niepert et al. [6] and Studený [8] for the comprehensive description.

Another way to characterize the conditional independence implication problem
is based on algebra. The method of imsets by Studený [8] provides a very power-
ful algebraic method for testing of conditional independence implications. By using
imsets, the conditional independence implication problem is translated into relations
among integer-valued vectors. In Bouckaert et al. [9], they develop a method of lin-
ear programming for computer testing of conditional independence implications. In
this paper, we introduce a new algebraic method for the conditional independence
implication problem for positive discrete probability distributions.

2 Imsets

In the following we only consider the case that probabilities are positive at every point
of the sample space X = X1 ⇥ · · ·⇥XN . We assume that X is a finite set. Namely we
consider the positive probability distributions for N -way contingency tables.

For a subset A ✓ N and the set of random variables X on X , let XA denote the set
of random variables in A. Given disjoint A,B,C ✓ N , we abbreviate XA ??XB | XC

as A??B | C. For A,B ✓ N , we abbreviate A [B as AB.
The identifier �A of a set A ✓ N is defined as

�A(B) =

(
1, B = A,

0, B 6= A,B ✓ N.

.

For any triplet of pairwise disjoint subsets A,B,C ✓ N , the semi-elementary imset

uhA,B |Ci is defined as

uhA,B |Ci = �ABC + �C � �AC � �BC .

In the context of Studený [8], we can encode a semi-elementary imset uhA,B |Ci as the
corresponding conditional independence statement A??B | C. If A = a and B = b

are singletons, the imset uha,b |Ci is called elementary. The set of all elementary imsets
is denoted by E(N).

Example 1. We assume that N = {1, 2, 3} and a, b, c are desjoint elements in N . Let

us consider the following implication problem of conditional independence statements.

a?? b | c, a?? c ) a?? bc

The following two imsets correspond to a?? b | c and a?? c respectively: uha,b | ci =
�abc � �ac � �bc + �c and uha,c | i = �ac � �a � �c + �;. Then we obtain

uha,b | ci + uha,c | i = �abc � �a � �bc + �; = uha,bc | i.

This means that a?? b | c and a?? c imply a?? bc.
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Though the usual arguments based on imsets are very powerful, it is known that
they may make a mistake in proving conditional independence implication problem in
some cases. As an example, we consider the example in Corollary 2.1 and Example
4.1 of Studený[8]:

a?? b | cd, c?? d | a, c?? d | b, c?? d | ;. ) c?? d | ab

This relation is true. However, it seems to be hard to prove the relation by usual
arguments based on imsets. In fact, in Studený [8], it is shown that it is impossible
to prove the above relation by direct use of imsets. In the next section, we give a new
method to partially overcome this di�culty. Our method broaden the applicability of
techniques based on imsets for the conditional independence implication problem.

3 A new method for the conditional independence

implication problem

The implication problem of conditional independence statements can be represented
as the problem of proving (or disproving)

{Ai ??Bi |Ci}Ii=1 ) A??B |C. (1)

The left-hand side is the set of given conditional independence statements.
Let p be a probability function. The following property holds for conditional

independence statement.

A??C |B , p(ABC) = q(AB)r(BC) for some q(AB), r(BC). (2)

Here for simplicity we are writing only the sets of variables “ABC, AB, BC” and
omitting the sample point x.

The right-hand side of (2) is a shorthand notation for

9q, r depending on AB- and BC-marginal such that

p(ABC;x) = q(AB;x)r(BC;x) 8x 2 X . (3)

Note that the left-hand side only depends on the ABC-marginal cell xABC (i.e. com-
ponents of x in the index set ABC) of x. Similarly q(AB;x) depends only on xAB

and r(BC;x) depends only on xBC .
In the following we take the logarithm of p:

log p(ABC;x) = log q(AB;x) + log r(BC;x) 8x 2 X . (4)

For A ✓ N , let hA(x) = hA(xA) be a real-valued function of x depending only on
the marginal xA. We can consider hA as a vector in RX . Define LA = span{hA(S;x)}
denote the linear subspace of RX spanned by functions depending only on the marginal
cell xA. Define

LhA,C |Bi = LAB + LBC
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as the (vector) sum of two spaces LAB and LBC . We can equivalently write (4) as

log p(ABC;x) 2 LhA,C |Bi,

where we are again considering log p(ABC;x) as an element of RX . For everywhere
positive probabilities, by (2) we have

A??C |B , log p(ABC;x) 2 LhA,C |Bi.

Let

L{Ai ??Bi |Ci}I
i=1

= span({�AiBiCi(x)� �AiCi(x)� �BiCi(x) + �Ci(x)}Ii=1)

= {
IX

i=1

↵i(�AiBiCi(x)� �AiCi(x)� �BiCi(x) + �Ci(x)) | ↵i 2 R, i = 1, . . . , I}

(5)

be a linear subspace of RX spanned by “imsets” {uhAi,Bi |Cii = �AiBiCi(x)��AiCi(x)�
�BiCi(x) + �Ci(x)}Ii=1, now considered as functions of x.

Then we have the following proposition.

Proposition 1. If (log p(ABC;x)+L{Ai ??Bi |Ci}I
i=1

)\LhA,B |Ci 6= ;, then (1) holds.

Next we introduce our new method. The method is based on an idea: “adding
extra conditional independence statements” to a given set of conditional independence
statements. Now we add extra conditional independence statements {Ej ??Fj |Gj}Jj=1

to the implication problem in (1) and consider

{Ai ??Bi |Ci}Ii=1 [ {Ej ??Fj |Gj}Jj=1 ) A??B |C, (6)

which may be easier to prove, if true. The question is what kind of extra conditions
we can add without a↵ecting the truth (or non-truth) of (1). To answer this question,
we make the following definition.

Definition 1. E??F |G does not bridge A??B |C if

(EFG) \A = ; or (EFG) \B = ;,

i.e., EFG intersects at most one of A and B.

Then we have the following theorem.

Theorem 1. Suppose that we check the implication of (1) only by the criterion of

1. Furthermore, assume that each Ej ??Fj |Gj does not bridge A??B |C. Then (1)
holds if and only if

{Ai ??Bi |Ci}Ii=1 [ {Ej ??Fj |Gj}Jj=1 ) A??B |C (7)

holds.
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Proof. Suppose that (1) holds. Then by the given conditions {Ai ??Bi |Ci}Ii=1 we
already have log p(ABC;x) 2 LhA,B |Ci. Adding {Ej ??Fj |Gj}Jj=1 only adds more
decompositions of log p(ABC;x), so we might have more conditional independences.
However A??B |C still holds.

Suppose that we could prove (7) by the technique of Proposition 1. Then for some
coe�cients ↵i, i = 1, . . . , I and �j , j = 1, . . . , J we can write

log p(ABC;x) +
IX

i=1

↵i(�AiBiCi(x)� �AiCi(x)� �BiCi(x) + �Ci(x))

= h(x) +
JX

j=1

�j(�EiFiGi(x)� �EiGi(x)� �FiGi(x) + �Gi(x)), (8)

where h(x) 2 LhA,B |Ci. Note that (8) holds for every x 2 X . Note also that
log p(ABC;x) and h(x) depend only on xABC . Fix components of x other than xABC

to particular values, say x

0
N\ABC in (8). Writing x = (xABC , x

0
N\ABC), we have

log p(ABC;xABC) +
IX

i=1

↵i(�AiBiCi(xABC , x
0
N\ABC)

� �AiCi(xABC , x
0
N\ABC)� �BiCi(xABC , x

0
N\ABC) + �Ci(xABC , x

0
N\ABC))

= h(xABC) +
JX

j=1

�j(�EiFiGi(xABC , x
0
N\ABC)

� �EiGi(xABC , x
0
N\ABC)� �FiGi(xABC , x

0
N\ABC) + �Gi(xABC , x

0
N\ABC)),

(9)

for every xABC . Now by the non-bridging assumption, the right-hand side of (9)
belongs to LhA,B |Ci. Hence, again by Proposition 1, we see that (1) holds.

Theorem 1 shows that given {Ai ??Bi |Ci}Ii=1 and A??B |C, we can first add
every E??F |G, which does not bridge A??B |C, to the given conditions. Therefore,
if (1) is true, then it su�ces to prove an easier problem (7).

Example 2. Let us consider the following implication problem:

a?? b | cd, c?? d | a, c?? d | b, c?? d | ;. ) c?? d | ab. (10)

As discussed in the end of the previous section, though this relation is true, it is

impossible to derive it by direct use of imsets. Now we show that it is possible to derive

it by algebraic manipulation using Proposition 1 and Theorem 1. From Theorem 1,

to prove the relation of (10), we can add extra conditional independence statements,

such as a?? b | c, a?? b | d and a?? b | ;, to a given set of conditional independence

statements. Then we obtain

uha,b | cdi + uhc,d | ai + uhc,d | bi � uhc,d | ;i � uha,b | ci � uha,b | di + uha,b | ;i = uhc,d | abi.
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From this, we have

(log p(abcd;x) + L{Ai ??Bi |Ci}I
i=1

+ L{Ej ??Fj |Gj}J
j=1

) \ Lhc,d | abi 6= ;.

Therefore, from Proposition 1, the relation of (10) is true.

As in Bouckaert et al. [9], we can formulate the implication problem of conditional
independence statements as a problem of finding a solution of the system of linear
equations.

Corollary 1. Let us consider the conditional independence implication problem of

(1). Assume that each Ej ??Fj |Gj does not bridge A??B |C. Then the relation of

(1) is true, if the following system of linear equation

IX

i=1

µi · uhAi,Bi |Cii +
JX

j=1

�j · uhEj ,Fj |Gji = uhA,B |Ci

has a solution in {µi}Ii=1, {�j}Jj=1.
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Abstract

In evidence theory several counterparts of Bayesian networks based on di↵er-

ent paradigms have been proposed. We will present, through simple examples,

problems appearing in two kinds of these models caused either by the conditional

independence concept (or its misinterpretation) or by the use of a conditioning

rule. The latter kind of problems can be avoided if undirected models are used

instead.

1 Introduction

When applying models of artificial intelligence to any practical problem one must cope
with two basic problems: uncertainty and multidimensionality. The most widely used
models managing these issues are, at present, so-called probabilistic graphical Markov

models.
The problem of multidimensionality is solved in these models with the help of

the notion of conditional independence, which enables factorization of a multidi-
mensional probability distribution into small parts, usually marginal or conditional
low-dimensional distributions (e.g. in Bayesian networks), or generally into low-
dimensional factors (e.g. in decomposable models). Such a factorization not only
decreases the storage requirements for representation of a multidimensional distribu-
tion but it usually also induces e�cient computational procedures allowing inference
from these models.

Probably the most popular representative of these models are Bayesian networks,
while from the computational point of view so-called decomposable models are the
most advantageous. Naturally, several attempts to construct an analogy of Bayesian
networks have also been made in other frameworks as e.g. in possibility theory [5],
evidence theory [4] or in the more general frameworks of valuation-based systems
[13] and credal sets [7], while counterparts of decomposable models are, more or less,
omitted.

In this contribution we will confine ourselves to evidence theory, where several
counterparts of Bayesian networks based on di↵erent paradigms have been proposed

⇤The support of Grant GAČR 201/08/0539 is gratefully acknowledged.
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[4, 13, 19]. We will present, through two simple examples, problems appearing in these
models caused either by the conditional independence concept (or its misinterpreta-
tion) or by the use of di↵erent conditioning rules. The latter kind of problems can be
avoided if undirected models are used instead.

2 Basic Concepts

In this section we will briefly recall basic concepts from evidence theory [12] concerning
sets and set functions.

2.1 Set Projections and Joins

For an index set N = {1, 2, . . . , n} let {Xi}i2N be a system of variables, each Xi

having its values in a finite set Xi. In this paper we will deal with multidimensional

frame of discernment XN = X1 ⇥ X2 ⇥ . . . ⇥ Xn, and its subframes (for K ✓ N)

XK =⇥i2KXi. When dealing with groups of variables on these subframes, XK will
denote a group of variables {Xi}i2K throughout the paper.

For M ⇢ K ✓ N and A ⇢ XK , A#M will denote a projection of A into XM :

A

#M = {y 2 XM | 9x 2 A : y = x

#M},

where, for M = {i1, i2, . . . , im},

x

#M = (xi1 , xi2 , . . . , xim) 2 XM .

In addition to the projection, in this text we will also need an opposite operation,
which will be called a join. By a join

1 of two sets A ✓ XK and B ✓ XL (K,L ✓ N)
we will understand a set

A ./ B = {x 2 XK[L : x#K 2 A & x

#L 2 B}.

Let us note that for any C ✓ XK[L naturally C ✓ C

#K
./ C

#L, but generally
C 6= C

#K
./ C

#L.

2.2 Set Functions

In evidence theory [12] two dual measures are used to model the uncertainty: belief
and plausibility measures. Both of them can be defined with the help of another set
function called a basic (probability or belief) assignment m on XN , i.e. ,

m : P(XN ) �! [0, 1],

where P(XN ) is the power set ofXN , and
P

A✓XN
m(A) = 1. Furthermore, we assume

that m(;) = 0.2

1This term and notation are taken from the theory of relational databases [1].
2This assumption is not generally accepted, e.g. in [2] it is omitted. The consequences of this

omission will be mentioned several times throughout this paper.
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A set A 2 P(XN ) is a focal element if m(A) > 0. Let F denote the set of all focal
elements, a focal element A 2 F is called an m�atom if for any B ✓ A either B = A

or B 2/ F . In other words, m�atom is a setwise-minimal focal element.
Belief and plausibility measures are defined for any A ✓ XN by the equalities

Bel(A) =
X

B✓A

m(B), P l(A) =
X

B\A 6=;

m(B), (1)

respectively. It is well-known (and evident from these formulae) that for any A 2
P(XN )

Bel(A)  Pl(A), P l(A) = 1�Bel(AC), (2)

where A

C is the set complement of A 2 P(XN ). Furthermore, basic assignment can
be computed from belief function via Möbius inverse:

m(A) =
X

B✓A

(�1)|A\B|
Bel(B), (3)

i.e. any of these three functions is su�cient to define values of the remaining two.
For a basic assignment m on XK and M ⇢ K a marginal basic assignment of m

is defined (for each A ✓ XM ):

m

#M (A) =
X

B✓XK :B#M=A

m(B).

3 Conditioning

Conditioning belongs to the most important topics of any theory dealing with uncer-
tainty. From the viewpoint of the construction of Bayesian-network-like multidimen-
sional models it seems to be inevitable.

3.1 Conditioning of Events

In evidence theory the “classical” conditioning rule is the so-called Dempster’s rule of

conditioning defined for any ; 6= A ✓ XN and B ✓ XN such that Pl(B) > 0 by the
formulae

Bel(A|DB) =
Bel(A [B

C)�Bel(BC)

1�Bel(BC)
,

P l(A|DB) =
Pl(A \B)

Pl(B)
. (4)

Let us note that in [2] a bit di↵erent formulae are used: conditional beliefs and
plausibilities are not normalized. It corresponds to the omission of the assumption
m(;) = 0.
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This is not the only possibility how to condition, another — in a way symmetric
— conditioning rule is the following one, called focusing defined for any ; 6= A ✓ XN

and B ✓ XN such that Bel(B) > 0 by the formulae

Bel(A|FB) =
Bel(A \B)

Bel(B)
, (5)

Pl(A|FB) =
Pl(A [B

C)� Pl(BC)

1� Pl(BC)
.

Formulae (4) and (5) are, in a way, evidential counterparts of conditioning in
probabilistic framework. Let us note that the seemingly “natural” way of conditioning

m(A|PB) =
m(A \B)

m(B)
(6)

is not possible, since m(A|PB) need not be a basic assignment. It is caused by a
simple fact that m, in contrary to Bel and Pl, is not monotonous with respect to set
inclusion.

3.2 Conditional Variables

However, from the viewpoint of evidential networks conditioning of variables is of pri-
mary interest. In [18] we presented two definitions of conditioning by variables, based
on Dempster conditioning rule and focusing, we proved that these definitions are cor-
rect, nevertheless, their usefulness for multidimensional models is rather questionable,
as thoroughly discussed in the above-mentioned paper.

Therefore, in [19] we proposed a new conditioning rule which is, in a way, a gener-
alization of (6).

Definition 1 Let XK and XL (K \ L = ;) be two groups of variables with values

in XK and XL, respectively. Then the conditional basic assignment of XK given

XL 2 B ✓ XL (for B such that m

#L(B) > 0) is defined as follows:

mXK |PXL
(A|PB) =

X

C✓XK[L:

C#K=A&C#L=B

m(C)

m

#L(B)
(7)

for any A ✓ XK .

Although we said above, that it makes little sense for conditioning of events, it is
sensible in conditioning of variables, as expressed by Theorem 1 proven in [19]. The
above-mentioned problem of non-monotonicity is avoided, because a marginal basic
assignment is always greater than (or equal to) the joint one.

Theorem 1 The set function mXK |PXL
defined for any fixed B ✓ XL, such that

m

#L(B) > 0 by Definition 1 is a basic assignment on XK .
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4 Conditional Independence and Irrelevance

Independence and irrelevance need not be (and usually are not) distinguished in the
probabilistic framework, as they are almost equivalent to each other. Similarly, in pos-
sibilistic framework adopting De Cooman’s measure-theoretical approach [9] (particu-
larly his notion of almost everywhere equality) we proved that the analogous concepts
are equivalent (for more details see [15]).

4.1 Independence

In evidence theory the most common notion of independence is that of random set
independence [6]. It has already been proven [16] that it is also the only sensible one.

Definition 2 Let m be a basic assignment on XN and K,L ⇢ N be disjoint. We say
that groups of variables XK and XL are independent with respect to a basic assignment

m (in notation K ?? L [m]) if

m

#K[L(A) = m

#K(A#K) ·m#L(A#L)

for all A ✓ XK[L for which A = A

#K ⇥A

#L, and m(A) = 0 otherwise.

This notion can be generalized in various ways [3, 13, 16]; the concept of conditional
non-interactivity from [3], based on conjunctive combination rule, is used for construc-
tion of directed evidential networks in [4] (cf. also Section 5.3). In this paper we will
use the concept introduced in [10, 16], as we consider it more suitable: in contrary
to other conditional independence concepts [3, 13] it is consistent with marginaliza-

tion [14], in other words, the multidimensional model of conditionally independent
variables keeps the original marginals (for more details see [16]).

Definition 3 Let m be a basic assignment on XN and K,L,M ⇢ N be disjoint,
K 6= ; 6= L. We say that groups of variables XK and XL are conditionally independent

given XM with respect to m (and denote it by K ?? L|M [m]), if the equality

m

#K[L[M (A) ·m#M (A#M ) = m

#K[M (A#K[M ) ·m#L[M (A#L[M )

holds for any A ✓ XK[L[M such that A = A

#K[M
./ A

#L[M , and m(A) = 0
otherwise.

It has been proven in [16] that this conditional independence concept satisfies so-
called the semi-graphoid properties taken as reasonable to be valid for any conditional
independence concept and it has been shown in which sense this conditional indepen-
dence concept is superior to previously introduced ones [3, 13].

4.2 Irrelevance

Irrelevance is usually considered to be a weaker notion than independence (see e.g.
[6]). It expresses the fact that a new piece of evidence concerning one variable cannot
influence the evidence concerning the other variable, in other words is irrelevant to it.
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More formally: group of variables XL is irrelevant to XK (K \ L = ;) if for any
B ✓ XL such that the left-hand side of the equality is defined

mXK |XL
(A|B) = m(A) (8)

for any A ✓ XK .3

It follows from the definition of irrelevance that it need not be a symmetric relation.
Let us note, that in the framework of evidence theory neither irrelevance based on
Dempster conditioning rule nor that based on focusing even in cases when the relation
is symmetric, imply independence, as can be seen from examples in [18].

Generalization of this notion to conditional irrelevance may be done as follows.
Group of variables XL is conditionally irrelevant to XK given XM (K,L,M disjoint,
K 6= ; 6= L) if

mXK |XLXM
(A|B) = mXK |XM

(A|B#M ) (9)

is satisfied for any A ✓ XK and B ✓ XL[M , such that both sides are defined.
Let us note that the conditioning in equalities (8) and (9) stands for an abstract

conditioning rule (any of those mentioned in the previous section or some other [8]).
However, the validity of (8) and (9) may depend on the choice of the conditioning rule.

4.3 Relationship Between Independence and Irrelevance

As mentioned at the end of preceding section, di↵erent conditioning rules lead to
di↵erent irrelevance concepts. Nevertheless, when studying the relationship between
(conditional) independence and irrelevance based on Dempster conditioning rule and
focusing we realized that they do not di↵er too much from each other, as suggested
by the following summary.

For both conditioning rules:

• Irrelevance is implied by independence.

• Irrelevance does not imply independence.

• Irrelevance is not symmetric, in general.

• Even in case of symmetry it does not imply independence.

• Conditional independence does not imply conditional irrelevance.

The only di↵erence between these conditioning rules is expressed by the following
theorem proven in [18].

Theorem 2 Let XK and XL be conditionally independent groups of variables given

XM under joint basic assignment m on XK[L[M (K,L,M disjoint, K 6= ; 6= L).

Then

mXK |FXLXM
(A|FB) = mXK |FXM

(A|FB#M ) (10)

for any m

#L[M
-atom B ✓ XL[M such that B

#M
is m

#M
-atom and A ✓ XK .

3Let us note that somewhat weaker definition of irrelevance one can found in [2], where equality is
substituted by proportionality. This notion has been later generalized using conjunctive combination
rule [3].
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From this point of view focusing seems to be slightly superior to Dempster con-
ditioning rule, but still it is not satisfactory. However, the new conditioning rule
introduced by Definition 1 is more promising, as suggested by the following theorem,
proven in [19].

Theorem 3 Let K,L,M be disjoint subsets of N such that K,L 6= ;. If XK and

XL are independent given XM (with respect to a joint basic assignment m defined on

XK[L[M ), then XL is irrelevant to XK given XM under the conditioning rule given

by Definition 1.

The reverse implication is not valid in general, which expresses the expected prop-
erty: conditional independence is stronger than conditional irrelevance.

However, in Bayesian networks also the reverse implication plays an important role,
as for the inference, the network is usually transformed into a decomposable model.
Nevertheless, the following assertion proven in [20] holds true.

Theorem 4 Let K,L,M be disjoint subsets of N such that K,L 6= ; and mXK |PXL[M

be a (given) conditional basic assignment of XK given XL[M and mXL[M be a basic

assignment of XL[M . If XL is irrelevant to XK given XM under the conditioning

rule given by Definition 1, then XK and XL are independent given XM (with respect

to a joint basic assignment m = mXK |PXL[M
·mXL[M defined on XK[L[M ).

5 (Directed) Evidential Networks and Compositional

Models

In this section we will deal with directed evidential networks [4] and evidential networks
[20]. These two models di↵er not only by the conditioning rule, but also, and it seems
to be more important, by the interpretation of graph structure of the model.

While in evidential networks conditional basic assignment is assigned to every node
given its parents (analogously to Bayesian networks), in directed evidential networks
conditional beliefs are assigned to arcs, i.e. to every node as many conditionals are
assigned as is the number of its parents. These conditionals are subsequently combined
by the conjunctive combination rule.

The di↵erence between directed evidential networks and compositional models will
be described in Section 5.3 by a simple example, while the lost of information in
evidential networks (in comparison with compositional models) in Section 5.4. Before
doing that we need to recall the concept of compositional models.

5.1 Compositional models

Compositional models are based on the concept of the operator of composition of basic
assignments, introduced in [11] in the following way.

Definition 4 For two arbitrary basic assignments m1 on XK and m2 on XL a com-
position m1 .m2 is defined for all C ✓ XK[L by one of the following expressions:
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(a) if m

#K\L
2 (C#K\L) > 0 and C = C

#K
./ C

#L
then

(m1 .m2)(C) =
m1(C#K) ·m2(C#L)

m

#K\L
2 (C#K\L)

;

(b) if m

#K\L
2 (C#K\L) = 0 and C = C

#K ⇥XL\K then

(m1 .m2)(C) = m1(C
#K);

(c) in all other cases

(m1 .m2)(C) = 0.

From the basic properties of this operator (proven in [10, 11]) it follows that op-
erator of composition is not commutative in general, but it preserves first marginal
(in case of projective basic assignments both of them). In both these aspects it dif-
fers from conjunctive combination rule. Furthermore, operator of composition is not
associative and therefore its iterative applications must be made carefully, as we will
see later.

A lot of other properties possessed by the operator of composition can be found in
[10, 11], nevertheless here we will confine ourselves to the following theorem (proven
in [10]) expressing the relationship between conditional independence and operator of
composition.

Theorem 5 Let m be a joint basic assignment on XM , K,L ✓ M. Then (K \ L) ??
(L \K)|(K \ L) [m] if and only if

m

#K[L(A) = (m#K
.m

#L)(A)

for any A ✓ XK[L.

Now, let us consider a system of low-dimensional basic assignmentsm1,m2, . . . , mn

defined on XK1 ,XK2 , . . . ,XKn , respectively. Composing them together by multiple
application of the operator of composition, one gets multidimensional a basic assign-
ment on XK1[K2[...[Kn . However, since we know that the operator of composition
is neither commutative nor associative, we have to properly specify what “composing
them together” means.

To avoid using too many parentheses let us make the following convention. When-
ever we write the expression m1 .m2 . . . . .mn we will understand that the operator
of composition is performed successively from left to right:4

m1 .m2 . . . . .mn = (. . . ((m1 .m2) .m3) . . . .) .mn. (11)

Therefore, multidimensional model (11) is specified by an ordered sequence of low-
dimensional basic assignments — a generating sequence m1,m2, . . . ,mn.

4Naturally, if we want to change the ordering in which the operators are to be performed we will
do so using parentheses.
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5.2 Evidential network generated by a perfect sequence

From the point of view of artificial intelligence models used to represent knowledge in
a specific area of interest, a special role is played by the so-called perfect sequences,
i.e., generating sequences m1,m2, . . . ,mn, for which

m1 .m2 = m2 .m1,

m1 .m2 .m3 = m3 . (m1 .m2),

...

m1 .m2 . . . . .mn = mn . (m1 . . . . .mn�1).

The property explaining why we call these sequences “perfect” is expressed by the
following assertion proven in [10].

Theorem 6 A generating sequence m1,m2, . . . ,mn is perfect if and only if all assign-

ments m1,m2, . . . ,mn are marginal assignments of the multidimensional assignment

m1 .m2 . . . . .mn:

(m1 .m2 . . . . .mn)
#Kj = mj ,

for all j = 1, . . . , n.

Now, let us recall a simple algorithm for the construction of an evidential network
from a perfect sequence of basic assignments [17].

Having a perfect sequence m1,m2, . . . ,mn (m` being the basic assignment of XK`),
we first order all the variables for which at least one of the basic assignments m` is
defined in such a way that first we order (in an arbitrary way) variables for which m1

is defined, then variables from m2 which are not contained in m1, etc.5 Finally we
have

{X1, X2, X3, . . . , Xk} = {Xi}i2K1[...[Kn .

Then we get a graph of the constructed evidential network in the following way:

1. the nodes are all the variables X1, X2, X3, . . . , Xk;

2. there is an edge (Xi ! Xj) if there exists a basic assignment m` such that both
i, j 2 K`, j 62 K1 [ . . . [K`�1 and either i 2 K1 [ . . . [K`�1 or i < j.

Evidently, for each j the requirement j 2 K`, j 62 K1 [ . . . [K`�1 is met exactly
for one ` 2 {1, . . . , n}. It means that all the parents of node Xj must be from the
respective set {Xi}i2K` and therefore the necessary conditional basic assignments
mj|pa(j) can easily be computed from basic assignment m` via (7).

It is also evident, that if both i and j are in the same basic assignment and
not in previous ones, then the direction of the arc depends only on the ordering of
the variables. This might lead to di↵erent independences, nevertheless, the following
theorem proven in [17] sets forth that any of them is induced by the perfect sequence.

5Let us note that variables X1, X2, . . . , Xk may be ordered arbitrarily, nevertheless, for the above
ordering proof of Theorem 7 is simpler than in the general case.
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Table 1: Basic assignments mi and conditional basic assignments m.|i.

A ✓ Ci mi(A) D ✓ B m.|i(D)

{hi} 0.49 {b} 0.49

{t1} 0.49 {b̄} 0.49

{h1, t1} 0.02 {b, b̄} 0.02

Table 2: Joint basic assignment m of variables C1, C2 and B.

m {b} {b̄} {b, b̄}
{h2} {t2} {h2, t2} {h2} {t2} {h2, t2} {h2} {t2} {h2, t2}

{h1} 0.24 0 0 0 0.24 0 0 0 0.01

{t1} 0 0.24 0 0.24 0 0 0 0 0.01

{h1, t1} 0 0 0 0 0 0 0.01 0.01 ⇠ 0

Theorem 7 For a belief network defined by the above procedure the following inde-

pendence statements are satisfied for any j = 2, . . . k:

{j} ?? ({i < j} \ pa(j)) | pa(j). (12)

5.3 Example: two coins toss

Let us consider two fair coins toss expressed by variables C1 and C2 with values in C1

and C2, respectively (Ci = {hi, ti}), and the basic assignments m1 and m2 (contained
in the left part of Table 1) expressing the fact that the result of any of the coins may
from time to time be unknown. The results of tossing two coins are usually considered
to be independent, therefore the joint basic assignment m12 is just a product of these
m1 and m2 (cf. definition of random set independence at the beginning of Section 4).

Now, let us consider one more variable B expressing the fact the bell is ringing,
i.e. B = {b, b̄}. It happens only if the result on both coins is the same (two heads
or two tails). It is evident, that B depends on both C1 and C2, which corresponds
to the graph in Figure 5.3 and (due to deterministic dependence of the values of B

��✏� ��✏� ��✏�
�-

C1 B

C2

Figure 1: Graph G from Example: two coin toss.

on the values of C1 and C2) the joint basic assignment of the three variables is in
Table 2. The above-mentioned graph can easily be obtained from perfect sequence of
basic assignments m1,m2 and m3 ⌘ m (contained in Tables 1 and 2) via the algorithm
presented in the preceding section.
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Table 3: Joint basic assignment of variables C1, C2 and B based conjunctive combi-
nation rule; b⇤ stands for either b or b̄.

m {b⇤} {b, b̄}
{h2} {t2} {h2, t2} {h2} {t2} {h2, t2}

{h1} 0.0624 0.0624 0.0025 0.0001 0.0001 ⇠ 0

{t1} 0.0624 0.0624 0.0025 0.0001 0.0001 ⇠ 0

{h1, t1} 0.0025 0.0025 0.0001 ⇠ 0 ⇠ 0 ⇠ 0

The approach suggested by Ben Yaghlane et al. [4] is completely di↵erent. The
authors start from belief functions of C1 and C2 and conditional belief functions of B
given C1 and C2, respectively. To make the di↵erence between these two approaches
more apparent we will use basic assignments instead of belief functions (belief func-
tions, nevertheless, can be easily obtained from them by (1)). The conditional basic
assignments of B given C1 and C2, respectively, can be found in the right part of
Table 1. Let us note that these conditional basic assignments do not depend on the
condition, as the results of tossing two coins are independent and therefore also the
event that the bell rings does not depend on the result at one coin.

The values of joint basic assignments is computed from Tables 1 using (non-
normalized) conjunctive combination rule. Results of these computations can be found
in Table 3.

It is evident that the independence (non-interactivity) between coins C1 and C2 is
not valid any more — it has been substituted by conditional non-interactivity, which
does not make a sense, as C1 is strongly dependent on C2 whenever B is known.

5.4 Evidential Network vs Compositional Model

Theorem 3 makes it possible to define evidential networks in a way analogous to
Bayesian networks, but simultaneously brings a question: are these networks advan-
tageous in comparison with other multidimensional models in this framework? The
following example brings, at least partial, answer to this question.

Example 1 LetX1, X2 andX3 be three binary variables with values inXi = {ai, āi}, i =
1, 2, 3, and m be a basic assignment on X1 ⇥X2 ⇥X3 defined as follows

m(X1 ⇥X2 ⇥ {ā3}) = .5,
m({(a1, a2, ā3), (ā1, ā2, a3)}) = .5.

VariablesX1 andX2 are conditionally independent givenX3 with respect tom. There-
fore also X2 is irrelevant to X1 given X3, i.e.

mX1|X23
(A|B) = mX1|X3

(A|B#{3}), (13)

for any focal element B of m#{23}. As both m

#{23} and m

#{3} have only two focal
elements, namely X2⇥ {ā3} and {(a2, ā3), (ā2, a3)} and {ā3} and X3, respectively, we
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have

mX1|PX23
(X1|X2 ⇥ {ā3}) = mX1|PX3

(X1|{ā3}) = 1, (14)

mX1|PX23
(X1|{(a2, ā3), (ā2, a3)}) = mX1|PX3

(X1|X3) = 1. (15)

Using these conditionals and the marginal basic assignment m

#{23} we get a basic
assignment m̃ di↵erent from the original one, namely

m̃(X1 ⇥X2 ⇥ {ā3}) = .5,
m̃(X1 ⇥ {(a2, ā3), (ā2, a3)}) = .5.

Furthermore, if we interchange X1 and X2 we get yet another model, namely

m̂(X1 ⇥X2 ⇥ {ā3}) = .5,
m̂(X2 ⇥ {(a1, ā3), (ā1, a3)}) = .5. }

The conditional independence of X1 and X2 given X3 and relation (13) correspond
to a directed graph in Figure 5.4, which leads to the following system of (conditional)

��✏� ��✏� ��✏�
--

X2 X3 X1

Figure 2: Graph G from Example 1.

basic assignments:

m

#2(X2) = 1,
mX3|PX2

({ā3}|X2) = mX3|PX2
(X2|X2) = 1,

and mX1|PX3
as suggested in right-hand side of (14) and (15).

The final model
m̌(X1 ⇥X2 ⇥ {ā3}) = .5,
m̌(X1 ⇥X2 ⇥X3) = .5.

is again di↵erent, as instead of basic assignment m

#23 (as in Example 1) we used its
marginal and conditional.

Therefore it is evident, that evidential networks are less powerful than e.g. com-
positional models [10], as any of these threedimensional basic assignments can be
obtained from two twodimensional ones using the operator of composition.

6 Conclusions

This contribution was devoted to two kinds of multidimensional models with directed
graph structure, namely directed evidential networks and evidential networks.

In directed evidential networks the graph structure is used in di↵erent sense than
in Bayesian networks (it resembles rather so-called pseudobayesian networks), which
may lead to senseless results, as we presented by a simple example.
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Evidential networks, in contrary, keep the sense of the graphical structure known
from Bayesian networks, nevertheless their weakness consists in conditioning, which
may destroy the structure of the original focal elements.

From this point of view compositional models seem to be more appropriate mul-
tidimensional models in the framework of evidence theory than these two kinds of
networks.
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Abstract

ST Elevation Myocardial Infarction (STEMI) is the leading cause of death
in developed countries. The objective of our research is to design and verify a
predictive model of hospital mortality in STEMI based on clinical data about
patients that could serve as a benchmark for evaluation of healthcare providers.
In this paper we present results of an experimental evaluation of di↵erent machine
learning methods on a real data about 603 patients from University Hospital in
Olomouc.

1 Introduction

In developed countries ST Elevation Myocardial Infarction (STEMI) is responsible for
more than a half of deaths. Its treatment has a significant socio-economic impact. The

⇤Our research was supported by the Czech Science Foundation through grant nr. 201/08/0539.
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main objective of our research is to design and verify a predictive model of hospital
mortality in STEMI based on clinical data about patients available at the beginning
of their hospitalization. This model can be used not only as a decision support tool
that supports medical decisions about patients’ treatments but also as a benchmark
for evaluation of healthcare providers, which is our main motivation for the research
reported in this paper.

The motivation for this type of benchmarking is that mere mortality does not reflect
severity of the illness at the hospital admission. There are hospitals that more often
treat complicated cases and mere mortality would not be fair to them. Therefore the
mortality should be risk adjusted. For this purpose a good model describing influence
of risk factors on the mortality is needed.

In this paper we will present the results of our experimental evaluation of di↵erent
machine learning methods on a real data from University Hospital in Olomouc.

2 Dataset of patients with STEMI

Our dataset contains data of 603 patients admitted to University Hospital in Olomouc
for STEMI. The average age was 65 years. There were 431 men (71%) and 172 women
(29%) in the dataset. Our goal is to classify patients into two classes according to
whether they survive 30 days or not. This criteria is called 30-days mortality [8].
The value 0 will correspond to survival while the value 1 to non-survival. Since the
intended use of a constructed classifier is the evaluation of healthcare quality we use
only information about patients’ health state at the time of their hospital admission.
In data we have 23 attributes of di↵erent types and value range. They were selected
by cardiologists since they may influence STEMI mortality. The attributes are listed
in Table 1. In the first group there are basic demographic characteristics and body
measurements. The attributes of the second group describe the location and the
mortality risk of STEMI. The third group consists of laboratory tests.

Some attribute values are missing for some patients. In total 3.2% of values are
missing. As it can be seen from Table 1 the attributes are of di↵erent types by their
nature. Some classification methods can handle certain types of attributes only and
thus require a transformation of attributes’ values.

2.1 Ordinal attributes

Ordinal attributes are attributes whose values have an ordering of values that is natural
for the quantification of their impact on the class. This is satisfied by all attributes
that can take only two values – even if they are nominal, e.g. by Gender1. In our data
it seems it can be assumed for most real-valued attributes, but note that there might
exist laboratory tests whose values deviating from a normal range in both directions
(i.e. both lower and higher values) may increase the probability of death2. However,
there is no natural ordering of the values of the nominal attribute STEMI since its

1For this purpose we encode Gender using two numbers: 0 for male and 1 for female.
2In order to allow modeling this type of influence we will transform such attributes into two

attributes. We will discuss this in the next subsection.
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Table 1: Attributes

Attribute Code type value range in data
Gender SEX nominal {male, female}
Age AGE real [23, 94]
Height HT real [145, 205]
Weight WT real [35, 150]
Body Mass Index BMI real [16.65, 48.98]
STEMI Location STEMI nominal {inferior, anterior,

lateral}
Killip classification at ad-
mission

KILLIP integer {1, 2, 3, 4}

Kalium K real [2.25, 7.07]
Urea UR real [1.6, 46.5]
Kreatinin KREA real [17, 525]
Uric acid KM real [109, 935]
Albumin ALB real [23, 53.5]
HDL Cholesterol HDLC real [0.38, 2.21]
Cholesterol CH real [1.8, 9.59]
Triacylglycerol TAG real [0.31, 8.13]
LDL Cholesterol LDLC real [0.63, 7.79]
Glucose GLU real [4.2, 25.7]
C-reactive protein CRP real [0.3, 359]
Cystatin C CYSC real [0.38, 5.22]
N-terminal prohormone of
brain natriuretic peptide

NTBNP real [22.2, 35000]

Troponin TRPT real [0, 25]
Glomerular filtration rate
(based on MDRD)

GFMD real [0.13, 7.31]

Glomerular filtration rate
(based on Cystatin C)

GFCD real [0.09, 7.17]

values are locations. Fortunately, this problem can be simply overcame by creating
one binary attribute for each state of STEMI indicating whether STEMI takes this
state or not. We denote new binary attributes as STEMI inferior, STEMI anterior,
and STEMI lateral. We will refer to data in this form as D.ORD.

2.2 Discrete attributes

Some classification methods require a finite number of values of each attribute – i.e.,
discrete attributes. In order to get statistically reliable estimation the number of
values should be as low as possible (and sensible). The transformation of a real-
valued attribute into an attribute with finitely many values is called discretization.
We performed discretization of all real-valued attributes. We used di↵erent number of
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values depending on the nature of each attribute. Generally, it is di�cult to find
the optimal number and the values of split points in discretization. Fortunately,
there exists the Czech National Code Book that classifies numeric laboratory results,
with respect to age and gender, into nine groups 1, 2, . . . , 9. Group 5 corresponds to
standard values in the standard population. The groups < 5 to decreased values and
groups > 5 to increased values. We discretized all laboratory tests X so that for each
test we created two new attributes:

• One attribute for a decreased value of the test – denoted X low – with state 0
if the value is within the normal range. Values 1, 2, 3, 4 became values of this
attribute.

• Another attribute for the increased value of the test – denoted X high – again
with state 0 if the value is within the normal range. Values 6, 7, 8, 9 became
values of this attribute.

The attributes Age, Height, and Weight were discretized into more than two groups
(10, 4, and 4, respectively). We will refer to data in this form as D.DISCR.

2.3 Binary attributes

However, as we will see in Section 4 the performance of tested methods using discretiza-
tion described in Section 2.2 was inferior to discretization to only binary attributes,
where all laboratory tests are encoded using two binary attributes. The first attribute
takes value 0 for the standard values of the test and value 1 if the values are decreased.
The second attribute takes value 0 for the standard values of the test and value 1 if the
values are increased. The attribute Killip classification was transformed by replacing
value 1 by 0 and by joining the values 2, 3, 4 into one value 1. The attributes Age,
Height, and Weight were removed since they appeared not to be relevant for mortal-
ity. From the demographic group of attributes only Gender and the Body Mass Index
(BMI) were kept with BMI being encoded using two binary attributes BMI high and
BMI low. We will refer to data in this form as D.BIN.

2.4 Attribute selection

When learning classifiers from datasets we used every dataset in two di↵erent ways:

• all attributes were included or

• only attributes selected by the attribute selection method CfsSubsetEval from
Weka [6] were included.

CfsSubsetsEval method [5] selects a subsets of attributes that are highly correlated
with the class while having low intercorrelation. We searched the space of all subsets
by a greedy best first search with backtracking. Data D after the application of this
attribute selection method will be su�xed as D.AS.
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3 Tested classifiers

For tests we used a large subset of classifiers implemented in Weka [6]. Classifiers that
performed best in the preliminary tests qualified for the final tests. In the final tests
we compared following classifiers:

• Logistic regression (two versions):

LOG.REG – logistic regression model with a ridge estimator [10].

LOG.BOOST – LogitBoost with simple regression functions as base learners
used for fitting the logistic models [9].

• Decision tree C4.5 – pruned C4.5 decision tree [11].

• Naive Bayes classifier (two versions):

NB.SIMPL – Naive Bayes classifier which estimates Gaussian distribution
when learned from real-valued (numeric) attributes [3].

NB – Naive Bayes classifier which also uses estimator classes. Numeric
estimator precision values are chosen based on analysis of the training data [7].

• NN – Artificial Neural Network Multilayer Perceptron. The nodes in this net-
work model sigmoid functions [2].

• Bayesian network classifier (two versions):

BN.K2 – Bayesian Network classifier learned by K2 algorithm [1] (with
unrestricted number of parents).

BN.TAN – Tree Augmented Naive Bayes classifier [4].

4 Results of experiments

We compared the classifiers using Weka [6]. We used the 10-fold cross-validation
methods. The results are summarized in Table 2 using the following two measures of
prediction quality:

• Accuracy (ACC), which is the number of true positive and true negative classifi-
cation divided by total number of classifications. It is reported using percentage
scale (i.e. multiplied by 100).

• Area under the ROC curve (AOC). The ROC curve depicts the dependence of
True Positive Rate (vertical axis) on False Positive Rate (horizontal axis) both
as functions of the threshold.

In Table 2 we can observe several interesting things:
First, if we compare results of a single classifier on di↵erent versions of data, we can

see that the best results are mostly achieved with D.BIN.AS, i.e. with discretized data,
where each attribute is binary. This observation confirms the general recommendation
that if the number of data records is not large then the discretization should not be
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0.87 + STEMI_lateral * -0.41 + ALB * -0.08

+ HDLC * 0.21 + CYSC * 0.24 + KILLIP * 0.31

-1.64 + ALB_low * 0.76 + CYSC_high * 0.62 + KILLIP * 0.68

Figure 1: LOG.BOOST for D.ORD.AS (up) and D.BIN.AS (down).

fine-grained. We were able to improve the classifiers’ performance due to a good
discretization of original ordinal data based on expert knowledge of the domains of
attributes.

Secondly, attribute selection methods also helped to improved performance. Origi-
nally, we did’t have large number of attributes since we started with only 23 attributes.
But the performance of most classifiers improved if only few of the most relevant at-
tributes were included. This also confirms the general recommendation that in order
to avoid overfitting of training data the models should be as simple as possible.

Finally, when comparing di↵erent classifiers we can see that there is not big dif-
ference between their accuracy. Actually, the high accuracy could be achieved by a
primitive classifier that would assign all instance to class 0, i.e. all patients would sur-
vive 30 days. Its accuracy would be 94.03%, which is the relative number of patients
that survive STEMI in our data. However, its AUC would be very low, only 0.465.
Therefore we prefer classifiers that maximize both criteria at the same time. From this
point of view the classifiers C4.5 and NN seem inferior to LOG, NB, and BN families.
There are not huge di↵erences between later three families, but if we should choose
two best performing classifiers it would be LOG.BOOST and BN.TAN that have the
best AUC and ACC from all classifiers, respectively.

Next we will present our choice of the best performing classifiers in more detail.
In Figure 1 we compare LOG.BOOST for two versions of data – original ordinal and
binarized data. Both formulas are for logit of probability of Mortality=1. Although
there are some similarities between these two classifiers they are not exactly the same.
Note that splitting laboratory tests ALB and CYSC into two attributes ALB low,
ALB high and CYSC low and CYSC high helps to make explicit the impact of low
values of ALB and high values of CYSC on the mortality. Also note that while in the
first formula KILLIP takes values 1, 2, 3, 4 in the second one it is only 0 (corresponding
to the original 1) and 1 corresponding to the original 2, 3, 4. Albeit the second model
is simpler it has substantially higher value of AUC. Actually, according to AUC it is
the best performing classifier.

The AUC values of C4.5 classifiers were quite low. However, it is interesting to see
that the C4.5 for binarized data despite its extreme simplicity has quite good accuracy
ACC and performs actually better than more complex C4.5 build from ordinal data.
See Figure 2. In each leaf the first number after colon is the classification. The number
in parenthesis is the total number of instances reaching that leaf (since our data has
missing attribute values we got decimal numbers).

Finally, we add a comment on two Bayesian network classifiers. In Figure 3 we
compare Tree Augmented Naive Naive Bayes classifier (up) and Bayesian Network
classifier learned by K2. Despite the BN learned by K2 was allowed to have more
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CYSC <= 1.64: 0 (553.0)

CYSC > 1.64

| HDLC <= 0.56: 1 (5.0)

| HDLC > 0.56

| | KILLIP <= 1

| | | ALB <= 25.2: 1 (2.21)

| | | ALB > 25.2: 0 (29.79)

| | KILLIP > 1

| | | UR <= 15.8: 1 (6.0)

| | | UR > 15.8: 0 (7.0)

CYSC_high = 0: 0 (526.0)

CYSC_high = 1

| ALB_low = 0: 0 (63.29)

| ALB_low = 1: 1 (13.71)

Figure 2: C4.5 for D.ORD.AS (up) and for D.BIN.AS (down).

parents of each attributes than TAN3 it finally contains less edges (only four edges
between attributes) and its performance is comparable with BN.TAN.

5 Conclusions

In this paper we compare di↵erent machine learning methods using a real medical
data from a hospital. The best performance was achieved on discretized data where
the discretization was based on the expert knowledge about the attributes (mostly on
standard scale of results of laboratory tests) and the attributes had only two values.
The best performing classifiers were based on logistic regression and on simple Bayesian
networks. In our future research we would like to extend the set of attributes with
other clinical data and get datasets with a larger number of patients.
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Abstract

Probability logic studies the properties resulting from the probabilistic in-

terpretation of logical argument forms. Typical examples are the probabilistic

Modus Ponens or Modus Tollens. Argument forms with two premises usually

lead from precise probabilities of the premises to imprecise or interval probabil-

ities of the conclusion. In the contribution we study generalized inference forms

having three or more premises. Recently Gilio has shown that these general-

ized forms “degrade”—more premises lead to more imprecise conclusions, i.e.,

to wider intervals. We distinguish di↵erent forms of degradation. We anal-

yse Predictive Inference, Modus Ponens, Bayes’ Theorem, and Modus Tollens.

Special attention is spend to the case where the conditioning events have zero

probabilities.

1 Introduction

Consider a knowledge base that contains the observations D1, D2, D3. From the
knowledge base it follows that P (H|D1 ^ D2) 2 [0.1, 0.12]. In addition from the
knowledge base it follows that P (H|D1 ^D2 ^D3) 2 [0.6, 0.9]. On which of the two
probability intervals should we base the probability of H? Three properties are to be
considered for this decision: (i) The width of the intervals; the interval [0.1, 0.12] is
tighter than [0.6, 0.9], (ii) the position of the intervals; the positions of [0.1, 0.12] and
[0.6, 0.9] are rather di↵erent, (iii) the amount of information; D1 ^D2 is less specific
than D1 ^ D2 ^ D3. The principle of total evidence requires to base the updated
probability of H on P (H|D1 ^D2 ^D3). However, this leads to the more imprecise
interval. In conditional probability logic we are confronted with the above situation
in many cases. Contrary to what one would expect, more specific information leads to
more imprecise conclusions. Several investigations [3, 9, 4] have shown that the width
of the interval of the conclusion increases as the number of premises increases. This
property has been called “degradation in conditional probability logic”.
Modus Ponens is the inference from the premises {A,A ! B} to the conclusion B.
Conditional probability logic determines the set of all coherent probability values of
the conclusion if a certain coherent probability assessment on the premises is given.
This set is according to de Finetti’s Fundamental Theorem [2] an interval or a point
value. Empirical findings strongly indicate that people interpret the probability of
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a conditional as the conditional probability of the corresponding conditional event
[7]. The probabilistic version of Modus Ponens is consequently the inference from
the premises {P (A) = ↵, P (B|A) = �} to the conclusion P (B) 2 [↵�,↵� + 1 � ↵].
Generalized probabilistic Modus Ponens determines the interval P (H) 2 [�0, �00] if the

premises {P (E1) = ↵1, . . . , P (En) = ↵n, P (H|
nV

i=1
Ei) = �} are given.

For a generalized inference form we denote by In the interval for the conclusion if n
premises are given. Let |Ii| be the width of the interval Ii. A generalized inference
form degrades if and only if for all i, j 2 N: If i < j, then |Ii|  |Ij |. To study
degradation in more detail, we distinguish two forms of degradation. A generalized
inference form strongly degrades if and only if for all i, j 2 N: If i < j, then Ii ✓ Ij .
A generalized inference form weakly degrades if and only if it degrades and if for some
k, l 2 N Ik 6✓ Il and Il 6✓ Ik . Suppose that l > k. Because for the prediction of an
event the position of it’s probability is of main importance, a new position Ik 6✓ Il of
the interval Il compensates for its greater width. Consequently, although both forms
of degradation form a problem to the application of conditional probability logic to
generalized inference forms, strong degradation is the more serious problem. Since
Ik ✓ Il, no compensation in form of a new position is received for obtaining a wider
interval Il.
In this contribution we analyse generalizations of Modus Ponens, Predictive Inference,
Conjunction, Bayes’ Theorem, and Modus Tollens for the di↵erent kinds of degrada-
tion. It is common to all the inference forms considered in the present paper—with
the exception of Modus Tollens—that a certain form of ultimate degradation occurs.
If the number of premises is su�ciently high, then the interval of the conclusion is the
unit interval [0, 1]. The reason for this is that the lower bound of the conjunction of n

events P (
nV

i=1
Ei) is 0 if n is large. The fact that the lower bound of the conjunction is

often zero has the consequence that the conditioning event of many conditional events
has zero probability. We therefore give special attention to this case. In particular,
we study the generalization of Bayes’ Theorem where the prior of the hypothesis has
zero probability or where the data has zero probability. Furthermore, we proof the
result for the generalized Modus Tollens stated in [4, 9].

2 Degradation of Inferences in Conditional Proba-

bility Logic

2.1 Terminology

Let F = {E1|H1, . . . , En|Hn} be a set of conditional events. If Hi is the sure event,
i.e., Hi = >, then we write Ei instead of Ei|Hi. A possible outcome or a constituent

is a conjunction of the form ±E1 ^ . . . ^ ±En ^ ±H1 ^ . . . ^ ±Hn, where for all
events A 2 {E1, . . . , En, H1, . . . , Hn} ±A is either A or ¬A . If the 2n events are
logically independent, then there are 22n constituents. We denote each constituent by
a member of the set {Ci} and by xi the probability of the i-th constituent P (Ci). The
probability of an event is the sum of the probabilities of the constituents verifying it.
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Table 1 shows our notation in the case of three events H,E1, E2.

C1 C2 C3 C4 C5 C6 C7 C8 Probability
H 1 1 1 1 0 0 0 0 P (H) = x1 + x2 + x3 + x4

E1 1 1 0 0 1 1 0 0 P (E1) = x1 + x2 + x5 + x6

E2 1 0 1 0 1 0 1 0 P (E2) = x1 + x3 + x5 + x7

Table 1: Constituents for three events

The interval of the coherent probability values for the conclusion of an inference
form can be determined by solving sequences of linear systems. This is a corollary
of the following theorem which characterizes coherence [1, p. 81] (original for infinite
sets of conditional events).

Theorem 1. (Coletti and Scozzafava, 2002) A probability assessment P on F =
{E1|H1, . . . , En|Hn} is coherent i↵ there exists a sequence of compatible systems,
with unknowns x↵

r � 0,

S↵ =

8
>>>><

>>>>:

P
Cr✓Ei^Hi

x↵
r = P (Ei|Hi)

P
Cr✓Hi

x↵
r

[if
P

Cr✓Hi

x↵�1
r = 0, ↵ � 1] (i = 1, . . . , n)

P
Cr✓H↵

0

x↵
r = 1

with ↵ = 0, 1, . . . , n, where H0
0 = H1 _ . . ._Hn and H↵

0 denotes, for ↵ � 1, the union
of the Hi such that

P
Cr✓Hi

x↵�1
r = 0.

Consider for example probabilistic Modus Tollens. The premises are P (¬E1) = ↵,
P (E1|H) = �. Employing the notation of Table 1, the lower (resp. upper) bound for
the conclusion P (¬H) can be determined by minimizing (resp. maximizing) the sum
x5 + x6 + x7 + x8 in the following linear system

x3 + x4 + x7 + x8 =↵

�(x1 + x2 + x3 + x4) =x1 + x2

8X

i=1

xi = 1, xi �0 .

In the case of Modus Tollens only one linear system is to be considered. However, if
we want to determine the probability of a conditional event with a conditioning event
that has zero probability, then more than one linear system are to be considered. We
demonstrate this in the proof of Bayes’ Theorem where the data has zero probability
(Theorem 5, Theorem 6).
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2.2 Conjunction

For the conjunction of n events it holds the following theorem (see for example [3]).

Theorem 2 (Conjunction of n events). If P (Ei|H) = ↵i, for i = 1, . . . , n, then

P (
n̂

i=1

Ei|H) 2
"
max

(
0,

nX

i=1

↵i � (n� 1)

)
,min{↵i}

#
.

The lower bound of P (
n+1V
i=1

Ei|H) is less than or equal to that of P (
nV

i=1
Ei|H).

Equality holds if and only if P (En+1|H) = ↵n+1 = 1. Moreover, if n �
nP

i=1
↵i + 1,

then the lower bound of P (
nV

i=1
Ei|H) is 0. We shall soon see that these properties of

the conjunction are the reasons for the degradation of many other inferences.

2.3 Predictive Inference

Predictive Inference is one of the key inference rules in Bayesian statistics. It deter-
mines the predictive probability P (H|E1 ^ . . . ^ Er ^ ¬Er+1 ^ . . . ^ ¬En) of H after
having observed r successes and n � r failures in the set {Ei}ni=1. It is of main im-
portance if H is regarded exchangeable with the other events. If at least one of the
events {Ei}ni=1 did not occur, i.e., r < n, then the interval obtained for the predictive
probability is the unit interval [9]. As observed in [9], the case where all previous trials
were successes, i.e., r = n, is a special case of the System P rule Cautious Mono-
tonicity. Consequently, the following theorem is a corollary of the result for Cautious
Monotonicity stated in [3].

Theorem 3 (Predictive probability). If P (H) = � and P (Ei) = ↵i, for i = 1, . . . , n,
then P (H|E1 ^ . . . ^ En) 2 [�0, �00], with

�0 =

8
>>>><

>>>>:

max

8
<

:0,
�+

nP
i=1

↵i�n

nP
i=1

↵i�(n�1)

9
=

; if
nP

i=1
↵i � (n� 1) > 0

0 if
nP

i=1
↵i � (n� 1)  0

�00 =

8
>>>><

>>>>:

min

8
<

:1, �
nP

i=1
↵i�(n�1)

9
=

; if
nP

i=1
↵i � (n� 1) > 0

1 if
nP

i=1
↵i � (n� 1)  0

We compare this result with the result for the case where the premise P (En+1) =
↵n+1 is added and the conclusion is H|E1^ . . .^En^En+1. So that in both cases the
same event H is predicted. Theorem 3 shows that the upper bound of the conclusion
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increases and that its lower bound decreases. Thus, the interval gets wider if a new
event is added and the old interval is a subset of the new interval. Consequently,
in the case of predictive inference we have a strong degradation. Furthermore, if

n �
nP

i=1
↵i + 1, then P (H|E1 ^ . . . ^ En) 2 [0, 1]. The fact that the lower bound of

the conjunction decreases is the reason for both, the strong degradation of Predictive
Inference and for obtaining the unit interval if n is large.

2.4 Modus Ponens

Modus Ponens is a special case of the System P rule Cut. The following theorem is
a corollary of Gilio’s result for the generalization of the Cut rule [3].

Theorem 4 (Modus Ponens). If P (Ei) = ↵i, for i = 1, . . . , n, and P (H|
nV

i=1
Ei) = �,

then

P (H) 2 [��n , ��n + 1� �n],with

�n = max

(
0,

nX

i=1

↵i � (n� 1)

)
.

We compare this result with the result where P (En+1) = ↵n+1 is added to the premises

and P (H|
nV

i=1
Ei) = � is replaced by P (H|

n+1V
i=1

Ei) = �. If � = �, then Modus Ponens

strongly degrades. However, even if � 6= �, the width of the interval for P (H) increases.
This follows from the facts that its width is 1 � �n and that �n is monotonically
decreasing. Consequently, that the lower bound of the conjunction decreases is the
reason for the degradation of Modus Ponens. However, since � is replaced by � 6= �,
the position of the interval for P (H) may change. Therefore, in the case of Modus
Ponens a weak degradation takes place.

Example 1. Consider the premise sets T and T 0 such that
T = {P (E1) = 0.9, P (E2) = 0.8, P (E3) = 0.95, P (H|E1 ^ E2 ^ E3) = 0.8} and
T 0 = {P (E1) = 0.9, P (E2) = 0.8, P (E3) = 0.95, P (E4) = 0.8, P (H|E1^E2^E3^E4) =
0.1}.
From T it follows that P (H) 2 [0.52, 0.87], whereas from T 0 it follows that P (H) 2
[0.045, 0.595].

The width of the interval 1 � �n depends on the lower bound of the conjunction

�n. Since this lower bound is zero if n �
nP

i=1
↵i + 1, the interval for P (H) is the unit

interval if the number of premises is su�ciently high.

2.5 Bayes’ Theorem

Suppose that the prior probability of a certain hypothesis P (H) = �, the likelihood of
the data given both, the hypothesis H, P (D|H) = �, and the alternative hypothesis
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¬H, P (D|¬H) = �, are given. The posterior probability of the hypothesis H given
the data D is obtained by Bayes’ Theorem P (H|D) = ��

��+�(1��) . The premises

of generalized Bayes’ Theorem are P (H) = �, P (E1|H) = �1, . . . , P (En|H) = �n,
P (E1|¬H) = �1, . . . , P (En|¬H) = �n. In inferential statistics it is often assumed that
the Ei’s are independent and identically distributed. To be as general as possible,
we do neither require conditional independence of the Ei’s given H nor do we require
that P (Ei|H) = P (Ej |H) for i 6= j. The conclusion of generalized Bayes’ Theorem is
P (H|E1 ^ . . . ^ En). Observe that if P (E1 ^ . . . ^ En) > 0, then

P (H|E1 ^ . . . ^ En) =
P (H ^ E1 ^ . . . ^ En)

P (E1 ^ . . . ^ En)

=
P (H)P (E1 ^ . . . ^ En|H)

P (H)P (E1 ^ . . . ^ En|H) + P (¬H)P (E1 ^ . . . ^ En|¬H)
.

(2.1)

To proof the result for the generalization of Bayes’ Theorem (Theorem 5 and
Theorem 6) we consequently treat two cases for the probability of the data P (E1 ^
. . . ^ En): (i) P (E1 ^ . . . ^ En) > 0 and (ii) P (E1 ^ . . . ^ En) = 0. In case (ii) it is
relevant whether the prior probability P (H) is zero, one, or di↵erent from both values.
To handle case (ii) properly we make use of Theorem 1. The special case n = 1 has
been investigated in detail by Coletti and Scozzafava [1, Chapter 16].

Theorem 5 (Bayes’ Theorem, lower bound). Suppose that P (H) = � and that for
all i = 1, . . . , n, P (Ei|H) = �i and P (Ei|¬H) = �i. Then:

• If �(
nP

i=1
�i � (n� 1)) > 0, then

P (H|E1 ^ . . . ^ En) �
�(

nP
i=1

�i � (n� 1))

�(
nP

i=1
�i � (n� 1)) + (1� �)min{�i}

.

• If �(
nP

i=1
�i � (n� 1))  0, then P (H|E1 ^ . . . ^ En) � 0.

Theorem 6 (Bayes’ Theorem, upper bound). Suppose that P (H) = � and that for
all i = 1, . . . , n, P (Ei|H) = �i and P (Ei|¬H) = �i. Then:

• If (1� �)(
nP

i=1
�i � (n� 1)) > 0, then

P (H|E1 ^ . . . ^ En) 
�min{�i}

�min{�i}+ (1� �)(
nP

i=1
�i � (n� 1))

.

• If (1� �)(
nP

i=1
�i � (n� 1))  0, then P (H|E1 ^ . . . ^ En)  1.
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Proof. We prove the result for the upper bound. The proof for the lower bound is
obtained by analog considerations. We distinguish two cases.

(I) If (1� �)(
nP

i=1
�i � (n� 1)) > 0, then P (E1 ^ . . . ^ En) > 0. The result is obtained

by application of the Conjunction Theorem (Theorem 2) to (2.1).

(II) If (1� �)(
nP

i=1
�i � (n� 1))  0, we distinguish two cases (i) �min{�i} > 0 and (ii)

�min{�i} = 0.
In case (i) the upper bound 1 is obtained by setting P (H^E1^. . .^En) to �min{�i} >
0 and P (¬H ^ E1 ^ . . . ^ En) to its minimum 0.
In case (ii) we obtain the upper bound by setting the probability of the data P (E1 ^
. . . ^ En) to 0. We treat the case n = 2. The proof generalizes to the case n > 2
straightforwardly. We build the sequence of linear systems S↵ (Theorem 1). To
improve readability we write xi instead of x0

i , yi instead of x1
i , and zi instead of x2

i .
Using the notation of Table 1, the first linear system S0 is given by

x1 + x5 =0

P (H|E1 ^ E2)(x1 + x5) =x1

x1 + x2 + x3 + x4 =�

x1 + x2 = �1(x1 + x2 + x3 + x4), x1 + x3 =�2(x1 + x2 + x3 + x4)

x5 + x6 = �1(x5 + x6 + x7 + x8), x5 + x7 =�2(x5 + x6 + x7 + x8)

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 =1, xi � 0 .

As unique solution of S0 we obtain x1 = x5 = 0, x2 = �1�, x3 = �2�, x4 =
� � (�1 + �2)�, x6 = �1(1� �), x7 = �2(1� �), x8 = (1� �)� (�1 + �2)(1� �). Since
min{�1,�2} = 0, it is x4 � 0 and since by assumption �1 + �2  1, it is x8 � 0, so
that the solution is coherent.
If 0 < P (H) = � < 1, then H1

0 = E1 ^ E2. The system S1 is consequently given by

P (H|E1 ^ E2)(y1 + y5) =y1

y1 + y5 = 1, yi �0 .

So that P (H|E1 ^ E2) =
y1

y1+y5
can attain any value in [0, 1].

If P (H) = � = 0 (the case P (H) = 1 is treated in the same way), then x1 = x2 = x3 =
x4 = x5 = 0 and consequently H1

0 = H _ (E1 ^ E2). In the system S 0
1 all constraints

that concern conditional events with conditioning event H remain.

P (H|E1 ^ E2)(y1 + y5) =y1

y1 + y2 = �1(y1 + y2 + y3 + y4), y1 + y3 =�2(y1 + y2 + y3 + y4)

y1 + y2 + y3 + y4 + y5 =1, yi � 0 .

We solve S 0
1 in such a way that P (H) > 0 and P (E1^E2) = 0. The unique solution

in this case is y2 = �1, y3 = �2, y4 = 1� (�1 + �2). Then H2
0 = E1 ^E2 and the third
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system S 0
2 is

P (H|E1 ^ E2)(z1 + z5) =z1

z1 + z5 = 1, zi �0 .

So that P (H|E1 ^ E2) =
z1

z1+z5
can attain any value in [0, 1].

In both cases, 0 < P (H) < 1 and P (H) = 0, we have constructed a sequence of
compatible systems (S↵), with unknowns (x↵

i ), i = 1, . . . , 8, ↵ = 0, 1, 2, such that
P (H|E1 ^ E2) 2 [0, 1]. According to Theorem 1 P (H|E1 ^ E2) can coherently attain
any value in [0, 1].

Bayes’ Theorem does not degrade. First of all, Bayes’ Theorem does not degrade
strongly. The lower bound is not monotonically decreasing, because it depends on the
minimum of the set {�i}. If for a given n the premises P (En+1|¬H) = �n+1 < min{�i}
and P (En+1|H) = �n+1 are added, the lower bound may increase. Similar consider-
ations show that the upper bound is not monotonically increasing. As consequence,
intervals with rather di↵erent positions may result.

Example 2. Suppose that P (H) = 0.1, P (E1|H) = 0.9, P (E2|H) = 0.8, P (E3|H) =
0.4, P (E1|¬H) = 0.9999, P (E2|¬H) = 0.9999, P (E3|¬H) = 0.001. Then P (H|E1 ^
E2) 2 [0.072, 0.081], but P (H|E1 ^ E2 ^ E3) = [0.917, 0.982].

In Bayes’ Theorem even no weak degradation takes place. In general, the probabil-
ity interval of the conclusion does not get wider as the number of premises increases.

Example 3. Suppose that P (H) = 0.9, P (E1|H) = 0.99, P (E2|H) = 0.99, P (E3|H) =
0.98, P (E1|¬H) = 0.9999, P (E2|¬H) = 0.9999, P (E3|¬H) = 0.001. Then P (H|E1 ^
E2) 2 [0.898176, 0.89911] , but P (H|E1 ^E2 ^E3) 2 [0.999884, 0.999909], so that the
width of the first interval is 0.000934 and that of the second interval is 0.000025.

This does by no means imply that additional information makes the situation
necessarily better. In many cases the interval does get wider if the number of premises
increases. If, for instance, identical probabilities �i = � and �i = � for i = 1, . . . , n, are
assumed, then Bayes’ Theorem strongly degrades. This case is of main importance
because it is implied by the assumption of conditional exchangeability. Moreover,
Theorem 5 and Theorem 6 show that even in the case of Bayes’ Theorem one ends up

with the unit interval. If n � max

⇢
nP

i=1
�i + 1,

nP
i=1

�i + 1

�
, then

nP
i=1

�i � (n � 1)  0

and
nP

i=1
�i � (n� 1)  0, so that the interval [0, 1] is obtained.

2.6 Modus Tollens

The following holds for the probabilistic Modus Tollens of two events. If P (¬E) = ↵
and P (E|H) = �, then P (¬H) 2 [�0, 1], where

�0 = max

⇢
1� ↵

1� �
, 1� 1� ↵

�

�
. (2.2)
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Wagner [8] has shown the result for the lower bound. However, Wagner’s upper
bound is di↵erent from 1. The reason for this is that Wagner defined the conditional
probability P (E|H) by the fraction P (E^H)

P (H) . If P (¬H) = 1, then P (H) = 0 and

P (E|H) would consequently be undefined. As already pointed out, in the coherence
approach conditionalizing on events with zero probability is possible, so that the cor-
rect upper bound P (¬H) = 1 is obtained.

The result for the generalized Modus Tollens has been presented without proof in
[4, 9].

Theorem 7 (Modus Tollens). If P (¬Ei) = ↵i, for i = 1, 2, . . . , n, and if P (E1 ^E2 ^
. . . ^ En|H) = �, then P (¬H) 2 [�0, 1], with

�0 =

8
>>>>><

>>>>>:

1� 1�↵⇤

� if ↵⇤ + � > 1

1�
nP

i=1
↵i

1�� if ↵⇤ + �  1 and
nP

i=1
↵i + � < 1

0 if ↵⇤ + �  1 and
nP

i=1
↵i + � � 1 ,

where ↵⇤ = max{↵i}.

Proof. First, we treat the special case n = 2 and then we outline the proof for the
general case.
Two events: If n = 2, then by employing the notation of Table 1 we obtain the linear
system

�(x1 + x2 + x3 + x4) =x1 (2.3)

x3 + x4 + x7 + x8 =↵1 (2.4)

x2 + x4 + x6 + x8 =↵2 (2.5)

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = 1, xi �0 .

To maximize (resp. minimize) P (¬H) we minimize (resp. maximize)

P (H) = x1 + x2 + x3 + x4 .

Manipulation of (2.3) shows that

P (H) =
x1

�
. (2.6)

Therefore, to maximize (minimize) P (H) we maximize (minimize) x1 = P (H ^ E1 ^
E2).
(A) The minimum 0 for x1 is obtained by setting x8 = min{↵1,↵2}. If ↵1  ↵2, then
we set x6 = ↵2 � ↵1 and x5 = 1 � ↵2. If ↵1 > ↵2, then we set x7 = ↵1 � ↵2 and
x5 = 1� ↵1. Hence, by (2.6) the maximum of P (¬H) is 1.
(B) For the maximum of x1 observe that according to the Conjunction rule x1  1�↵⇤.
Furthermore, since P (H ^ E1 ^ E2)  P (E1 ^ E2|H), we have x1  �. Therefore, we
distinguish two cases: (I) 1� ↵⇤ < � and (II) 1� ↵⇤ � �.
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In case (I) we set x1 to its maximum 1 � ↵⇤. By (2.6) we obtain P (H) = 1�↵⇤

� ,

so that the minimum of P (¬H) is 1 � 1�↵⇤

� . A solution of the linear system that
establishes that x1 = 1�↵⇤ is coherent, is uniquely determined by setting x5 = 0 and
x8 = min{1� 1�↵⇤

� ,↵1,↵2}.
In case (II) we distinguish two cases:

1. If ↵1 +↵2 + � � 1, then the maximum of x1 is � and consequently according to
(2.6) P (H) = 1. Thus, P (¬H) = 0. The following solution of the linear system
establishes that setting x1 = � is coherent: x2 = �↵1+(1��), x3 = �↵2+(1��),
x4 = ↵1 + ↵2 � (1� �).

2. If ↵1 + ↵2 + � < 1, then x1 < �. Suppose on the contrary x1 = �, then
x1 + x2 + x3 + x4 = 1. But according to (2.4) and (2.5) it is x3 + x4 = ↵1

and x2 + x4 = ↵2. Consequently, x1 + x2 + x3 + x4  ↵1 + ↵2 + � < 1, which
is a contradiction. In this case x1 = (x2+x3+x4)�

1�� is maximized if x2 + x3 + x4

is maximized. This is the case if x2 = ↵1, x3 = ↵2, and x4 = 0, so that
x1 = (↵1+↵2)�

1�� . Consequently

x5 = P (¬H) = 1� (x1 + x2 + x3 + x4) = 1�
(↵1+↵2)�

1��

�
= 1� ↵1 + ↵2

1� �
.

n events: The proof generalizes to n events as follows.
(A) The maximum is obtained from the solution P (¬H ^¬E1^ . . .^¬En) = min{↵i}.
Let ↵1 = min{↵i} and ↵k = min{↵i|i = 1, . . . , n} \ {↵i|i = 1, . . . , k� 1}. Let Ek = Ei

i↵ ↵i = ↵k. Suppose that the events {Ei} have been renumbered appropriately and set
P (E1^ . . .^Ek�1^¬Ek^ . . .^¬En^¬H) = ↵k�↵k�1. The sum of these constituents
is ↵n. The remaining probability 1� ↵n is given to P (¬H ^ E1 ^ . . . ^ En).
(B) For the minimum we make the same case distinction as in the case n = 2. In case
(I) ↵⇤+� > 1, set x1 = P (H^E1^. . .^En) = 1�↵⇤, then P (¬H) = 1� 1�↵⇤

� . In case

(II) we distinguish between (i)
nP

i=1
↵i+� � 1 and (ii)

nP
i=1

↵i+� < 1. In case (i) the lower

bound P (¬H) = 0 is obtained by setting x1 = P (H ^E1 ^ . . . ^En) = �. In case (ii)

we set P (H^E1^ . . .^¬Ei^ . . .^En) to ↵i. Then x1 = P (H^E1^ . . .^En) =
�

nP
i=1

↵i

1�� .

The remaining probability 1�
�

nP
i=1

↵i

1�� is given to the constituent ¬H^E1^. . .^En.

Modus Tollens has very interesting properties with respect to degradation. Suppose
that P (¬En+1) is added to the premises and P (E1 ^E2 ^ . . .^En|H) = � is replaced
by P (E1 ^ E2 ^ . . . ^ En+1|H) = �. While the upper bound 1 for P (¬H) is already
most “degraded”. The lower bound does not decrease as the number of premises n
increases. Depending on the values of � and ↵⇤ we jump back and forth between

the cases (I) ↵⇤ + � > 1 and (II) ↵⇤ + �  1 In case (II) since
nP

i=1
↵i increases as n

increases, the lower bound 0 is obtained rapidly. In case (I) the lower bound strongly
depends on the values of � and ↵⇤. As a consequence it can attain any value c 2 (0, 1].
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If ↵⇤ < 1, then P (¬H) 2 [c, 1] if � = 1�↵⇤

1�c . Consequently, Modus Tollens does not
degrade. Moreover, contrary to the other inferences considered in this paper, the unit
interval is not necessarily obtained if the number of premises is large.

3 Discussion

We have seen that Predictive Inference strongly degrades, Modus Ponens weakly de-
grades, and that Bayes’ Theorem and Modus Tollens do not degrade. Moreover, in
all the inference forms considered—with the exception of Modus Tollens—the unit
interval is obtained if the number of premises is su�ciently large. These facts cast
a dark shadow on the utility of probability logic in the case of generalized inference
forms. Surely, a narrower interval is better than a wider interval and a more complete
knowledge base is better than a truncated one [5]. While in general the number of
premises and the precision of the conclusion may conflict, in probability logic they
often must conflict.

This conflict between amount of information and precision cannot be ignored.
On the one hand, to select the most “recent” interval obtained by the most specific
information leads to wide intervals. In many case it even leads to the unit interval.
On the other hand, to select the narrowest interval requires to base the interval of
the conclusion on the most unspecific information. Since all additional premises are
discarded, it would be useless to apply probability logic to generalized inference forms.

Although additional premises often yield more imprecise intervals, they do not
necessarily make inference in conditional probability logic worse. Contrary to strong
degradation, in the case of weak degradation obtaining intervals with di↵erent posi-
tions to a certain degree compensates for obtaining wider intervals. Clearly, a solution
to the conflict between specificity and precision has to be di↵erent for both forms of
degradation. If an inference form strongly degrades, it is more reasonable to follow
a take-the-best strategy, i.e., take the most precise interval. This is to be done by
discarding all information but the most unspecific. It is then not reasonable to search
for further information, because it simply cannot be used. If an inference form weakly
degrades, a take-the-best strategy is less reasonable. Obtaining conflicting intervals
changes the opinion about the position of the interval (as, for instance, in Example
2). Since the new position is based on more information, it is more “recent” than
the old position. The knowledge of the position of the interval is of main importance,
so that it is not reasonable to discard the new information. In this case to solve the
conflict between precision and specificity requires to counterbalance (i) the width of
an interval, (ii) the amount of information it is based upon, and (iii) the position of
the interval. However, whether a take-the-best strategy is rational or how to counter-
balance (i), (ii), and (iii) are questions that cannot be answered by the formal results
of probability logic. They are a matter of subjective preferences.
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Abstract

In 2010, M. Studený, R. Hemmecke, and Linder explored a new algebraic
description of graphical models, characteristic imsets. Compare with standard
imsets, characteristic imsets have several advantages: they are still unique vector
representative of conditional independence structures, they are 0-1 vectors, and
they are more intuitive in terms of graphs than standard imsets. After defining
characteristic imset polytope as the convex hull of all characteristic imsets for a
given set of nodes, they also showed that a model selection in graphical models,
which essentially is a problem of maximizing a quality criterion, can be converted
into an integer programming problem on the characteristic imset polytope. How-
ever, this integer programming problem is very hard in general. Therefore, here
we focus on diagnosis models which can be described by Bipartite graphs with a
set of m nodes and a set of n nodes for any m,n 2 Z+, and their characteristic
imset polytope. In this paper, first, we will show that the characteristic imsets
for diagnosis models have very nice properties including that the number of non-
zero coordinates is at most is n·(2m�1), and with these properties we are able to
find a combinatorial description of all edges of the characteristic imset polytopes
for diagnosis models. Then we prove that these characteristic imset polytopes
are direct products of n many (2m � 1) dimensional simplicies. Finally, we end
the paper with further questions in this topic.

1 Introduction

Bayesian networks (BNs), also known as belief networks, Bayes networks, Bayes(ian)
models or probabilistic directed acyclic graphical models, find their applications to
model knowledge in many areas, such as computational biology and bioinformatics
(gene regulatory networks, protein structure, gene expression analysis [3] learning
epistasis from GWAS data sets [4]) and medicine [13]. BNs are a part of the family of
probabilistic graphical models (GMs). These graphical structures represent knowledge
about probabilistic structures for a statistical model. More precisely, each node in
the graph represents a random variable and an edge between the nodes represents
probabilistic dependencies among the random variables corresponding to the nodes
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adjacent to the edge [6]. BNs correspond to GM structure known as a directed acyclic
graph (DAG) defined by the set of nodes (vertices) and the set of directed edges.

In order to infer parameters from the observed data set, we first apply a model
selection criterion called quality criterion, which provides a way to construct highly
predictive BN models from data by choosing the graph which gives the given criteria,
such as Bayesian Information Criteria (BIC) [8] or Akaike Information Criteria (AIC)
[1], maximum (see [10] for more details on quality criterions). Intuitively a quality
criterion is a function, Q(G,D), which takes a DAG, G, and an observed data set, D,
to evaluate how good the DAG G to explain the observed data D. Note that di↵erent
DAGS, G1, G2 may have the same conditional independences (CIs). In that case we
say G1, G2 are Markov equivalent. When researchers wish to infer the CIs of the BN
structure from the observed data set one represents each set of Markov equivalent
graphs by one graph called the essential graph the corresponding Markov equivalence
class of DAGs [2]. In this paper we focus on quality criterions Q(G,D), such that
Q(G1, D) = Q(G2, D) if and only if G1, G2 are Markov equivalent.

Since in general there are super exponentially many essential graphs with a fixed
set of nodes N , maximizing the quality criterion, Q(G,D), over all possible essential
graphs withN is known to be NP-hard. Studený developed an algebraic representation
of each essential graph G called a standard imset, of G, which is an integral vector

representation of G in R2|N|�|N |�1. From the view of this setting a criterion function

Q(G,D) is a dot product of vectors in R2|N|�|N |�1. In 2010, M. Studený, J. Vomlel,
and R. Hemmecke showed that maximizing the Q(G,D) over all essential graphs can
be formulated as a linear programming problem over the convex hull of standard
imsets for all possible essential graphs [12]. This gives us a systematic way to find
the best criterion with the optimality certificate rather than finding the best criterion
by the brute-force search. Then M. Studený, R. Hemmecke, and Linder explored
an alternative vector representative of the BN structure, called characteristic imsets.
Compare with standard imsets, characteristic imsets have several advantages: they
are still unique vector representative of conditional independence structures; they are
0-1 vectors; and they are more intuitive in terms of graphs than standard imsets [11].

In general, however, the dimension of the convex hull of the characteristic imsets
with the fixed set of nodesN , called characteristic imset polytope, is exponentially large
and there are double exponentially many vertices as well as facets of the characteristic
imset polytope. Thus it is infeasible to optimize by software if |N | > 6. In order to
solve the LP problem for a larger |N |, we need to understand the structure of the
characteristic imset polytope, such as combinatorial description of edges and facets of
the polytope so that we might be able to apply a simplex method to find an optimal
solution. However, in general, it is challenging because there are too many facets and
too many edges of the polytope. Therefore here we focus on a particular family of BN
models, namely diagnosis models.

In medical studies, researchers are often interested in probabilistic models in order
for them to correctly diagnose a disease from a patient symptoms. The diagnoses mod-
els, also known as the Quick Medical Reference (QMR) diagnostic model, is introduced
in [9] to diagnose a disease from a given set of symptoms of a patient. Therefore, here
we focus on diagnosis models (e.g., [7]). Under this model, a DAG representing the
model is a bipartite graph with two sets of nodes, one representing m diseases and one
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representing n symptoms, and set of directed edges from nodes representing diseases
to nodes representing symptoms (see Figure 1 for an example).

In this paper, first, we will show that the dimension of the characteristic imset
polytope for diagnosis models with m diseases and n symptoms is n · (2m�1) which is
much smaller than 2(m+n) � (n+m)� 1. Second, we are able to find an explicit com-
binatorial description of all edges of the characteristic imset polytopes for diagnosis
models with fixed m and n, that is, if G1, G2 are graphs representing two diagnosis
models such that all symptoms have the same parents in G1 and in G2 except one
symptom, then the characteristic imsets representing G1, G2 form an edge of the char-
acteristic imset polytope for diagnosis models. Then we prove that these characteristic
imset polytopes are direct products of n many (2m � 1) dimensional simplicies.

This paper is organized as follows. In Section 2 we introduce notation and state
some definitions. Section 3 shows propositions and their proofs, and Section 4 shows
our main results.

2 Notation and definitions

In this section we state some notation and remind readers some definitions.

Definition 2.1. A Diagnosis Model can be described by a Bipartite Graph whose
nodesN = {a1, . . . , am}[{b1, . . . , bn} can be divided into disjoint setsA = {a1, . . . , am}
and B = {b1, . . . , bn}. Nodes in A can be interpreted as diseases and nodes in B can
be interpreted as symptoms. Every single edge can only be drawn from a disease to a
symptom. An example is given by Figure 1.
Define notation: Gm,n = {All possible Bipartite graphs defined in Definition 2.1 for
fixed m and n}.

Figure 1: An example of Bipartite Graph, m = 3, n = 6.

3 Propositions

All proofs in this section can be found in [14].
Recall that we have the definition of Characteristic Imset.

Definition 3.1. Let G be an acyclic directed graph over N . The characteristic

imset for G can be introduced as a zero-one vector cG with components cG(S) where
S ✓ N , |S| � 2 given by
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cG(S) = 1 () 9 i 2 S such that j 2 paG(i) for 8 j 2 S\{i}

where j 2 paG(i) means G includes the edge from j to i.

Proposition 3.2. Assume |N | > 2 and G is a Bipartite graph. A = {a1, . . . , am} and

B = {b1, . . . , bn} are defined in Definition 2.1. Then cG(T ) is possible to take value 1 if

and only if T has the form of ai1 . . . aikbj, where 1  k  m, {i1, . . . , ik} ✓ {1, . . . ,m}
and j 2 {1, . . . , n}.

Proposition 3.3. Notation same as Proposition 3.2. Suppose T has the form of

ai1 . . . aikbj, where 1  k  m, {i1, . . . , ik} ✓ {1, . . . ,m} and j 2 {1, . . . , n}, then

cG(T ) =
Q

s=i1,...,ik
cG(asbj).

Remark 3.4. Another way to see Proposition 3.3 is that for a diagnosis model,
the whole characteristic imset is determined by only m · n coordinates, cG(aibj), i 2
{1, . . . ,m}, j 2 {1, . . . , n}, which can also be interpreted as the existence of edge point
from ai to bj . From this remark, it is straightforward to get Proposition 3.6.

Remark 3.5. Proposition 3.3 also implies that 8 G 2 Gm,n, G can be determined by
paG(bj), bj 2 B, and paG(bj), bj 2 B are completely irrelevant.

Proposition 3.6. Notation same as Definition 2.1. Fix m and n. The number of

elements in Gm,n is 2mn
.

Proposition 3.7. Notation same as Definition 2.1. Fix m and n. If we consider the

characteristic imset for an arbitrary Bipartite graph in Gm,n, the number of non-zero

coordinates is at most n · (2m � 1).

Remark 3.8. another line

• Notation same as Definition 2.1. For a fixed N , by Proposition 3.2 and 3.7, we
can define Sm,n as the support of {cG : G 2 Gm,n}. We know that:

Sm,n = {T : 9 G 2 Gm,n such that cG(T ) = 1} ⇢ P(N)

where P(N) is the power set of N .

• Recall that in elementary geometry,

– a closed convex polyhedron (which will be indicated as polyhedron

for short) in Rq can be defined by a system of linear inequalities:

{x 2 Rq : Ax  b}

where A is a p⇥ q matrix in Rp⇥q and b is a p⇥ 1 vector in Rp⇥1;

– a closed convex polytope (which will be indicated as polytope for short)
is defined as the convex hull of a finite set of points;

– if a polyhedron is bounded, then it is a polytope.

• A d-simplex is a d-dimensional polytope which has exactly d+1 vertices. It is
notated as �d.
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• For more details on polyhedral geometry see [15].

• Notice that Proposition 3.7 also implies: for fixed m and n, the dimension of
the polytope of characteristic imsets for all elements in Gm,n (we call it charac-
teristic imset polytope in the following and use Pm,n as the notation) is at
most n · (2m � 1). We will prove that it is actually exactly n · (2m � 1).

• Because characteristic imsets are all 0-1 vectors, it is obvious that for fixedm and
n, the set of vertices of characteristic imset polytope is exactly {cG : G 2 Gm,n}.

4 Theorems and Proofs

Theorem 4.1. Notation same as Definition 2.1. Fix m and n. The dimension of the

characteristic imset polytope is exactly n · (2m � 1).

Proof. Just need to show that all characteristic imsets are linearly independent. For
details please see [14].

Remark 4.2. Notice that for the special case n = 1, Theorem 4.1 and Proposition
3.6 claim that Pm,1 has 2m vertices and the dimension of Pm,n is n · (2m � 1). This
directly lead to Theorem 4.3.

Theorem 4.3. Fix m, Pm,1 is a simplex with dimension 2m� 1, i.e. Pm,1 = �2m�1.

Definition 4.4. Graphs G, H 2 Gm,n are called neighbors if cG and cH form an
edge in the characteristic imset polytope.

Lemma 4.5. Notation same as Definition 2.1. Fix m, then for arbitrary two distinct

graphs, G1, G2 2 Gm,1, G1 and G2 are neighbors, i.e. cG1 and cG2 form an edge in

the characteristic imset polytope.

Proof. The proof is omitted here. For details please see [14].

Remark 4.6. We can understand Lemma 4.5 better after we introduce a new concept
”tuft”.

• A structure is called k-tuft if it in-
cludes (k+1) nodes such that there
exists one node (the o↵spring)
that all other nodes are its par-
ents. There are two important spe-
cial cases: an 1-tuft is just an edge
and a 2-tuft is just an immorality.
An example of 6-tuft is given in the
right hand side graph.
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• Fixm and n. We say a change from one graphG1 to another oneG2 is swapping

tufts if: G2 can be obtained from G1 by removing a tuft and adding another
tuft, where these two tufts share the same o↵spring but disjoint parents. An
example is given as below: G2 can be obtained from G1 by removing a 2-tuft
and add an 1-tuft, where the two tufts share the same o↵spring b2.

• Lemma 4.5 gives us a principal idea of finding neighbors for a graph: add or
remove a tuft, or swap tufts once. We are going to prove this in general case in
Theorem 4.7.

Theorem 4.7. Notation same as Definition 2.1. Fix m and n. Two graphs, G1,

G2 2 Gm,n are neighbors if and only if 9 bi 2 B such that paG1(bi) 6= paG2(bi) and

paG1(bj) = paG2(bj), for 8 bj 2 B and bj 6= bi, i.e., G2 can be obtained from G1 by

removing or adding a tuft or swapping tufts.

Proof. We will prove “if” and “only if” separately.

(1) Prove “if” part.
Suppose we have two graphs, G1, G2 2 Gm,n, and 9 bi 2 B such that paG1(bi) 6=
paG2(bi) and paG1(bj) = paG2(bj), for 8 bj 2 B and bj 6= bi. We need to prove
G1 and G2 are neighbors.
Consider an arbitrary graph G3 2 Gm,n. We want to prove that 9 a cost vector
w such that w · cG1 = w · cG2 � w · cG3 where “=” holds if and only if G3 = G1

or G2.
Define the following graphs (see Remark 4.8 for example):

? G0
1, G0

2, G0
3 2 Gm,1 with symptom Bm,1 = {bi} such that paG0

1
(bi) =

paG1(bi), paG0
2
(bi) = paG2(bi) and paG0

3
(bi) = paG3(bi);

? G0, G
00
3 2 Gm,(n�1) with symptomsBm,(n�1) = B\{bi} such that paG0(bj) =

paG1(bj) = paG2(bj) and paG00
3
(bj) = paG3(bj), 8 bj 2 Bm,(n�1).

Notice that the connections of the characteristic imsets of these graphs are very
simple. By Remark 3.5, after moving the coordinates properly, we can write the
characteristic imsets of G1, G2 and G3 in the form of:

cG1 = (cG0
1

cG0)
cG2 = (cG0

2
cG0)

cG3 = (cG0
3

cG00
3
)

– As proved in Lemma 4.5, G0
1 and G0

2 are neighbors. This means that 9
related cost vector w1 such that w1·cG0

1
= w1·cG0

2
� w1·cG0

3
for 8G0

3 2 Gm,1,
where “=” holds if and only if G0

3 = G0
1 or G0

2.
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– Because cG0 is a vertex of the characteristic imset polytope related to
Gm,(n�1), we can find a related cost vector w2 such that w2 · cG0 � w2 · cG00

3

for 8 G00
3 2 Gm,(n�1), where “=” holds if and only if G00

3 = G0.

Now let w = (w1 w2) with the new permutation of coordinates. We have:

w · cG1 = w1 · cG0
1
+ w2 · cG0

= w1 · cG0
2
+ w2 · cG0 = w · cG2

� w1 · cG0
3
+ w2 · cG00

3
= w · cG3

where “=” holds if and only if i) G0
3 = G0

1 or G0
2, and ii) G00

3 = G0, i.e. G3 = G1

or G2.

(2) Prove “only if” part.
Suppose we have two graphs, G1, G2 2 Gm,n, which are neighbors. i.e. 9 a cost
vector w such that w · cG1 = w · cG2 > w · cG for 8 G 2 Gm,n, G 6= G1, G2. We
are going to prove by contradiction.
Suppose 9 bi, bj 2 B distinct, paG1(bi) 6= paG2(bi) and paG1(bj) 6= paG2(bj).
Define the following graphs (see Remark 4.8 for example):

? G0
1, G

0
2 2 Gm,1 with symptom Bm,1 = {bi} such that paG0

1
(bi) = paG1(bi)

and paG0
2
(bi) = paG2(bi);

? G00
1 , G

00
2 2 Gm,1 with symptom Bm,1 = {bj} such that paG00

1
(bj) = paG1(bj)

and paG00
2
(bj) = paG2(bj);

? G000
1 , G000

2 2 Gm,(n�2) with symptoms Bm,(n�2) = B\{bi, bj} such that
paG000

1
(bk) = paG1(bk) and paG000

2
(bk) = paG2(bk), 8 bk 2 Bm,(n�2);

? G3 2 Gm,n is all same with G1 but paG3(bi) = paG2(bi);

? G4 2 Gm,n is all same with G1 but paG4(bj) = paG2(bj);

? G5 2 Gm,n is all same with G2 but paG5(bi) = paG1(bi) and paG5(bj) =
paG1(bj), notice that G5 might be same with G1.

Similar with (1), after moving the coordinates properly, we can write the char-
acteristic imsets of G1, G2, G3, G4 and G5 in the following form:

cG1 = (cG0
1

cG00
1

cG000
1
)

cG2 = (cG0
2

cG00
2

cG000
2
)

cG3 = (cG0
2

cG00
1

cG000
1
)

cG4 = (cG0
1

cG00
2

cG000
1
)

cG5 = (cG0
1

cG00
1

cG000
2
)

Now use the same permutation of coordinates in w and do the same partition,
we can write w in the form of w = (w1 w2 w3). By the assumption we indicated
at the beginning of this part, we have:

⇤ It is obvious that G3 6= G1 or G2. So:

w · cG1 = w1 · cG0
1
+ w2 · cG00

1
+ w3 · cG000

1

> w · cG3 = w1 · cG0
2
+ w2 · cG00

1
+ w3 · cG000

1

=) w1 · cG0
1

> w1 · cG0
2
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⇤ It is obvious that G4 6= G1 or G2. So:

w · cG1 = w1 · cG0
1
+ w2 · cG00

1
+ w3 · cG000

1

> w · cG4 = w1 · cG0
1
+ w2 · cG00

2
+ w3 · cG000

1

=) w2 · cG00
1

> w2 · cG00
2

Then we have:

w · cG2 = w1 · cG0
2
+ w2 · cG00

2
+ w3 · cG000

2

< w1 · cG0
1
+ w2 · cG00

1
+ w3 · cG000

2
= w · cG5

=) w · cG2 < w · cG5

which is a contradiction with our assumption. Therefore G1 and G2 cannot be
neighbors.

Remark 4.8. In the two parts of proof of Theorem 4.7, it might be more intuitive to
see how we define the new graphs using examples.

• Part (1), prove “if” condition. Let m = 4 and n = 3. In the example in Figure
2, bi = b1 .

Figure 2: An example of proof for “if” condition. Here m = 4, n = 3 and bi = b1

• Part (2), prove “only if” condition. Let m = 4 and n = 3. In the example in
Figure 3, bi = b1 and bj = b2.
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Figure 3: An example of proof for “only if” condition. Here m = 4, n = 3, bi = b1
and bj = b2.
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Theorem 4.9. Notation same as Definition 2.1. Fix m and n. For 8 G 2 Gm,n, G
has n · (2m � 1) many neighbors.

Proof. Proof is omitted here. Please see [14] for details.

Remark 4.10. Recall that we proved in Theorem 4.1, for fixedm and n, the dimension
of the characteristic imset polytope is n · (2m�1). Thus Theorem 4.9 implies that the
number of neighbors for each vertex equals to the dimension, i.e. the characteristic
imset polytope for Bipartite graphs is a simple polytope. In 2000, V. Kaibel and
M. Wol↵ proved that a zero-one polytope is simple if and only if it equals to a direct
product of zero-one simplices [5]. But here, we are going to prove a even stronger
result.

Theorem 4.11. Notation same with Definition 2.1. Pm,n is the direct product of n
many �2m�1, i.e.

Pm,n = �2m�1 ⇥�2m�1 ⇥ · · ·⇥�2m�1| {z }
n many

.

And the ith simplex is Pm,1 with the same diseases A and one symptom {bi}.

Proof. Fix m, we are going to prove the equality holds using induction on n.

• n = 1. Proved in Theorem 4.3;

• Fix q 2 Z+. Suppose the equality holds for Pm,n, 8 n < q, and we need to
prove that it also holds for Pm,q. Recall that for Gm,q, we have notation for all
symptoms: B = {b1, b2, . . . , bq}.
First, we want to prove: Pm,n ✓ Pm,q�1 ⇥Pm,1.
Similar with the proof of Theorem 4.7, for 8 G 2 Gm,n, we can define graphs:

? G0 2 Gm,(q�1) with symptoms Bm,(q�1) = B\{bq} such that paG0(bi) =
paG(bi), 8 bi 2 Bm,(q�1). This implies cG0 2 Pm,q�1;

? G00 2 Gm,1 with symptom Bm,1 = {bq} such that paG00(bq) = paG(bq). This
implies cG00 2 Pm,1.

Again, with a proper permutation of coordinates, we can write cG in form of:

cG = (cG0 cG00).

Now because the set of vertices of Pm,q is {cG : G 2 Gm,q}, so for 8 x 2 Pm,q,
with the same permutation of coordinates, we have:

x =
P

G2Gm,q

↵GcG = (
P

G2Gm,q

↵GcG0 ,
P

G2Gm,q

↵GcG00),

where 0  ↵G  1, 8 G 2 Gm,q and
P

G2Gm,q

↵G = 1.

Notice that
P

G2Gm,q

↵GcG0 2 Pm,q�1 and
P

G2Gm,q

↵GcG00 2 Pm,1, the above equal-

ity implies x 2 Pm,q�1 ⇥Pm,1. Hence:
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Pm,q ✓ Pm,q�1 ⇥Pm,1.

Second, we want to prove: Pm,q�1 ⇥Pm,1 ✓ Pm,n.
Let Gm,q�1 has symptoms Bm,(q�1) = B\{bq} and Gm,1 has symptom Bm,1 =
{bq}. For 8 G0 2 Gm,(q�1) and G00 2 Gm,1, we can define G 2 Gm,q such that
paG(bi) = paG0(bi), 8 bi 2 Bm,(q�1), and paG(bq) = paG00(bq). We can write cG
in form of cG = (cG0 cG00).
Now for 8 x 2 Pm,q�1 ⇥Pm,1, by definition of direct product, it can be written
as:

x = (
P

G02Gm,q�1

�G0cG0 ,
P

G002Gm,1

�G00cG00) =
P

G02Gm,q�1

P
G002Gm,1

�G0�G00(cG0 , cG00)

=
P

G02Gm,q�1

P
G002Gm,1

(�G0�G00) cG ,

where 0  �G0 , �G00  1, 8 G0 2 Gm,q�1, G
00 2 Gm,1, and

P
G02Gm,q�1

�G0 = 1,P
G002Gm,1

�G00 = 1.
Notice that

P
G02Gm,q�1

P
G002Gm,1

(�G0�G00) =
P

G02Gm,q�1

�G0(
P

G002Gm,1

�G00) =
P

G02Gm,q�1

�G0 = 1 .

This leads to x 2 Pm,q. Hence:

Pm,q�1 ⇥Pm,1 ✓ Pm,n.

Now using the assumption we made before, we can finish the proof because:

Pm,q = Pm,q�1 ⇥Pm,1 = �2m�1 ⇥ · · ·⇥�2m�1| {z }
q-1 many

⇥�2m�1 =

�2m�1 ⇥ · · ·⇥�2m�1| {z }
q many

.
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Abstract 
This study develops a framework based on the Dempster-Shafer theory of belief functions for 
the purpose of planning, performing and evaluating evidence obtained to assess the quality of, 
that is to provide assurance on, sustainability reports. Such an approach facilitates auditors in 
planning and performing efficient and effective assurance services. 
Sustainability reporting, which is also known as corporate sustainability reporting (SR), and 
triple bottom line (TBL) reporting, provides data on financial and non-financial factors related 
to environmental, social and economic performance. To demonstrate the application of this 
framework we evaluate assertions, sub-assertions and audit evidence relevant to sustainability 
reporting based on the G3 Reporting framework developed by the Global Reporting Initiative 
(GRI).  

1 Introduction 

Research on sustainability reporting and quality assurance is important because an 
increasing number of entities are striving to measure, report and reduce their 
environmental and social impact [2] [4]. We focus on sustainability reporting and its 
assurance because a growing number of companies are issuing sustainability reports 
and a substantial number of companies are also getting these reports assured 
(audited) [1] [4] [16].  
 Sustainability reporting, which is also known as corporate sustainability 
reporting (SR), corporate social responsibility reporting and triple bottom line (TBL) 
reporting, provides economic, environmental and social information on financial and 
non-financial factors related to any entities’ performance. Most companies 
providing SR Reports follow the reporting guidelines developed by the Global 
Reporting Initiative (GRI), a decade-old non-profit organization based in 
Amsterdam. GRI issued its G3 Reporting Framework in October 2006 [3]. The G3 
Reporting Framework is a set of sustainability reporting guidelines and consists of 
reporting principles, reporting guidance, and standard disclosures including 
performance indicators (see also [4]). Assurance guidelines, developed to provide 
information quality assurance of the SRs, are being developed, but most assurance 
firms use IAASB guidelines [5] [6]. 
 The primary objective of this paper is to construct and demonstrate the use of an 
evidential reasoning framework under the Dempster-Shafer theory of belief 
functions [7] (hereafter DS theory) for planning, performing and evaluating 



 

evidence for assurance of SRs. Under the evidential reasoning framework using DS 
theory, there are four important steps the assurance provider needs to consider: 

1) Prepare an appropriate evidential diagram and identify the corresponding 
items of evidence; 

2) Perform the audit procedures, i.e., collect and evaluate various items of 
evidence; 

3) Combine all items of evidence in the evidential diagram to determine the 
overall level of assurance achieved; and 

4) Assess and report on the level assurance that may be provided. 
The evidential network development is elaborated in Section 2. 
 The rest of the paper is divided into four additional sections. The following 
section describes the evidential reasoning approach and the use of evidential 
diagrams. In Section 3 we discuss the theoretical framework used in the paper. In 
Section 4, a hypothetical case is presented that demonstrates how an assurance 
provider can use an evidential reasoning approach to provide SR assurance. The 
final section summarizes the conclusions and discusses directions for future research 
along with the limitations of the study. 

2   Evidential Diagram 

In the auditing contexts discussed in this paper, evidential reasoning entails 
determining the important ‘assertions’ within the SR that needs to be assured; 
determining what sort of evidence is relevant to these assertions; and deciding what 
level of support for the assertions is obtained. The ‘assertions’ are the statements 
made by the reporting entity such as its impact on its environment or its economic 
performance. To model such settings, an evidential diagram may be developed 
comprising of the variables involved in providing assurance along with their mutual 
relationships and items of evidence pertaining to those variables. Once the evidential 
diagram is completed, the auditor can judge the influence of evidence on all of the 
assertions being audited. In general, the assurance provider must decide whether the 
statements (assertions) in the SRs are supported by the evidence or not. 
 In such models, knowledge about one or more variables can be used to make 
assessments concerning other variables, if we know how these variables are 
interrelated [11] [15]. Normally, knowledge about the states of these variables is 
incomplete. That is, there is uncertainty associated with what an assurance provider 
knows about these variables. These uncertainties translate into the audit risks that 
must be controlled [13]. 

2.1 Underlying Framework 

G3 [3] guidelines are used to structure the evidential reasoning for conducting a SR 
audit. Table 1 lists the three major assertion categories that must be considered: 
'Social Assertions', 'Environmental Assertions' and 'Economic Assertions'.  Table 1, 
column 1, labeled ‘Main Assertions’, describes the assertion categories. The related 
sub-assertions are listed in the second column. According to the G3 guidelines, 
social assertion category reporting requires that the entity disclose all major impacts 
that it has on the social system within which it operates. This includes labor 
practices, human rights, social interaction, and product responsibility. These impacts 
are expressed as assertions in column 2 of Table 1 and in Figure 1. The assurance 
provider needs to plan and collect adequate and pertinent evidence to audit each of 
these assertions. The sub-assertions are assumed to be related to the corresponding 
main assertions through an ‘and’ relationship. This relationship conveys that the 
main assertions are valid if and only if the corresponding sub-assertions are valid.  



 

Table 1: Assertions and Sub-assertions for Sustainability Reporting Services 
(Taken from GRI guidelines, GRI 2006) 

Main Assertions Sub-Assertions 
A1. Social reporting assertion: 
The organization fairly presents 
all major impacts that it has on 
the social system that it operates 
in.  

A.1.1: Labor Practices - Complete and Accurate disclosure of 
Labor Practices. The organization fairly presents its labor practices 
and whether it meets internationally recognized standards. 
A1.2 Human Rights: The organization fairly presents the extent to 
which human rights plays a part in its operations and activities. 
A1.3 Social Interaction: The organization fairly presents the major 
risks that arise from interaction with other social institutions.   
A1.4 Product Responsibility: The organization fairly presents how 
its products and services directly affect customers. 

A2. Environmental Reporting 
assertion: The organization 
fairly presents its performance 
and all major impacts that it has 
on the environment that it 
operates within. 

A2.1 Materials: The organization fairly presents the extent to which 
it uses different materials by weight and by volume and the 
percentage of materials used that are recycled input materials. 
A2.2 Energy: The organization fairly presents the extent to which it 
consumes energy by energy source. 
A2.3 Water: The organization fairly presents the extent to which it 
withdraws water by source. 
A2.4 Biodiversity: The organization fairly presents the location, size 
of land owned, leased, managed in or adjacent to protected areas and 
areas of high diversity value, description of significant impacts of 
activities, products and services on biodiversity in protected areas 
and areas of high biodiversity value. 
A2.5 Emissions, Effluents and Waste: The organization fairly 
presents total direct and indirect greenhouse gas emissions by 
weight, emissions of ozone-depleting substances by weight, NOx and 
SOx and other significant air-emissions by type and weight, total 
water discharge by quality and destination, total weight of waste by 
type and disposal method, total number and volume of significant 
spills. 
A2.6 Products and Services: The organization fairly presents 
initiatives to mitigate environmental impacts of products and 
services and the extent of impact mitigation, percentage of products 
sold and their packing materials that are reclaimed by category. 
A2.7 Compliance: The organization fairly presents monetary value 
of significant fines and total number of non-monetary sanctions for 
non-compliance with environmental laws and regulations. 

A3. Economic Reporting 
assertion: The organization 
fairly presents its economic 
performance  

A.3.1 Economic Performance: The organization fairly presents 
direct economic value generated and distributed, which includes 
revenues, operating costs, employee compensation, donations, 
community investments, retained earnings and payments to capital 
providers and governments, coverage of the company’s defined 
benefit plan obligations and significant assistance received from 
government. 
A3.2 Financial Performance: The organization fairly presents 
financial implications, risks and opportunities, of the organizations 
activities due to climate change. 
A.3.3 Market Presence: The organization fairly presents policy, 
practices and proportion of spending on locally based suppliers at 
significant locations of operation, procedures for local hiring and 
proportion of senior management hired from local community at 
significant locations of operation. 
A.3.4 Indirect Economic Impacts: The organization fairly presents 
development and impact of infrastructure investments and services 
provided primarily for public benefit through commercial, in-kind or 
pro-bono engagement. 

  



 

Figure 1: Evidential Diagram for an entity reporting on its performance in the 
Social Category. Assertions A.1.1 - A1.1.3 are described in Table 2 

2.2 Construction of an Evidential Diagram 

Figures 1 and 2 illustrate the structure of evidential diagrams.  First, all the 
assertions and items of evidence pertaining to these assertions must be identified. 
Consider Figure 2 where the assertions are depicted as rectangular boxes with 
rounded corners. The main assertion on the left (A1.1) states a ‘completeness 
accuracy assertion’1 that the reporting entity has presented a complete and accurate  
disclosure of labor practices. This assertion is connected through an ‘and’ 
relationship, represented by a circle with an '&', to six sub-assertions labeled A1.1.1 
through A1.1.6. All sub-assertions and the corresponding main assertion are based 
on the G3 guidelines.  The variables representing assertions and sub-assertions have  
three associated values. For example for A1.1 and following the syntax of DS 
theory, an assessment is shown of the believe that the assertion is valid (true) of 
.846; that the assertion is not valid (false) of .032 and an assessment of the level of 
unresolved uncertainty given available evidence of .122.  

-----   Figure 2 about here   ----- 
Of course, relevant items of evidence pertaining to various assertions must be 
indicated within the evidential network. These items of evidence result from audit 
procedures performed by the assurance provider. Rectangular boxes are used to 
represent items of evidence and these are connected to the assertion or assertions 
that they help inform.  
 In Figure 2, the six sub-assertions to the right of the main assertion are related to 
it through an 'and' relationship. This relationship suggests that the main assertion is 
valid or true if and only if the six sub-assertions are valid. In Figure 2, the evidential 
diagram drawn is a network diagram, that is, a network where at least one item of 
evidence pertains to more than one assertion. In order to determine whether the main 
assertion is true, the assurance provider would plan and perform the procedures 
described in the rectangular boxes (evidence nodes). Each evidence node represents 
an audit procedure which provides positive, negative, or mixed evidence concerning 
the assertion to which it is linked. Based on what is ascertained from each of the 
procedures, the assurance provider must estimate the level of support or negation 
from each item of evidence for each corresponding assertion.  

                                                
1 Completeness and accuracy are used for illustrative purposes. 



 

The audit procedures illustrated throughout the paper are intended to be 
comprehensive, but   not exhaustive. That is, there could be other items of evidence 
that could be created using G3 guidelines. Our intention is to show how an 
assurance provider can use the evidential reasoning framework for planning and 
performing an efficient and effective SR audit. First, in Section 3, we discuss the 
theoretical foundation on how audit evidence propagates through a SR evidential 
network such as that represented in Figure 2. Then in Section 4 we illustrate the 
process of aggregating evidence through a numerical example pertaining to Figure 
2. This will demonstrate the level of assurance obtained on the assertions of interest. 

3   Propagation of Beliefs in Evidential Diagram 

Shenoy and Shafer [8] have developed a theoretical framework for propagating 
beliefs and probabilities through an evidential network. We use the models derived 
by Srivastava, Shenoy, and Shafer [14] for propagating beliefs in an ‘and’ tree 
evidential network and use Srivastava [9] for combining beliefs from multiple items 
of evidence on the same variable. The combined beliefs at the main assertion X in 
an ‘and’ tree and the combined belief on any one of the objectives (sub-assertions) 
that is connected to the main assertion through an ‘and’ relationships can be 
expressed in terms of the following two propositions [14]. 
Proposition 1 (Propagation of m-values from sub-objectives to the main objective ): 

The resultant m-values propagated from n sub-objectives (Oi, i = 1, 2, 
. . . n) to the main objective X in an AND-tree are given as follows. 

mX←all O's (x) = moi
(oi )

i=1

n

∏ , mX←all O's (~x) = 1- [1- moi
(~oi )]

i=1

n

∏  

and 
m

X←all O’s
({x, ~x}) = 1 – m

X←all O’s
(x) – m

X←all O’s
(~x) 

Proposition 2 (Propagation of m-values to a given sub-objective from the main 
objective and the other sub-objectives ): The resultant m-values propagated to a 
given sub-objective Oi from the main objective X and the other n-1 sub-objectives 
in an AND-tree are given as follows. 

mOi←X&All other O's (oi ) = Ki
-1mX (x) [1- mOj

(~oj )
j≠i
∏ ]

 

mOi←X&All other O's (~oi ) = Ki
-1mX (~x) mOj

(oj )
j≠i
∏  

mOi←X&All other O's({oi, ~oi}) = 1 – mOi←X&All other O's(oi)
– mOi←X&All other O's(~oi).  

where Ki is the renormalization constant which is given by Ki = [1- m
X
(x)Ci], where 

Ci is given by 
ji O j

j i

C  = 1 - [1 - m (~ )]o
≠
∏ . 

To combine multiple independent items of evidence, say n, on a single binary 
variable, {x, ~x}, we use the formulas developed by Srivastava [9]. The combined 
belief masses can be expressed as:  



 

m(x) = 1− (1−mi(x))
i=1

n
∏ /K , m(~x) = 1− (1−mi(~x))

i=1

n
∏ /K , m(Θ) = mi (Θ)

i=1

n
∏ / K  

where K is given by 

K = (1−mi (x))
i=1

n
∏ + (1−mi (~ x))

i=1

n
∏ − mi (Θ)

i=1

n
∏ . 

We program the above formulas in MS Excel to perform the analysis. 

4   Evidential Reasoning Approach applied to Sustainability Reporting 

In this section, the hypothetical case presented in Figure 2 is used to illustrate the 
propagation of strength of evidence (i.e., belief masses2 or m-values) obtained from 
various items of SR evidence to a set of assertions of interest. A similar example is 
then used in Section 5 to illustrate audit planning.  
 First, we illustrate the propagation of strength of evidence in terms of m-values 
(belief masses) from sub-assertions to the main assertion which is Complete and 
Accurate disclosure of Labor Practices and is abbreviated as A1.1. Then we 
illustrate the propagation of m-values to a particular sub-assertion from the main 
assertion and all other sub-assertions. In particular, we choose Assertion A1.1.1: 
Complete & Accurate disclosure of Conditions & Benefits of Employment as the 
sub-assertion of interest. We use upper case letters to represent the name of the 
variables such as 'A1.1.1' for the assertion A.1.1.1 and lower case letters to represent 
their values. For example, 'a111' represents the situation where 'A1.1.1' is true and 
'~a111' the state where A1.1.1 is not true. Additionally, we label the evidence items 
with ‘En’ to signify the evidence number. Abbreviations and symbols used are listed 
in Table 2.  

-----   Table 2 about here   ----- 

4.1 Combination of Audit Evidence Relevant to the Main Assertion 

Consider the propagation of strength of evidence from sub-assertions (A1.1.1, 
A1.1.2, … A1.1.N) to the main assertion (A1.1) (Figure 2). To simplify the 
computations, we transform the evidential diagram from a network structure to a 
tree structure3 using the following process. Suppose we have evidence that pertains 
to two sub-assertions. We split this evidence into two different items of evidence 
relating individually to the two sub-assertions. For example, in Figure 2, evidence 
E4 is linked to sub-assertion A1.1.1 and to sub-assertion A1.1.2. The partitioned 
input m-values are assumed to be as follows: 

m
E4

(a111) = 0.7, m
E4

(~a111) = 0.1, m
E4

({a111, ~a111}) = 0.2, 
m

E4
(a112) = 0.7, m

E4
(~a112) = 0.1, m

E4
({a112, ~a112}) = 0.2. 

That is, we assume equal evidential support for the two sub-assertions. However, in 
general, one can choose different levels of support for each sub-assertion. 

                                                
2 We assume that readers have basic background on the DS theory of belief 
functions [12]. 
3 Srivastava and Lu [10] demonstrate that a tree-structured evidential diagram is a 
good approximation of a network structure under conditions that are relevant here. 



 

 We combine multiple items of evidence at each sub-assertion using the approach 
described in Section 3 [9] to obtain updated m-values at each sub-assertion. Next, 
we use Srivastava, Shenoy and Shafer [14] to propagate the evidence impounded in 
the above m-values from the six sub-assertions to the assertion 'A1.1' through the 
'and' relationship. Finally, we combine the above m-values propagated to 'A1.1' 
from the six sub-assertions with the m-values obtained from the evidence directly 
bearing on 'A1.1'. The resulting m-values are the updated belief masses at ‘A1.1’ 
given all of the audit evidence bearing on the six sub-assertions (i.e. E2, E3 … E9), 
the desired result. 
 Consider the following scenario for our illustration. Suppose an assurance 
provider is collecting evidence pertaining to sub-assertion A1.1.1 and plans and 
obtains three relevant items of evidence for A1.1.1, namely E2, E3 and E4 (See 
Figure 2). The assurance provider examines evidence E2, that is, reviews and 
recalculates payroll data and confirms minimum wages and pay scales with a sample 
of employees. The auditor then decides that these procedures provide positive 
support for A.1.1.1 to the extent of 0.7, no support for its negation and thus a 
resulting in an unresolved uncertainty level of 0.3. In other words, these audit tests 
allow the auditor to be 70% confident that the client has complete and accurate 
disclosure of employment conditions and benefits. However, as the audit test 
provides no evidence to the contrary, thus there is still 30% uncertainty. 
 The assurance provider then reviews benefits provided to full-time employees 
that are not provided to part-time employees (E3) and decides that these audit 
procedures provide evidence in support of A1.1.1 of 0.6. Again, the assurance 
provider does not find any evidence that provides negative support for A1.1.1. Here, 
the resulting level of uncertainty is 0.4.  
 The assurance provider proceeds to review labor lawsuits to find out the number 
and cause of such lawsuits (E4) and decides that the evidence provides support in 
favor of A1.1.1 of 0.7 and provides negative support for A1.1.1 of 0.1, which leaves 
the level of uncertainty to 0.2. These input m-values are based on the assurance 
provider’s assessment of the evidence and judgment. Similarly, the assurance 
provider determines m-values for all other items of evidence as given in columns 3-
5 in Table 3. 
 As noted, the first step in propagating belief masses from the sub-assertions to 
the main assertion is to determine the total belief masses at each sub-assertion based 
on all  items of evidence directly bearing on each sub-assertion. Using Dempster’s 
rule, the combined m-values of the three items of evidence, E2, E3, and E4, bearing 
directly on the sub-assertion A1.1.1 are m(a111) = 0.961, m(~a111) = 0.013, 
m({a111, ~ a111}) = 0.026. This means that when evidence E2, E3 and E4 are 
combined, the combined strength of evidence indicating that A1.1.1 is valid is 
0.961, the combined strength of evidence implying that A1.1.1 is not valid is 0.013, 
and the remaining uncertainty about A1.1.1 is 0.026. Similarly, we determine the 
total m-values at each sub-assertion. These values are listed in columns 6-8 in Table 
3. 
 Next, we use Proposition 1 of [14] to propagate m-values from sub-assertions to 
the main assertion A1.1. The combined strength of evidence at A1.1 propagated 
from the sub-assertions yields the following m-values:  

m(a11) = 0.521, m(~a11) = 0.101 m({a11, ~a11}) = 0.378. 
The assurance provider has one additional item of evidence to consider, specifically 
E1. Regarding E1, suppose that the assurance provider examines a sample of labor 
reports filed by the client and decides that they provide evidence in support of A1.1 
to the extent of 0.7, as the labor reports are judged to have a good degree of 



 

objectivity and reliability. In the assurance provider’s opinion, these labor reports 
provide no negative evidence for A1.1, leaving the level of uncertainty about A1.1 
to be 0.3 given this particular audit test.  Thus, we derive the following set of belief 
masses obtained from E1 for A1.1: 

 m(a11) = 0.7, m(~a11) = 0.0, m({a11, ~a11}) = 0.3. 
To determine the overall belief masses at the main assertion level, A1.1, we 
combine the belief masses obtained from E1 with the belief masses propagated from 
the sub-assertions, A1.1.1. – A1.1.6 (see Figure 2). This yields the following overall 
m-values: m(a11) = 0.846, m(~a11) = 0.032, m({a11, ~a11}) = 0.122 (see columns 
9-11 in Table 3). This means that the combined audit evidence confirming the 
assertion that the organization completely and accurately discloses its labor practices 
is 0.846, the combined evidence disconfirming the assertion is 0.032 and the level of 
uncertainty is 0.122. 

-----   Table 3 about here   ----- 
 The assurance provider can then use the above information to decide whether the 
‘Labor Practices’ assertion is valid or not or whether additional evidence needs to be 
collected. In the illustration, the evidence confirming the assertion is a moderate 
level of 0.846, the evidence disconfirming the assertion is only 0.032. However, the 
plausibility that the assertion is not valid is 0.154. If the Srivastava and Shafer [13] 
plausibility definition of audit risk is used, the audit risk that the assurance is not 
true is 0.154 (i.e., 15.4%).  
 Given that the belief that the assertion is true is 0.846, the SR assurance provider 
has two main alternatives. First, the auditor could conclude and report that the 
assertion is fairly stated at what might be considered a ‘moderate’ level of 
assurance. Or, the auditor could continue to collect audit evidence to the point where 
the plausibility of misstatement was much lower (it is conventional to use 5% in a 
financial audit). An approach to obtaining such evidence at minimum cost is a topic 
of future study.  
 A third possibility is to conclude that the evidence suggests that the assertion is 
not valid, but this would be unlikely given the evidence only supports a very small 
belief of 0.032 supporting such a conclusion. Given the low belief in misstatement, 
the assurance provider could opine that the main assertion is fairly stated at an 
acceptable level of audit risk; describe the nature of any observed deficiencies in 
labor practices; and identify specific areas the management should focus on to 
mitigate such deficiencies. SR assurance standards and practices provide much more 
flexibility than conventional financial statement audit reports in what may be 
communicated [5] [6]. 

4.2 Combination of Evidence at a Sub-assertion  

Evidential networks are somewhat peculiar in that the information obtained at each 
node flows to all other connected nodes [11] [15]. To consider this aspect, we use 
sub-assertion A1.1.1: Complete & Accurate disclosure of Conditions & Benefits of 
Employment – to exemplify the propagation of strength of evidence from assertion 
A1.1 and from the other sub-assertions to the chosen sub-assertion (A1.1.1).   
 For the Figure 2 case, the m-values from various items of evidence at the sub-
assertions and the overall assertion are given in Table 3. The input m-values are 
assumed to be based on the assurance provider's assessment of the various strength 
of evidence provided by each audit procedure as indicated in columns 3, 4 and 5.  
 As in the previous case, we use the same input m-values at A1.1 from evidence 
E1: m

E1
(a11) = 0.7, m

E1
(~a11) = 0, and m

E1
({a11,~a11}) = 0.3 (see row 1, and 



 

columns 3-5 in Table 3). To determine the overall combined m-values at sub-
assertion A1.1.1, three sets of m-values must be combined. One set comes from 
A1.1 (i.e., from E1), another from the other sub-assertions, and the last set of m-
values are defined at A1.1.1 originating from evidence E2, E3, and E4. We again 
use Dempster's rule and Srivastava [9] to combine the above m-values.  
 The resulting overall combined belief masses at A1.1.1 are: m(a111) = 0.988, 
m(~a111) = 0.004, m({a111,~a111}) = 0.008 (see columns 9-11 in Table 3). These 
values indicate that there is a very high positive support for A1.1.1 (0.988) and 
almost no support for the negation of the sub-assertion (0.004). Given this situation, 
the assurance provider should be confident that the sub-assertion A1.1.1 is valid, 
could provide a high level of assurance with little audit risk on this assertion, and 
thus would not need to perform any additional audit procedures. However, if the 
evidence provided less than the assurance provider’s target acceptable level of 
belief, say 0.95, then the assurance provider should either perform additional 
procedures to obtain a higher level of assurance, qualify the opinion by listing any 
shortcomings or even provide a negative opinion of some sort suggesting that the 
assertion may not be ‘fairly stated’. 

5   Summary and Conclusion 

We have demonstrated the use of an evidential reasoning framework based on the 
Dempster-Shafer theory of belief functions for SR assurance services. We use the 
G3 sustainability reporting guidelines to develop the evidential network illustrations. 
 Since this paper is a first attempt to apply the evidential reasoning approach to 
the assurance of sustainability reports, there are limitations as well as opportunities 
for future research. Our models likely do not identify all of the relevant variables or 
associated items of audit evidence. As a future project, we plan to incorporate cost 
of performing audit procedures in order to evaluate cost effectiveness. Since we use 
DS theory to represent uncertainties in the SR setting, future research should 
examine the empirical ramifications of using this approach. Future research should 
also explore other possibilities such as empirically derived cost functions. 
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