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Foreword

The proceedings you are holding in your hands contain contributions pre-
sented at the 8th Workshop on Uncertainty Processing, WUPES’09, held in
Liblice (Czech Republic), September 19–23, 2009. These workshops, the first of
which was organized back in 1988, aim to foster creative intellectual activities
and the exchange of ideas in an informal atmosphere. To ensure the intended
goal, the tradition is to limit the number of participants and, in order to encour-
age discussions based on more detailed knowledge of the presented ideas, publish
the proceedings containing all presented contributions. It is also a tradition that
after the meeting selected papers from the workshop are published as a special
issue of a renowned international journal. This year we have made a preliminary
agreement with the International Journal of Approximate Reasoning.

In 2009 the workshop took place in an 18th century château designed and
built for Arnošt Pacht of Rájov by Giovanni Battista Alliprandi, a famous and
much sought-after Italian architect, and the builder of the most distinguished
Baroque structures in Bohemia. A recent restoration of the château, which
was co-financed by the European Union, has transformed it into a contempo-
rary conference center equipped with all the necessary technical facilities. The
unique union between the Baroque architecture with state-of-the-art conference
premises offers an exceptional environment contributing to the informal and
fruitful scientific atmosphere of the workshop.

WUPES’09 was organized jointly by the Institute of Information Theory
and Automation of the Academy of Sciences of the Czech Republic and by the
Faculty of Management at the University of Economics. This year’s workshop is
particularly special as it also includes a LogICCC Working Day, made possible
thanks to the European Collaborative Research (EUROCORES) Programme
LogICCC. This not only enables the meeting of researchers from different Log-
ICCC Collaborative Research Projects, but it also provides an opportunity for
familiarization of the representatives of the world-wide research community with
results achieved within this joint European research activity. We want to stress
that we greatly appreciate the LogICCC travel grants awarded to 10 researchers,
covering complete travel expenses and conference fees for WUPES’09. We also
want to acknowledge financial support from grant number 1M0572 awarded by
MŠMT ČR.



It is quite natural that such a scientific meeting could not materialize if it
were not for a hard work of a number of our friends and colleagues who did
their best to guarantee its success. Though we cannot name all of them we
want to express our special gratitude to all the members of the Program and
Organizing Committees, the staff in the Conference center Liblice, and in the
financial departments of the organizing institutions. Special thanks are due to
WUPES web designer Václav Kratochv́ıl and the editors of these proceedings,
Jǐrina Vejnarová and Tomáš Kroupa, and to its cover designer Jǐŕı Přibil.

Gernot D. Kleiter Radim Jiroušek
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An experimental comparison of triangulation heuristics on transformed
BN2O networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
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Abstract

We deal with the problem of computing efficiently the closure with
respect to semigraphoid and graphoid properties of a given set of inde-
pendencies compatible with a probability. In particular, we improve the
procedure by using properly unconditional independence statements.

1 Introduction

Conditional independence structures arise in different frameworks, in particu-
lar in probability. Given a coherent probability P and a set J of conditional
independence statements, a related problem is to check whether the set J is
compatible with P and then, to find all the set of independencies deducible
from J . Then, we need to compute the closure of given set J of independencies,
compatible with a (coherent conditional) probability.

We recall that, under the classical definition of independence, the indepen-
dence model M induced by any probability P is a semigraphoid and when the
probability is strictly positive, M is a graphoid structure. Also under the def-
inition given in [2], for coherent conditional probability assessment graphoid
properties have been tested [8].

The computation of the closure, with respect to graphoid properties (as well
as with respect to semigraphoid ones) is infeasible since its size is exponentially
larger than the size of the given set J of independence statements (see [6, 7]).
Then, it is necessarily to find suitable reduced set of independence statements
(obviously included in the closure of J with respect to graphoids), which is as
smallest as possible and it represents the same independence structure. From
this reduced set all the relations in the closure should be easily deducible, then
it can be considered a basis for the closure. This topic by considering essentially
semigraphoid structures has already been successfully solved by Studený in [6,
7]. While the case of graphoid structures has been studied in [1], where in
particular we recall the basis for the closure of J , fast closure, and we give
the algorithm FC1(·) to compute the fast closure. In particular, FC1(·) uses a
characterization given in [1] of the closure of a pair of triples (see [1]). By using
the characterization of the closure, with respect to semigraphoids, of a pair of
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triples given in [6], we are able to introduce an algorithm FC1s(·) similar to
FC1.

The aim of this work is to find in an efficient way the closure of J under
semigraphoid and graphoid properties by improving the algorithms FC1(·) and
FC1s(·) which allows to save space and time.

The paper is organized as follows: in Section 2 the main notions on sem-
igraphoid and graphoid are recalled. In Section 3 the definition of general-
ized contraction, generalized intersection and related properties are recalled and
FC1s(·) is given. In Section 4 a new algorithm FC(·) to computes the closure
with respect to both semigraphoid and graphoid is introduced.

2 Graphoid

Let S̃ = {Y1, . . . , Yn} be a finite not empty set of variables and S = {1, . . . , n}
the set of indices associated to S̃. Given a (coherent) probability P , a conditional
independence statement YA⊥⊥YB |YC (compatible with P ), where A, B, C are
disjoint subsets of S, is simply denoted by the ordered triple (A, B,C). We
denote with S(3) the set of all ordered triples (A,B, C) of disjoint subsets of S,
such that A and B are not empty.

We recall that a conditional independence model I, related to P , is a subset
of S(3). The properties of such models depend obviously on the independence
notion taken into account (see [3] for models under the classical definition and
[8] under cs-independence introduced in [2]). An independence model arising
from the classical independence notion is closed under semigraphoid properties,
that are the following ones:

G1 if (A,B, C) ∈ I, then (B, A,C) ∈ I (Symmetry);

G2 if (A,B, C) ∈ I, then (A,B′, C) ∈ I for any nonempty subset B′ of B
(Decomposition);

G3 if (A,B1 ∪ B2, C) ∈ I with B1 and B2 disjoint, then (A,B1, C ∪ B2) ∈ I
(Weak Union);

G4 if (A,B, C ∪D) ∈ I and (A,C, D) ∈ I, then (A, B ∪ C, D) ∈ I (Contrac-
tion).

If the probability is strictly positive the model is also closed under graphoid
properties, it means that G1–G4 hold together with the following rule

G5 if (A,B, C ∪ D) ∈ I and (A,C, B ∪ D) ∈ I, then (A,B ∪ C, D) ∈ I
(Intersection).

While the model arising from cs–independence is not necessarily closed with re-
spect to symmetry but, by reinforcing cs–independence (by requiring symmetry)
the associated model is closed with respect to graphoid properties.

A semigraphoid (graphoid) is a couple (S, I) satisfying the properties G1–
G4 (G1–G5).
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3 Generalized inference rules

Given a pair of triples θ1, θ2 ∈ S(3), we say that θ2 is generalized–included in θ1

(briefly g–included), in symbol θ2 ⊑ θ1, if θ2 can be obtained from θ1 with a
finite number of applications of G1, G2 and G3.

In [1] we prove that given θ1 = (A1, B1, C1) and θ2 = (A2, B2, C2), θ1 ⊑ θ2

if and only if the following conditions hold

(i) C2 ⊆ C1 ⊆ X2;

(ii) either A1 ⊆ A2 and B1 ⊆ B2 or A1 ⊆ B2 and B1 ⊆ A2;
where Xi stands for (Ai ∪Bi ∪ Ci), i = 1, 2.

Generalized inclusion is strictly related to the dominance notion introduced
in [6] and denoted by ⊑a in the following. In fact, the relation between ⊑ and
⊑a is simple: θ′ ⊑ θ if and only if either θ′ ⊑a θ or θ′ ⊑a θT , where θT is the
transpose of θ (θ = (A,B, C) then θT = (AT , BT , CT )).

The g–inclusion between triples is extended to the case of sets of triples.

Definition 1 Let H, J be subsets of S(3). J is a covering of H (in symbol
H ⊑ J) if and only if for any triple θ ∈ H there exists a triple θ′ ∈ J such that
θ ⊑ θ′.

Our target in [1] (as that in [6] for semigraphoids), is to find an efficient
method to compute a reduced (with respect to g–inclusion ⊑) set J∗ included
in the closure J̄ and having the same information of J̄ ; this means that for any
triple θ ∈ J̄ there exists a triple θ′ ∈ J∗ such that θ ⊑ θ′.

Given θ1 = (A1, B1, C1), θ2 = (A2, B2, C2) ∈ S(3), let

WC(θ1, θ2) = {τ : θ′1, θ
′
2 ⊢G4 τ, with θ′1 ⊑a θ1, θ

′
2 ⊑a θ2}.

In [1] (see also [6]) we give a characterization of WC(θ1, θ2) and we prove
that if WC(θ1, θ2) is not empty then

gc(θ1, θ2) = (A1 ∩A2, (B1 \ C2) ∪ (B2 ∩X1), C2 ∪ (A2 ∩ C1))

is in WC(θ1, θ2) and dominates any triple belonging to WC(θ1, θ2).
We denote with GC(θ1, θ2) the set formed by the possible (i.e. belonging to

S(3)) triples among gc(θ1, θ2), gc(θ1, θ
T
2 ), gc(θT

1 , θ2) and gc(θT
1 , θT

2 ). Obviously,
GC(θ1, θ2) is in general different from GC(θ2, θ1).

A similar result [1, 6] holds for

WI(θ1, θ2) = {τ : θ′1, θ
′
2 ⊢G5 τ, with θ′1 ⊑a θ1, θ

′
2 ⊑a θ2}.

In particular, if WI(θ1, θ2) is not empty, then

gi(θ1, θ2) = (A1 ∩A2, (B1 ∩X2)∪ (B2 ∩X1), (C1 ∩A2)∪ (C2 ∩A1)∪ (C2 ∩C1))

is in WI(θ1, θ2) and dominates any triple belonging to WI(θ1, θ2). The set
GI(θ1, θ2) is formed by the possible (i.e. belonging to S(3)) triples among
gi(θ1, θ2), gi(θ1, θ

T
2 ), gi(θT

1 , θ2) and gi(θT
1 , θT

2 ).
Then, GI(θ1, θ2) = GI(θ2, θ1).

The previous sets GC(·, ·) and GI(·, ·) are necessary for defining the two new
inference rules
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G4∗ “generalized contraction”: from θ1, θ2 deduce any triple τ ∈ GC(θ1, θ2);

G5∗ “generalized intersection”: from θ1, θ2 deduce any triple τ ∈ GI(θ1, θ2);

which generalize the two classical inference rules.
Given a set J of triples in S(3), we denote with J∗ = {τ : J ⊢∗G τ}1 the

closure of J with respect to G4∗ and G5∗. In [1] we prove that J∗ ⊆ J̄ and
J̄ ⊑ J∗.

Actually, J∗ contains some “redundant” triples, that means that are g–
included in the other ones.

Starting from a set J ⊆ S(3), in order to reduce as much as possible the car-
dinality of J̄ without losing information, we define the “maximal”(with respect
to g–inclusion) triple set

J/
⊑

= {τ ∈ J : @τ̄ ∈ J with τ̄ ̸= τ, τT such that τ ⊑ τ̄}. (1)

Obviously, J/
⊑
⊆ J .

Definition 2 A subset J of S(3) is said maximal if J = J/
⊑
.

Moreover, by using J̄/
⊑

instead of J̄ there is no loss of information. In fact,

J̄ ⊑ J̄/
⊑

. Then, given a set J of triples in S(3), we compute J∗ and then we

cut redundant triples by taking its “maximal” triples, i.e. J∗/
⊑

. We call the set

J∗/
⊑

“fast closure” and we denote it, for simplicity, with J∗.

Proposition 1 Let J , H be two maximal sets of S(3), then H ⊑ J and J ⊑ H
if and only if for any θ ∈ H either θ ∈ J or θT ∈ J and for any τ ∈ J either
τ ∈ H or τT ∈ H.

If H ⊑ J and J ⊑ H, then H and J are said to have equivalent information
and it is denoted as H ≡ J (or J ≡ H).

In [1] we prove that J̄/
⊑
≡ J∗, moreover, we look for a unique inferential

rule and provide an algorithm for computing J∗.
We recall first of all that the fast closure {θ1, θ2}∗ of a couple θ1, θ2 ∈ S(3)

is composed by a maximum of nine extra triples, no matter how many variables
occur in θ1 and θ2.

In particular, any pair of triples (θ1, θ2) can be written, in a general form,
as θ1 = (E(1,1), E(1,2), E(1,3)) and θ2 = (E(2,1), E(2,2), E(2,3)). Each triple of the
fast closure of (θ1, θ2) is g–included in the set of possible (i.e. belonging to S(3))
triples

K(θ1, θ2) = {θ1, θ2, ν(θ1, θ2), θ̂(i,j,k)(θ1, θ2) : i, j, k ∈ {1, 2}} (2)

where

θ̂(i,j,k)(θ1, θ2) =
(
E(i,j) ∩ E(3−i,k), E(i,3−j) ∪ (E(3−i,3−k) ∩Xi), C

)
;

ν(θ1, θ2) =
(
(E(1,1) ∩ E(2,2)) ∪ (E(1,2) ∩E(2,1)), (E(1,1) ∩E(2,1)) ∪

∪(E(1,2) ∩ E(2,2)), E(1,3) ∪ E(2,3)

)
1J ⊢∗

G τ means that τ is obtained by applying a finite number of times the rules G4∗ and
G5∗.
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with C = (E(1,3) ∩ E(2,3)) ∪ (E(i,3) ∩ E(3−i,k)) ∪ (E(3−i,3) ∩E(i,j)).
Moreover, in [1] it is proved that K(θ1, θ2)/⊑

≡ {θ1, θ2}∗.

Note that in general K(θ1, θ2) may not coincide with {θ1, θ2}∗ because it
could contain some redundant triple or the transpose triple of one belonging to
{θ1, θ2}∗. Therefore, the set K(θ1, θ2) allows to compute a maximal covering
set of {θ1, θ2}∗ having an equivalent information. All this computation requires
a constant number of steps with respect to the size of θ1, θ2. Then, the function
FC1(·) given in [1] is based on the inference rule:

U : from θ1, θ2 deduce any triple τ ∈ {θ1, θ2}∗.

For semigraphoids characterization, similar to (2) for a pair of triples θ1, θ2,
is in [6] and so it is possible to define the set

Ks(θ1, θ2) = {θ1, θ2, γ(i,j,k)(θ1, θ2), δ(i,j,k)(θ1, θ2), ν(θ1, θ2) : i, j, k ∈ {1, 2}},

where

γ(i,j,k)(θ1, θ2) = (E(i,j) ∩E(3−i,k), (E(3−i,3−k) \ E(i,3)) ∪ (E(i,3−j) ∩X3−i), L);
δ(i,j,k)(θ1, θ2) = (E(i,j) ∩E(3−i,k), E(i,3−i) ∪ (E(i,j) ∩ E(3−i,3−k)), L);

with L = E(i,3) ∪ (E(i,j) ∩E(3−i,3)).
Given a set J of triple, by denoting with semi(J) the closure of J with

respect to semigraphoid and by semi(J)∗ the related maximal set, it follows [6]

semi({θ1, θ2})∗ ≡ Ks(θ1, θ2)/⊑
.

Also for semigraphoids it is possible to define a new inference rule
Us : from θ1, θ2 deduce any triple τ ∈ semi({θ1, θ2})∗.

Moreover, by using Us instead of U , it is simple to obtain a new algorithm
FC1s(·) by modifying FC1(·).

In the following, given a pair of triple θ1, θ2, N(θ1, θ2) is equal to {θ1, θ2}∗ by
considering the closure of {θ1, θ2} with respect to graphoids; otherwise N(θ1, θ2)
is equal to semi({θ1, θ2})∗ by considering the closure with respect to semi-
graphoids. Analogously, FC∗(·) is equal to FC1(·) or FC1s(·) by taking the
closure with respect to graphoids or semigraphoids, respectively.

In general, given set J ⊆ S(3), the function FC∗(·), to compute the closure,
generates a sequence of sets

Jh(J) =

{
J, h = 0;
(Jh−1(J) ∪ {θ : θ ∈ N(θ1, θ2), θ1, θ2 ∈ Jh−1(J)})/

⊑
, h > 0.

(3)
In particular, FC∗(J)=Jk−1(J) if k is the smaller number such that Jk(J) =
Jk−1(J).

4 Closure by projection

The aim of this section is to introduce an improvement of the algorithm FC∗(·).
In fact, given a set J ⊆ S(3), when unconditional statements as θ = (A,B, ∅),
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with A ∪ B = S, are present instead of computing FC∗(J), it is possible to
compute the sets JA

∗ , JB
∗ having, with θ, the same information of FC∗(J),

such that JA
∗ and JB

∗ are closed with respect to the unique inference rule U in
the case of graphoids, and Us for semigraphoids; moreover JA

∗ ∪ JB
∗ ∪ {θ} has

cardinality not greater than FC∗(J). To achieve this goal we need to recall some
preliminary results given in [1] based on the following notion of projection of a
triple.

Definition 3 Given θ = (A, B,C) and Y ⊆ (A ∪ B ∪ C), if (A ∩ Y ) ̸= ∅ and
(B ∩ Y ) ̸= ∅, then

πY (θ) = (A ∩ Y, B ∩ Y,C ∩ Y )

is said the projection of θ on Y .

Now, it is straightforward to prove that

Lemma 1 Given θ1 = (A1, B1, C1), θ2 = (A2, B2, C2) and Y ⊆ X1 with (A1 ∩
Y ) ̸= ∅, (B1 ∩ Y ) ̸= ∅. If θ1 ⊑a θ2, then πY (θ1) ⊑a πY (θ2).

Given a pair of triples θ1 = (A1, B1, C1), θ2 = (A2, B2, C2) with C1 ⊆ X2 and
C2 ⊆ X1, let Y be a subset of X1 ∩ X2 such that the projections πY (θ1) and
πY (θ2) are defined, we prove in [1] that

• if gc(πY (θ1), πY (θ2)) ̸= ⊥, then gc(θ1, θ2) ̸= ⊥ and gc(πY (θ1), πY (θ2)) =
πY (gc(θ1, θ2));

• if gi(πY (θ1), πY (θ2)) ̸= ⊥, then gi(θ1, θ2) ̸= ⊥, and gi(πY (θ1), πY (θ2)) =
πY (gi(θ1, θ2)).

We prove in [1] also how projcetion works with respect to K(θ1, θ2).

Lemma 2 Given θ1 = (A1, B1, C1), θ2 = (A2, B2, C2) with C1 ⊆ X2 and C2 ⊆
X1, let Y be a subset of X1 ∩X2 such that the projections πY (θ1) and πY (θ2)
are defined.
If θ̂(i,j,k)(πY (θ1), πY (θ2)) ̸= ⊥, then θ̂(i,j,k)(θ1, θ2) ̸= ⊥ and

θ̂(i,j,k)(πY (θ1), πY (θ2)) = πY (θ̂(i,j,k)(θ1, θ2)).

If ν(πY (θ1), πY (θ2)) ̸= ⊥, then ν(θ1, θ2) ̸= ⊥ and

ν(πY (θ1), πY (θ2)) = πY (ν(θ1, θ2)).

It is simple to extend to Ks(θ1, θ2) the result of the previous lemma.

Lemma 3 Given θ1 = (A1, B1, C1), θ2 = (A2, B2, C2) with C1 ⊆ X2 and C2 ⊆
X1, let Y be a subset of X1 ∩X2 such that the projections πY (θ1) and πY (θ2)
are defined.
If γ(i,j,k)(πY (θ1), πY (θ2)) ̸= ⊥, then γ(i,j,k)(θ1, θ2) ̸= ⊥ and

γ(i,j,k)(πY (θ1), πY (θ2)) = πY (γ(i,j,k)(θ1, θ2)).

If δ(πY (θ1), πY (θ2)) ̸= ⊥, then δ(i,j,k)(θ1, θ2) ̸= ⊥ and

δ(i,j,k)(πY (θ1), πY (θ2)) = πY (δ(i,j,k)(θ1, θ2)).
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Proof: The proof is a straightforward consequence from the definition of the
function γ(i,j,k)(·, ·) and δ(i,j,k)(·, ·) and the properties of πY . �

In the following, we study an extension of the previous properties related to
projection on sets of triples.

Definition 4 Let J be a subset of S(3) and Y ⊆ S then

πY (J) = {πY (θ) : θ ∈ J}.

By definition of projection it follows πY (θT ) = πY (θ)T .
The next propositions shows that πY (K(θ1, θ2)) = K(πY (θ1), πY (θ2)) and

πY (Ks(θ1, θ2)) = Ks(πY (θ1), πY (θ2)).

Proposition 2 Let θ1, θ2 be triples of S(3), then for any Y ⊆ S

πY (K(θ1, θ2)) = K(πY (θ1), πY (θ2)).

Proof: It is simple to see that K(πY (θ1), πY (θ2)) =
{πY (θ1), πY (θ2), ν(πY (θ1), πY (θ2)), θ̂(i,j,k)(πY (θ1), πY (θ2)) : i, j, k ∈ {1, 2}} =
= πY (K(θ1, θ2)),
where the first equality is given by Definition 4 and the second one by Lemma
2. �

Proposition 3 Let θ1, θ2 be triples of S(3), then for any Y ⊆ S

πY (Ks(θ1, θ2)) = Ks(πY (θ1), πY (θ2)).

Proof: It is simple to see that Ks(πY (θ1), πY (θ2)) =
= {πY (θ1), πY (θ2), ν(πY (θ1), πY (θ2)), γ(i,j,k)(πY (θ1), πY (θ2), δ(i,j,k)(πY (θ1), πY (θ2)) :
i, j, k ∈ {1, 2}} = πY (K(θ1, θ2)),
where the first equality is given by Definition 4 and the second one by Lemma
3. �

The following result shows how the projection works in the case of sets g–
included.

Proposition 4 Let H, J be subsets of S(3) such that H ⊑ J , then for any
Y ⊆ S

πY (H) ⊑ πY (J).

Proof: The proof it is trivial by Definition 1 and Lemma 1. �

From the previous result, we can prove the following one related to maximal
sets.

Proposition 5 Let J be a subset of S(3), then for any Y ⊆ S

πY (J/
⊑

) ≡ πY (J)/
⊑

.

Proof: By definition of maximal set (see (1)) one has
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• for any τ ∈ J/
⊑

either πY (τ) ∈ J or πY (τ)T ∈ πY (J). Therefore, either

τ ∈ πY (J/
⊑

) or there exists τ ′ ∈ πY (J/
⊑

) such that τ ⊑ τ ′. Then,

πY (J/
⊑

) ⊑ πY (J)/
⊑

.

• There exists τ∗ ∈ πY (J)/
⊑

such that τ∗ = πY (τ) or τ∗ = πY (τT ) with τ

or τT ∈ J . Therefore, π(τ) ∈ πY (J/
⊑

) or there exists τ ′ ∈ J/
⊑

such that

τ ⊑ τ ′ and πY (τ) ⊑ πY (τ ′). Then, πY (J)/
⊑
⊑ πY (J/

⊑
). �

Given a set J , the projection of its maximal set is not uniquely defined.

Example 1 Given the set J = {({1, 2}, {3, 4}, {5}), ({1, 3}, {2, 4}, {5})} = J/
⊑

and let Y = {2, 3, 5} be a subset of X = {1, 2, 3, 4, 5}. Then, the set πY (J/
⊑

)

can be equal to either {({2}, {3}, {5}) or {({3}, {2}, {5}).

Remark 1 It is possible to observe that

• K(πY (θ1), πY (θ2))/⊑
≡ πY (K(θ1, θ2)/⊑

) ≡ πY ({θ1, θ2}∗);

• Ks(πY (θ1), πY (θ2))/⊑
≡ πY (Ks(θ1, θ2)/⊑

) ≡ πY (semi(θ1, θ2)∗);

• πY (N(θ1, θ2)) ≡ N(πY (θ1), πY (θ2)).

Therefore, it is easy to verify that πY ({θ1, θ2}∗) ≡ {πY (θ1), πY (θ2)}∗.

Theorem 4 Let J be a subset of S(3), then for any Y ⊆ S and any Jh(J) as
in (3) with h ∈ {0, ..., k} the following conditions hold

1. FC∗(J) ≡ FC∗(Jh(J));

2. πY (FC∗(J)) ≡ πY (FC∗(Jh(J))).

Proof: By definition of FC∗ it is simple to observe that
FC∗(J)= FC∗(J0(J))≡ FC∗(J1(J))≡ ... ≡ FC∗(Jk−1(J))≡ FC1∗(Jk(J)).
From the previous equalities trivially follows that for h ∈ {0, ..., k}
πY (FC∗(J)) ≡ πY (FC∗(Jh(J))). �

Now, given a set J , we show that the projection of FC∗(J) is equal to apply
FC∗(·) to the projection of J .

Theorem 5 Let J be a subset of S(3), then for any Y ⊆ S

πY (FC∗(J)) ≡ FC∗(πY (J)).

Proof: In the following with J0(πY (J)), J1(πY (J)), ... are denoted the sets gen-
erated by FC1 to compute the fast closure of πY (J). By induction we have

J0(πY (J)) = πY (J) = {πY (θ) : θ ∈ J} = πY (J0(J)),

and by supposing that Jh−1(πY (J)) ≡ πY (Jh−1(πY (J))) we need to prove that
Jh(πY (J)) ≡ πY (Jh(πY (J)))
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Jh(πY (J)) = (Jh−1(πY (J)) ∪ {θ : θ ∈ {θ1, θ2}∗, θ1, θ2 ∈ Jh−1(πY (J))})/
⊑
≡

≡ (πY (Jh−1(J)) ∪ {θ : θ ∈ {θ1, θ2}∗, θ1, θ2 ∈ πY (Jh−1(J))})/
⊑
≡

≡ (πY (Jh−1(J)) ∪ {πY (θ) : θ ∈ {θ1, θ2}∗, θ1, θ2 ∈ Jh−1(J)})/
⊑
≡ πY (Jh(J))

with h > 0.
Moreover, FC∗(J) = Jk−1(J) whether FC∗(J) stops after k cycles, so that

πY (FC∗(J)) = πY (Jk−1(J)) ≡ Jk−1(πY (J)) = FC∗(Jk−1(πY (J))) that is by
Theorem 4 equal to FC∗(J0(πY (J))) = FC∗(πY (J)). �

From Theorem 4 and 5 it follows

Corollary 6 Let J be a subset of S(3), then for any Y ⊆ S

πY (FC∗(J)) ≡ FC∗(πY (Jh(J))).

From the previous result we obtain the following one when there are uncondi-
tional independence statements.

Theorem 7 Given J a subset of S(3), if there exists a triple θ = (A,B, ∅) ∈ J
such that A ∪B = S, then the following conditions hold:

1. θ ∈ FC∗(J) or θT ∈ FC∗(J);

2. for any θ′ ∈ FC∗(J) with θ′ ̸= θ and θ′T ̸= θ, it follows that πA(θ′) ̸= ⊥
or πB(θ′) ̸= ⊥;

3. for any θA = (AA, BA, CA) ∈ FC∗(πA(J)) and for any θB = (AB , BB , CB) ∈
FC∗(πB(J)) then

• ∀θ̄ ∈ {(AA, BA ∪B, CA), (AA ∪B, BA, CA), (AB , BB ∪A,CB), (AB ∪
A,BB , CB), (AA∪AB , BA∪BB , CA∪CB), (AA∪BB , BA∪AB , CA∪
CB)} it follows that θ̄ ∈ FC∗(J) or θ̄T ∈ FC∗(J).

Proof: 1. It is trivial to prove that θ ∈ FC∗(J) or θT ∈ FC∗(J). In fact, if there
exists θ′ = (A′, B′, C ′) ∈ FC∗(J) such that θ ⊑ θ′ then C ′ = ∅ with A′∪B′ = S.
Therefore, one as one of the following situations: A = A′ and B = B′ or A = B′

and B = A′.
2. If there exists a triple θ′ = (A′, B′, C ′) ∈ FC∗(J) with πA(θ′) = ⊥ and

πB(θ′) = ⊥, since A∪B = S then either A′∩B = ∅ and B′∩A = ∅ or A′∩A = ∅
and B′ ∩B = ∅. In the first case A′ ⊆ A and B′ ⊆ B, in the second one A′ ⊆ B
and B′ ⊆ A, then in both cases θ′ ⊑ θ and this is absurd.

3. Since θA ∈ FC∗(πA(J)) and θB ∈ FC∗(πB(J)) there exists θ̄A = (ĀA, ĀB , C̄A),
θ′B = (ĀB , B̄B , C̄B) ∈ FC∗(J) such that θA = πA(θ̄A) (or θT

A = πA(θ̄A)) and
θB = πB(θ̄B) (or θT

B = πB(θ̄B)). We assume, without loss of generality, that
θA = πA(θ̄A) and θB = πB(θ̄B). From the characterization given in [1] all set
WC(θ, θ̄A), WC(θ, θ̄T

A), WC(θ, θ̄B), WC(θ, θ̄T
B) are not empty, so

• θ1A = gc(θ̄A, θ) = (ĀA ∩ A, B̄A ∪ (B ∩ XĀ), A ∩ C̄A) = (AA, BA ∪ (B ∩
XĀ), CA). Moreover θ′A = gc(θ, θ1A) = (AA, BA ∪B,CA).

• θ2A = gc(θ̄T
A, θ) = (B̄A ∩ A, ĀA ∪ (B ∩ XĀ), A ∩ C̄A) = (BA, AA ∪ (B ∩

XĀ), CA). Moreover θ′′A = gc(θ, θ2A) = (BA, AA ∪B,CA).
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• θ1B = gc(θ̄B , θT ) = (ĀB ∩B, B̄B ∪ (A ∩XB̄), B ∩ C̄B) = (AB , BB ∪ (A ∩
XB̄), CB). Moreover θ′B = gc(θT , θ1B) = (AB , BB ∪A,CB).

• θ2B = gc(θ̄T
B , θT ) = (B̄B ∩B, ĀB ∪ (A ∩XB̄), B ∩ C̄B) = (BB , AB ∪ (A ∩

XB̄), CB). Moreover θ′′B = gc(θT , θ2B) = (BB , AB ∪A,CB).

Furthermore, also WC(θ′TA , θ′TB ), WC(θ′′A, θ′′B), WC(θ′TA , θ′′B), WC(θ′′A, θ′TB ) are
not empty, so that

• θ1 = gc(θ′TA , θ′TB )T = gc(θ′′TA , θ′′TB ) = (AA ∪AB , BA ∪BB , CA ∪ CB);

• θ2 = gc(θ′TA , θ′′TB )T = gc(θ′′TA , θ′TB ) = (AA ∪BB , AB ∪BA, CA ∪ CB).

We show that θ1 = gc(θ′TA , θ′TB )T ̸= ⊥.
In fact, θ′TA = (BA ∪B, AA, CA) and θ′TB = (BB ∪A, AB , CB) so that
gc(θ′TA , θ′TB ) = ((BA∪B)∩(BB∪A), (AA\CB)∪(AB∪(AA∪AB∪AC∪B)), CB∪
((A ∪BB) ∩ CA)) = (AB ∪BB , AA ∪AB , CA ∪ CB) = θT

1 .
Analogously, it is possible to prove that θ1 = gc(θ′′TA , θ′′TB ) and θ2 = gc(θ′TA , θ′′TB )T =
gc(θ′′TA , θ′TB ).

Now, if there exists a triple θ′ ∈ FC∗(J) such that θ′A ⊑ θ′, θ′A ̸= θ′ and
θ′TA ̸= θ′ then πA(θ′A) ⊑ πA(θ′) ∈ FC∗(πA(J)) by Lemma 1, moreover πA(θ′A) =
θA ̸= πA(θ′), πA(θ′A)T ̸= πA(θ′) and this is not possible since θA ∈ FC∗(πA(J)).

The other cases can be proved analogously. �

By the previous theorem the following result showing that JAB
∗ has the same

information of FC∗(J) can be proved.

Corollary 8 Given a subset J of S(3), if there exists a triple θ = (A,B, ∅) ∈ J
such that A ∪B = S, then

FC∗(J) ⊑ JAB
∗ and JAB

∗ ⊑ FC∗(J)

with JAB
∗ = {θ} ∪ {τ : τ ∈ {(AA, BA ∪ B, CA), (AA ∪ B, BA, CA), (AB , BB ∪

A, CB), (AB∪A,BB , CB), (AA∪AB , BA∪BB , CA∪CB), (AA∪BB , BA∪AB , CA∪
CB)}, θA = (AA, BA, CA) ∈ πA(FC∗(J)), θB = (AB , BB , CB) ∈ πB(FC∗(J))}.

Proof: By condition 3. of the Theorem 7 JAB
∗ ⊑ FC∗(J) trivially follows.

By Theorem 7 FC∗(J) ⊑ JAB
∗ easily follows, in fact, for any triple θ′ =

(A′, B′, C ′) ∈ FC∗(J) we have the following situations

• πA(θ′) ̸= ⊥, πB(θ′) ̸= ⊥ then {θ′} ⊑ JAB
∗ ;

• πA(θ′) = (A′
A, B′

A, C ′
A) ̸= ⊥, πB(θ′) = ⊥ then {θ′} ⊑ {(A′

A ∪B, B′
A, C ′

A),
(A′

A, B′
A ∪B,C ′

A)} ⊑ JAB
∗ ;

• πA(θ′) = ⊥, πB(θ′) = (A′B, B′
B , C ′

B) ̸= ⊥ then {θ′} ⊑ {(A′
B∪A, B′

B , C ′
B),

(A′
B , B′

B ∪A,C ′
B)} ⊑ JAB

∗ . �

By the previous corollary and Theorem 7 the advantages of projection follow,
in fact, we are able to reduce (at least the half) the number of maximal triples.
For example, instead of considering FC∗(J) = {θ, (AA, BA ∪ B, CA), (AA ∪
B, BA, CA), (AB , BB ∪ A, CB), (AB ∪ A,BB , CB), (AA ∪ AB , BA ∪ BB , CA ∪
CB), (AA ∪BB , BA ∪AB , CA ∪ CB)}, by applying projection, we need to store
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by starting from θ the sets JA
∗ = {θ = (A,B, ∅)}, JB

∗ = {θA = (AA, BA, CA)}
and the triple θB = (AB , BB , CB). In the other ones, where it is possible to
apply the projection, we are able to reduce even more space. By the Corollary
8 we are able to define a new algorithm called simply FC to exploit the pro-
jection. The function FindTriple(Jk, S) returns either a triple θ = (A,B, ∅)

Algorithm 1 Fast closure by projection
1: function FC(J , S) ◃ J is a maximal set
2: J0 ← J
3: N0 ← J0

4: k ← 0
5: repeat
6: θ ← FindTriple(Jk, S)
7: ◃ either θ = (A,B, ∅) with A ∪B = S or θ = ⊥
8: if θ ̸= ⊥ then
9: JA

k ← FC(πA(Jk), A)
10: JB

k ← FC(πB(Jk), B)
11: return < JA

k , JB
k , θ >

12: end if
13: k ← k + 1
14: Nk :=

∪
θ1∈Jk−1,θ2∈Nk−1

N(θ1, θ2)

15: Jk ← FindMaximal(Jk−1 ∪Nk)
16: until Jk = Jk−1

17: return < Jk, ∅,⊥ >
18: end function

with A ∪B = S, if it exists in Jk, or ⊥ otherwise. Moreover, FindMaximal(·)
computes J/

⊑
for a given set J ⊆ S(3).
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Abstract

The main aim of this paper is to present how coherent conditional
possibilities can be useful in medical diagnosis. Given some possible dis-
eases (that could explain an initial piece of information) and a relevant
tentative possibility assessment, a doctor can have at his disposal also a
data base giving rise to conditional possibilities Π(E|Ki), where each Ki

is a disease and each evidence E comes from a suitable test. Once the
coherence of the whole assessment is checked, we want to suitably up-
date the prior possibilities. Nevertheless, similarly to what discussed in
a probabilistic framework (see [4]), if we do not assume that the diseases
constitute a partition of the certain event Ω, we need a generalized concept
of inference, consisting on an enlargement procedure of the assessment to
the events Ki|E. Usually the result is in general not unique so we obtain
an upper possibility (which is a possibility) and a lower possibility. We
present also a sketch of the relevant algorithms and briefly discuss about
their computational complexity.

1 Introduction

Recently a well founded theory of coherent (conditional) possibilities has been
developed (see for instance [2, 3, 9, 10, 17]). Coherent possibility approach al-
lows to assign possibilistic evaluations on an arbitrary set of events and then to
extend it to all the set of events of interest. The degree of belief on an event
of the new set turns out to be represented by an interval (defined by all the
coherent extensions), rather than a single number. Starting from the conditions
characterizing coherent assessments, it is possible to elaborate efficient algo-
rithms for checking coherence and for extending the assessment to new events
(see [1]). Here we present only a sketch of the relevant algorithms and briefly
discuss about their computability.

Diagnosis procedures in a possibilistic framework are present in the literature
(see for example [13]). In this paper, by using the theory and following the idea
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exposed in [4] for a probabilistic framework, we present a procedure for handling
uncertainty in the process of medical diagnosis, by using coherent conditional
possibility. The proposed interactive procedure initially refers to

(i) a family of hypotheses (that is, events represented by suitable proposi-
tions) supplied by the physician: they correspond to possible diseases Hi (i =
1, 2, ..., n) which could explain a given initial piece of information referring to
the specific situation (anamnesis). No structure and no simplifying and unreal-
istic assumption (such as mutual exclusiveness and exhaustivity) is required for
this family of events;

(ii) all logical relations between these hypotheses, either already included in
the knowledge base, or given by the doctor on the basis of the specific situation;

(iii) a possibility assessment on the given set of hypotheses. Clearly, this
is not a complete assessment, since these events have been chosen as the most
natural according to the doctor’s experience: so usually they do not constitute,
in general, a partition of the certain event Ω, and therefore the extension to other
events of these possibility evaluations is not necessarily unique. Moreover, a
doctor often assigns degrees of belief directly to sets of hypotheses (for example,
one may suspect that one of the diseases the patient suffers from is an infectious
one, but he is not able to commit any belief to particular infectious diseases);

(iv) a data base consisting of conditional events E|K and their relevant
possibilities Π(E|K), where each event K is a possible disease which is in some
way related to the given hypotheses Hi, while each evidence E comes from a
suitable evidential test. These possibilities could have been obtained directly by
means of a data-base containing possibilistic or fuzzy information or computed
as an upper probability starting from a coherent probability assessment on a
different suitable set of events (see for instance [12, 14, 16, 7, 8]).

Then, once this preliminary preparation has been done, the first step of our
procedure consists in checking coherence of the assessment Π(Hi). If the as-
sessment turns out not being coherent, the doctor can be driven to a different
assignment based on the relevant mathematical relations contained in the cor-
responding system. Another way-out is to look for suitable subfamilies of the
set {H1, H2, ..., Hn} for which the assignment is coherent, and then proceed by
resorting to the extension theorem.

On the contrary, coherence of the possibilities Π(Hi) allows to go on by
checking now the coherence of the whole assessment including also the possi-
bilities Π(E|K). The whole assignment (prior possibilities and “possibilistic
likelihood”) can be incoherent even if the two separate assessment are coherent.

On the basis of the results obtained by means of the evidential tests, the
doctor can now update the possibilities of the hypotheses Hi , i.e. he assesses
the conditional possibilities Π(Hi|E). Then he needs to check again coherence of
the whole assessment including the latter and the former possibility evaluations.

When prior possibilities and possibilistic likelihood are jointly coherent, the
doctor can get values representing each posterior possibility (of a disease Hi

given an evidence E) by using the extension theorem. Usually the extension
is not unique and we can compute upper and lower bounds for the posterior
possibilities Π(Hi|E) .
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2 Coherent possibility assessments

The concept of coherence, introduced by de Finetti [11] in probability theory, has
a fundamental role to manage partial assessments of an uncertainty measure and
its enlargement; in other words to check consistency with respect to a specific
uncertainty measure and to make inference starting from this information. Some
times we can obtain a (conditional) possibility assessment during the updating
process, starting from a coherent probability assessment (see [7, 8]).

2.1 Coherent unconditional assessments

To illustrate the concept of coherence in the simpler case of unconditional events,
consider an assessment Π(Ei), i = 1, 2, ..., n, on an arbitrary finite family

F = {E1, ..., En} ,

and denote by C = {C1, ..., Cm} the set of the atoms generated by these events
(i.e. made up with all possible conjunctions E∗

1 ∧E∗
2 . . .∧E∗

n, different from the
impossible event ∅, obtained by putting in place of each E∗

i , for i = 1, 2, . . . , n,
the event Ei or its contrary Ec

i ). This assessment is called coherent (or consis-
tent) with a possibility if the function Π can be extended from F to the set of
atoms, in such a way that Π is a possibility on the algebra B spanned by them.
This clearly amounts to the existence of at least one solution of the following
system, where Π′(Cr) = xr with Cr ∈ C,

S =


max

Cr⊆Ei

xr = Π(Ei) ∀Ei ∈ E

max
Cr∈C

xr = 1

xr ≥ 0 ∀Cr ∈ C

(1)

Note that the above system S can have more than one solution. The solv-
ability of the above system can be proved by checking some logical constraints
only, as proved in the following theorem.

Theorem 1 Let Π be an assessment on E = {E1, ..., En}. Suppose that Π(Ei) ≤
Π(Ei+1) for any i = 1, ..., n − 1. The following statements are equivalent:

• Π is coherent with a possibility;

• Ej ∧
( ∧

k<j

Ec
k

)
̸= ∅ for any j = 2, ..., n and if E1 = ∅, then Π(E1) = 0.

Moreover if Π(En) < 1, then
n∧

i=1

Ec
i ̸= ∅.

Proof: Since Ej ∧
( ∧

k<j

Ec
k

)
̸= ∅ it contains an atom Cr, and it is possible to

assign to it the value Π(Ej), for any j = 2, ..., n. Moreover if E1 ̸= ∅ we assign
to an atom in E1 the value Π(E1). Furthermore, if Π(En) < 1 we can give to

the atom
n∧

i=1

Ec
i the value 1. Then, this is a solution for the system (1), so the

assessment is coherent with a possibility.
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Vice versa if the assessment is coherent with a possibility, then the system (1)
admits a solution and so for any j = 2, ..., n there is an atom in Ej ∧

( ∧
k<j Ec

k

)
,

moreover if Π(E1) > 0, then E1 ̸= ∅.

The problem of checking coherence is NP-complete, so we do not expect
to find polynomial-time algorithms for it. Anyway, the above result reduces
this problem to solve a sequence of at most n logic satisfiability problems and
therefore an algorithm able to check coherence needs O(n) calls to a SAT solver.
We overcome the main computational problem consisting on generating the
atoms (as required in system 1) whose number exponentially increases. Even if
the algorithm is still exponential, it relies on advantages in the logic satisfiability
field where SAT solvers are particularly efficient (for more details see [1]).

2.2 Extending coherent unconditional assessments

For any event A ̸∈ E , we denote with A∗ and A∗, respectively, the maximal
event logically dependent on E contained in A, i.e.

A∗ =
∨

Ci⊆A

Ci,

and the minimal event logically dependent on E containing A, i.e.

A∗ =
∨

Ci∧A̸=∅

Ci.

Obviously, A∗ ⊆ A ⊆ A∗, and if A is logically dependent on E (i.e. A ∈ B),
then A∗ = A = A∗.

Let E = {E1, ..., En} be a finite set of events and Π a coherent possibility
assessment on E , then Π can be extended as a coherent possibility on any finite
E∗ ⊃ E .

Moreover, if E∗ = E ∪ {A}, then the set of coherent values for A is a closed
interval [π∗(A), π∗(A)], where π∗(A) = π∗(A∗) = minΠi(A∗) and π∗(A) =
π∗(A∗) = maxΠi(A∗), and the minimum and maximum are computed over the
set of all possible extensions Πi of Π on B.

The above result gives rise to a procedure for finding the set of coherent
values for any new event A, in fact it consists in finding the extreme values

min
(

max
Cr⊆A

xr

)
and max

(
max

Cr∧A̸=∅
xr

)
under the system S.

Remark 1 It is possible to prove (see[10]) that if we start from a coherent
possibility assessment Π on a set E and we compute the intervals of coherence
for more then one new event, then we can choose for every event the maximum
of the relevant interval of coherence, obtaining again a possibility extending Π.
In other words, contrary to probability, the “upper possibility” is a possibility.

Remark 2 We notice that the possible values assumed by both π∗(A) and π∗(A)
are contained in the following set {0, 1, Π(Ei), i = 1, ..., n}. In fact, π∗(A) is
given by the maximum among Π(Ei), for Ei ∧ A ̸= ∅, and 1, if

∧
Ec

i ∧ A ̸=
∅. Analogously, π∗(A) is the maximum among Π(Ei), for Ei ⊆ A, and 1,
if all Π(Ei) < 1 and

∧
Ec

i ⊆ A. Therefore, even if the extension problem
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is intractable, we can provide an algorithm (see for more details [1]) able to
compute lower and upper bounds with at most n calls to the coherence procedure
(see [1]). More precisely, for the lower bound we start by checking coherence
of the assessment {Π(A) = k, Π(Ei), i = 1, ..., n}, with k ∈ {0, 1,Π(Ei), i =
1, ..., n}. In conclusion, the algorithm sketched solves the extension problem
with O(n2) calls to a SAT solver.

2.3 Coherent conditional assessments

We refer to conditional possibility (see [2, 3]) introduced directly as a real func-
tion defined on conditional events by means the following set of axioms :

Definition 1 Let F = B×H be a set of conditional events E|H such that B is
a Boolean algebra and H an additive set (i.e. closed with respect to finite logical
sums), with H ⊂ B and ∅ ̸∈ H. A function Π : F → [0, 1] is a conditional
possibility if it satisfies the following properties:

1. Π(E|H) = Π(E ∧ H|H), for every E ∈ B and H ∈ H;

2. Π(·|H) is a possibility, for any H ∈ H;

3. Π(E ∧ F |H) = min{Π(E|H), Π(F |E ∧ H)}, for any H, E ∧ H ∈ H and
E, F ∈ B.

Let Π be an assessment on an arbitrary finite set of conditional events E ,
then Π is a coherent possibility assessment iff there exist F ⊇ E with F = B×H,
B Boolean algebra, H ⊆ B0 an additive set, and a conditional possibility defined
on F , extending Π (see [9]).

To characterize coherent conditional possibility assessments we introduce the
concept of agreeing class (see [9, 10]).

Definition 2 Let B be a finite algebra and C0 be the set of atoms in B.
The class

∏
= {Π0, ...,Πk} of possibilities defined on B is said nested if the

following conditions hold for any j = 1, ..., k:

• Πj(C) = Πj−1(C) if C ∈ Cj \ Hj (j > 0),

• Πj−1(C) ≤ Πj(C) ≤ 1 if C ∈ Hj (j > 0),

• Πj(C) = 0 for all the atoms C ∈ C0 \ Cj,

• for any C ∈ C0 there exists a (unique) j = 0, ..., k such that Πj(C) = 1,

where Cj = {C ∈ Cj−1 : Πj−1(C) < 1} and

Hj = {Ci ∈ Cj :∄C ∈ Cj s.t. Πj−1(C) > Πj−1(Ci)}.

Notice that Hj (with j > 0) is actually the set of the elements of Cj with the
“highest” value of possibility Πj−1, which potentially have possibility Πj equal
to 1 (see the second condition of Definition 2).
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Definition 3 A class
∏

= {Π0, ...,Πk} of possibilities on B is agreeing with a
conditional possibility Π(·|·) on B×H if it is nested and, for any E|H ∈ B×H,
Π(E|H) is a solution of all the equations

Πα(E ∧ H) = min{x,Πα(H)} (2)

α = 0, ..., j∗ + 1 with j∗ = max{j : Πj(H) < 1}, and Π(E|H) is the unique
solution of the above equation for j = j∗ + 1.

We are able now to give a characterization theorem:

Theorem 2 Let F = {E1|H1, ..., En|Hn} be a finite set of conditional events,
C0 and B denote the set of atoms and the algebra spanned by {E1, H1, ..., En,Hn},
respectively.
For a real function Π : F → [0, 1], the following statements are equivalent:

a) Π is a coherent conditional possibility assessment on F ;

b) there exists (at least) a nested class
∏

= {Π0, ...,Πk} of possibilities on
B, such that for every Ei|Hi ∈ F one has that Π(Ei|Hi) is a solution of
all the equations

Πβ(Ei ∧ Hi) = min{x,Πβ(Hi)} (3)

for every β such that Πβ(Hi) ≤ 1;

c) there exists a sequence of compatible systems Sα (α = 0, ..., k), with un-
known xα

r ,

Sα =



max
Cr⊆Ei∧Hi

xα
r = min{Π(Ei|Hi), max

Cr⊆Hi

xα
r } if max

Cr⊆Hi

xα−1
r < 1

xα
r ≥ xα−1

r if Cr ∈ Hα

xα
r = xα−1

r if Cr ∈ Cα \ Hα

max
Cr∈Cα

xr = 1

xα
r ≥ 0 ∀Cr ∈ Cα

(4)
where xα (with r-th component xα

r ) indicates a solution of the system Sα,
Cα = {Cr : xα

r < 1} and Hα = {Cr : Cr ∈ Cα,xα−1
r = maxCj∈Cα xα−1

j },
moreover x−1

r = 0 for any Cr in C0.

The above result implies that coherence of a given assignment Π can be
proved by finding an agreeing class, i.e. checking the compatibility of the se-
quence of systems.

Remark 3 We note that the solution xα must be chosen by taking for any com-
ponent the maximum possible value (that is 1 or one of the values of Π(Ei|Hi)
present in the system). In fact in the following systems Sβ, (β > α), the value of
any xβ

k present in the system, must be greater or equal to xk
α. So, any different

choice of the value is a constrain, added by us in the systems.
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As an easy corollary of Theorem 2, it is possible to prove the following
results:

Theorem 3 Let F = {E1|H1, ..., En|Hn} be a finite set of conditional events,
where the events Hi are a partition of Ω. Then any real function Π : F → [0, 1],
assigning 1 to the events Ei|Hi with Hi ⊆ Ei and 0 to the events Ei|Hi with
Hi ∧ Ei = ∅ is a coherent conditional possibility assessment.

Theorem 4 Let H = {H1, ..., Hn, } be a partition of Ω and F = {E1|H1, ..., En|Hn}.
Then any assessment Π : F ∪ H → [0, 1], assigning 1 to the events Ei|Hi with
Hi ⊆ Ei, 0 to the events Ei|Hi with Hi ∧ Ei = ∅ and assigning value 1 at least
to an event Hi, is a coherent conditional possibility assessment.

Remark 4 Obviously even in the conditional case, the problem of checking co-
herence is NP-complete, and also in this case we can provide an algorithm (es-
sentially based on Remark 3) based on O(n3) logic satisfiability problems.

This algorithm proceeds iteratively by finding a maximal possibility distribu-
tion at each step. In fact the main idea is (at each step) to give the maximum
value to each EiHi and Hi (in particular Π(Ei|Hi) and 1, respectively, if it is
possible).

We remark that in the check of coherence, the value “1” plays under con-
ditional possibility, the same central role that the value “0” under conditional
probability (see [5]).

In particular this procedure avoids to build all the atoms, but it verifies just
the satisfiability of some compound events. Moreover, at each step, at least an
equation (min constraint) is removed and so we are able to check coherence with
O(n3) calls to a SAT solver. For more details on computational complexity, see
[1].

2.4 Extending coherent conditional assessments

In this section we study the problem of extendibility of a coherent conditional
possibility. For that, we refer, given a coherent conditional possibility assessment
Π on E , to the following two points:

(i) finding all coherent extensions on E|H when E|H ∈ B × Bo (i.e. E ∧ H
and H are logically dependent on E);

(ii) extending this result to any conditional event F |K (i.e. F |K ̸∈ B ×Bo).
To face the case (ii) we need to consider the maximal (and minimal) con-

ditional event in B × Bo contained in (containing) F |K, with respect to the
following inclusion operation between conditional events (see, e.g. [5, 18])

A|H ⊆∗ B|K ⇐⇒ AH ⊆ BK and BcK ⊆ AcH.

Therefore, the maximum [minimum] (with respect to ⊆∗) event contained in
[containing] F |K is (F ∧ K)′| ((F ∧ K)′ ∨ (F c ∧ K)′′)
[and (F ∧ K)′′| ((F ∧ K)′′ ∨ (F c ∧ K)′)] where

(D)′ =
∨

Cr⊆D

Cr;

(D)′′ =
∨

Cr∧D ̸=∅
Cr.

In the case (i) we evaluate all the corresponding values Π(E|H), and then
we take the minimum π∗ and the maximum π∗ with respect to all the possible
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extensions of Π, or equivalently with respect to all the agreeing classes. This
means to consider the sequence of systems Sm

α and to find the maximum and
the minimum coherent values for Π(E|H) under all the possible solutions of the
system Sm

α .
This problem is equivalent to find the maximum index α∗ such that the

solutions xα of the optimal problem minimizing maxCr⊆E∧H xα
r under Sα (α =

0, ..., α∗) are such that maxCr⊆E∧H xα
r = maxCr⊆H xα

r . The aim is, in fact, to
eliminate as much as possible constraints in a way to get the extremal coherent
values for Π(E|H) by forcing the relevant equation to be trivially satisfied.

Remark 5 We notice that, since the values π∗(F |K) and π∗(F |K) can assume
value only in the set {0, 1, Π(Ei|Hi), i = 1, ..., n}, then also in this case we can
build an algorithm to compute lower and upper bounds with O(n4) calls to a SAT
solver. The procedure is similar to that for the unconditional case, by using the
algorithm to check coherence for the conditional case [1].

3 Some Crucial Examples

We analyze some examples of medical diagnosis (a rearrangement of those pre-
sented in [4]) to show how we can use the above theory.

Example 1. A patient feels serious generalized abdominal pains, fever and
retches. The doctor puts forth the following hypotheses concerning the possible
relevant disease: H1 = ileus, H2 = peritonitis, H3 = abdominal inflammation.
Moreover the doctor assumes a natural logical condition such as H1 ∧ H2 =
H1 ∧H3 = H2 ∧H3. Correspondingly we have then five atoms A1 = H1 ∧H2 ∧
∧H3 , A2 = H1 ∧ Hc

2 ∧ Hc
3 , A3 = Hc

1 ∧ H2 ∧ Hc
3 , A4 = Hc

1 ∧ Hc
2 ∧ H3 ,

A5 = Hc
1 ∧ Hc

2 ∧ Hc
3 .

The doctor initially gives these possibility assessments: Π(H1) = 1
2 , Π(H2) =

1
3 , Π(H3) = 1

5 .
By using the algorithm discussed above we can prove that this (partial)

assessment is coherent.
The doctor considers now the event: E = pressing in particular points of

the abdomen does not increase pain and he gives the following relevant logical
and probabilistic information E ∧H1 = E ∧H2, Π(E|H1) = 1, Π(E|H1 ∧Hc

2) =
2
5 , Π(E|Hc

1 ∧ H2) = 0 .
Obviously, the latter assignment is coherent, since it refers to a (trivial)

partition (with respect to the conditioning events), according to Theorem 3.
The updating of that assessment obviously requires that the “whole” prior

and the possibilistic likelihood must be jointly coherent. Instead in this case
coherence does not hold: it is enough to consider the relevant system associated
to the restriction Π(E|H1),Π(H1),Π(H3). In fact, the following system

max{x1, x2} = 1
2

max{x1, x4, x5} = 1
5

x1 = min{1, max{x1, x2}}
max{x1, ..., x5} = 1
xi ≥ 0 ,

admits no solution, a contradiction is obtained since from the third equation
x1 = 1

2 and it contradicts the second equation.
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The next example shows that it is possible to update (prior) possibility, also
in unusual situations (such as when we assume that the diseases are not mutu-
ally exclusive), if coherence of the “global” (i.e. prior and likelihood together)
assessment holds.

Example 3. A patient arrives at the hospital showing symptoms of choking.
The doctor considers the following hypotheses concerning the patient situation:

A=cardiac insufficiency
B=asthma attack

C=respiratory problem
D=cardiac insufficiency caused by asthma attack

with the logical constraints A ∧ C = ∅ and D ⊂ A ∧ B. Consider the following
assessment

Π(A ∨ B|A ∨ B ∨ C) = Π(C|A ∨ B) = 0.6,

Π(D|A) = Π(D|A ∧ B) = 0.4, Π(A|A ∨ B) = 0.7.

The atoms spanned by the above events are C1 = Ac ∧ Bc ∧ C ∧ Dc, C2 =
Ac∧B∧C∧Dc, C3 = Ac∧B∧Cc∧Dc, C4 = A∧B∧Cc∧Dc, C5 = A∧B∧Cc∧D,
C6 = A∧Bc ∧Cc ∧Dc, C7 = Ac ∧Bc ∧Cc ∧Dc. Through the compatibility of
the systems Sα we could prove that such assessment is a coherent conditional
possibility.

Then, the assessment can be extended, for example, to the event A ∧ B|A.
We need to check which are the values for the upper possibility and the lower
bound, in [10] we prove that all the values inside the interval with extremes
the lower and upper bounds are coherent. In Remark 4 we notice that these
extremes can vary in this case in the set {0, 0.4, 0.6, 0.7, 1}.

To compute the lower bound, through the procedure implemented in the
algorithm, it is easy to check that the value Π(A ∧ B|A) = 0 together with
the given assessment is not coherent, while the coherence fulfils for the value
Π(A ∧ B|A) = 0.4, that is the minimum coherent value for A ∧ B|A. For the
upper possibility we can easily prove that the value 1 is coherent. Then, for
A ∧ B|A, the coherent values are [0.4, 1].
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Abstract

In this paper we consider general conditional random quantities of the
kind X|Y , where X and Y are finite discrete random quantities. Then,
we introduce the notion of coherence for conditional prevision assessments
on finite families of general conditional random quantities. Moreover, we
give a compound prevision theorem and we examine the relation between
the previsions of X|Y and Y |X. Then, we give some results on random
gains and, by a suitable alternative theorem, we obtain a characterization
of coherence. We also propose an algorithm for the checking of coherence.
Finally, we briefly examine the case of imprecise conditional prevision
assessments by introducing the notions of generalized and total coherence.
To illustrate our results, we consider some examples.

1 Introduction

In a recent paper ([1]) we have studied the notion of general conditional previ-
sion P(X|Y ), where X and Y are finite discrete random quantities. This general
notion of conditional prevision has been introduced by Lad and Dickey in [5]
and also discussed in [6]. In their work Lad and Dickey consider a notion of
conditional prevision of the form P(X|Y ) where both X and Y are random
quantities, by generalizing the de Finetti’s definition of a conditional prevision
assertion P(X|H), where H is an event. In [5, 6] the case P(Y ) = 0 has not
been considered; on the other hand, P(Y ) = 0 doesn’t imply P(XY ) = 0; then
P(X|Y ) might not exist. In order to handle the case P(Y ) = 0 in [1] we have
proposed a notion of coherence which integrates the definition of P(X|Y ) given
by Lad and Dickey. In particular, among other results, we have given a strong
generalized compound prevision theorem. In this paper we continue our study,
by considering in general conditional prevision assessments on finite families of
finite discrete conditional random quantities. We introduce in general the no-
tion of coherence; we examine the compound prevision theorem and a kind of
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generalization of Bayes theorem; we obtain some results on random gains; more-
over, we give some results to characterize coherence and, by exploiting them,
we propose an algorithm for the checking of coherence; finally, we consider the
case of imprecise conditional prevision assessments, by introducing the notions
of generalized coherence and total coherence. We illustrate our results by some
examples.

The paper is organized as follows: in Section 2 we give some preliminary
notions and results; in Section 3 we introduce in general the notion of coherence
for conditional prevision assessments; in Section 4 we generalize the compound
prevision theorem and we examine the relation between P(X|Y ) and P(Y |X);
in Section 5 we give some results on random gains; in Section 6 we illustrate a
procedure, by proposing an algorithm, for the checking of coherence; in Section
7 we briefly examine the case of imprecise conditional prevision assessments by
introducing the notions of generalized and total coherence; finally, in Section 8
we give some conclusions and comments on future work.

2 Some preliminary notions and results

We recall below two definitions given in [5, 6].

Definition 1. The conditional prevision for X given Y , denoted P(X|Y ), is
a number you specify with the understanding that you accept to engage any
transaction yielding a random net gain G = sY [X − P(X|Y )], where s is an
arbitrary real quantity.

Definition 2. Having asserted your conditional prevision P(X|Y ) = µ, the
conditional random quantity X|Y is defined as

X|Y = XY + (1 − Y )µ = µ + Y (X − µ) . (1)

In [1] some critical comments and examples have been given on the previous
definitions. Then, based on the notion of coherence given in [2, 4, 7, 8, 9], the
following definition has been proposed

Definition 3. Given two random quantities X,Y and a conditional prevision
assessment P(X|Y ) = µ, let G = s(X|Y − µ) = sY (X − µ) be the net random
gain, where s is an arbitrary real quantity, with s ̸= 0. Defining the event
H = (Y ̸= 0), the assessment P(X|Y ) = µ is coherent if and only if: inf G|H ·
sup G|H ≤ 0, for every s.

Let be X ∈ CX = {x1, . . . , xn} and Y ∈ CY = {y1, . . . , yr}, with yk ≥ 0 , ∀ k,
and (X, Y ) ∈ C ⊆ CX × CY . We denote by X0 the subset of CX such that for
each xh ∈ X0 there exists (xh, yk) ∈ C with yk ̸= 0. Then, we set

x0 = minX0 , x0 = max X0 . (2)

Then, we have ([1])

Theorem 1. Given two finite random quantities X, Y , with Y ≥ 0, the previ-
sion assessment P(X|Y ) = µ is coherent if and only if x0 ≤ µ ≤ x0.

A similar result holds for Y ≤ 0.
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3 Coherence of general conditional previsions

Given any random quantities X1, . . . , Xn, Y1, . . . , Yn, based on Definitions 1
and 2 we denote by Mn = (µ1, . . . , µn) a vector of conditional previsions
for ”X1 given Y1”, . . . , ”Xn given Yn”, where µi = P(Xi|Yi); then, we set
Fn = {X1|Y1, . . . , Xn|Yn} and we denote by

Gn =
n∑
i

si(Xi|Yi − µi) =
n∑
i

siYi(Xi − µi) ,

where s1, . . . , sn are arbitrary real quantities, the random gain associated with
the pair (Fn,Mn). We set Hi = (Yi ̸= 0), Hn = H1 ∨ · · · ∨ Hn; then, based on
[2, 4, 7, 8, 9], we generalize Definition 3 by the following

Definition 4. Let P be a real function defined on a family K of conditional
random quantities. P is said coherent if and only if, for every integer n, for every
s1, . . . , sn, and for every sub-family Fn ⊆ K, denoting by Mn = (µ1, . . . , µn)
the restriction of P to Fn, the following condition is satisfied

inf Gn|Hn ≤ 0 ≤ sup Gn|Hn , (3)

which is equivalent to inf Gn|Hn ≤ 0, or sup Gn|Hn ≥ 0.

We give below an example where, based on Definition 4, it is shown that in
some cases do not exist finite coherent conditional prevision assessments.

Example 1. Let be given a random quantity X ∈ {−1, 1}, with P(X) = 0,
i.e. P (X = −1) = P (X = 1) = 1

2 . Of course, it is X2 = P(X2) = 1; hence,
the assessment P(X) = 0 has the unique extension P(X2) = 1. It can be
shown that the assessment (0, 1) on {X,X2} has no finite extensions on X|X.
In fact, let M3 = (0, 1, µ) be a prevision assessment on F3 = {X, X2, X|X},
where µ = P(X|X). By compound prevision theorem, P(XY ) = P(Y )P(X|Y ),
it should be P(X2) = P(X)P(X|X), that is: 1 = 0 · µ, which has no finite
solutions in the unknown µ. We will show that, for every finite quantity µ, the
condition of coherence is not satisfied. In our case H1 = H2 = H3 = Ω = H3,
so that

G3|H3 = G3 = s1(X−0)+s2(X2−1)+s3X(X−µ) = (s1−s3µ)X+(s2+s3)X2−s2 ;

then, denoting by g1 (resp., g2) the value of G3 associated with X = −1 (resp.,
X = 1), it is g1 = −s1 + (1 + µ)s3, g2 = s1 + (1 − µ)s3. Hence s1 < (1 + µ)s3

implies g1 > 0, while s1 > (−1 + µ)s3 = (1 + µ)s3 − 2s3 implies g2 > 0. Then,
for every pair (s1, s3), with s3 > 0 and (1 + µ)s3 < s1 < −2s3(1 + µ)s3 it
is g1 > 0, g2 > 0; that is: inf G3|H3 > 0. Thus, the assessment (0, 1, µ) on
{X, X2, X|X} is not coherent, for every finite µ.
We remark that, still assuming X ∈ {−1, 1} and P(X) = 0, the incoherence of
the assessment P(X|X) = µ can be proved by directly observing that it should
be P[(X|X)−µ] = 0; that is P[X(X −µ)] = P(X2 −µX) = 1−µ · 0 = 0, which
is false, for every µ.
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4 Compound prevision and Bayes theorems

We give below a result which generalizes the compound probability theorem to
the case of n arbitrary random quantities X1, . . . , Xn.

Theorem 2. Given n random quantities X1, . . . , Xn, we have

P(X1 · · ·Xn) = P(X1)P(X2|X1) · · ·P(Xn|X1 · · ·Xn−1) .

Proof. The proof immediately follows by the compound prevision theorem; in
fact, by suitably iterating the formula P(XY ) = P(Y )P(X|Y ), we have

P(X1 · · ·Xn) = P(X1 · · ·Xn−1)P(Xn|X1 · · ·Xn−1) =

= P(X1 · · ·Xn−2)P(Xn−1|X1 · · ·Xn−2)P(Xn|X1 · · ·Xn−1) = · · · =

= P(X1)P(X2|X1) · · ·P(Xn|X1 · · ·Xn−1) .

The following result gives a kind of generalization of Bayes theorem, by
analyzing the relationship between P(X|Y ) and P(Y |X).

Theorem 3. Given two finite random quantities X, Y , with P(X) ̸= 0, we have

P(Y |X) = P(X|Y ) ·
∑

j yjP (Y = yj)∑
j P (Y = yj)P(X|Y = yj)

.

Proof. We have P(XY ) = P(Y )P(X|Y ) = P(X)P(Y |X); then

P(Y |X) = P(X|Y ) · P(Y )
P(X)

= P(X|Y ) ·
∑

j yjP (Y = yj)∑
j P (Y = yj)P(X|Y = yj)

.

Given any event E and a random quantity Y , with P(Y ) ̸= 0, we have

P(E|Y ) =
P(Y |E)P (E)

P(Y )
= P (E) ·

∑
j yjP (Y = yj |E)∑

j yjP (Y = yj)
.

Moreover, given two logically incompatible events A and B, we have

P(A ∨ B|Y ) = P(A + B|Y ) = P(A|Y ) + P(B|Y ) =

= P (A) ·
∑

j yjP (Y = yj |A)∑
j yjP (Y = yj)

+ P (B) ·
∑

j yjP (Y = yj |B)∑
j yjP (Y = yj)

.
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5 Some results on random gains

In this section we deepen the notion of coherence given in Definition 4 and we
obtain further theoretical results. Given any integer n, we set Jn = {1, . . . , n}.
Let be given a conditional prevision assessment Mn = (µi, i ∈ Jn) on a family
Fn = {Xi|Yi, i ∈ Jn} of n conditional random quantities, where µi = P(Xi|Yi).
For each subset K ⊆ Jn, we set HK =

∨
i∈K Hi; moreover, considering the

sub-assessment MK = (µi, i ∈ K) on the sub-family FK = {Xi|Yi, i ∈ K}, we
denote by GK the random gain associated with the pair (FK ,MK). Of course,
Gn = GJn and Fn = FJn . We denote by K the class of the sets K ⊆ Jn which
satisfy the condition inf Gn|HK · supGn|HK > 0 for some si ∈ R, i ∈ Jn. Of
course, K may be empty. We have

Theorem 4. The class K is additive; that is, for every K ′ ∈ K,K ′′ ∈ K, it is
K ′ ∪ K ′′ ∈ K. Moreover, for every K ∈ K, if K ′ ⊂ K, then K ′ ∈ K.

Proof. Assume that K ′ ∈ K,K ′′ ∈ K; i.e., inf Gn|HK′ > 0, inf Gn|HK′′ > 0.
We observe that the set of values of Gn|HK′∪K′′ is the union of the set of values
of Gn|HK′ and Gn|HK′′ ; therefore

inf Gn|HK′∪K′′ = min {inf Gn|HK′ , inf Gn|HK′′} > 0 ;

hence K ′∪K ′′ ∈ K. Moreover, given any K ∈ K and any K ′ ⊂ K, as HK′ ⊆ HK ,
the set of values of Gn|HK′ is contained in the set of values of Gn|HK and hence
inf Gn|HK′ ≥ inf Gn|HK > 0; therefore K ′ ∈ K.

We set
K0 =

∪
K∈K

K , Γ0 = Jn \ K0 . (4)

Of course, K0 ∈ K and K is the power set of K0; in conclusion, given any
K ⊆ Jn, it is K \ K0 ̸= ∅, i.e. K /∈ K, if and only if inf Gn|HK ≤ 0. Then, we
have

Theorem 5. Given a family Fn = {Xi|Yi, i ∈ Jn} of n conditional ran-
dom quantities and any conditional prevision Mn = (µi, i ∈ Jn) on Fn, let
(FΓ0 ,MΓ0) be the pair associated with the subset Γ0 defined as in (4). The
conditional prevision sub-assessment MΓ0 on the sub-family FΓ0 is coherent.

Proof. Based on Definition 4, we have to prove that, for every J ⊆ Γ0, with
J ̸= ∅, it is inf GJ |HJ ≤ 0. Given any J ⊆ Γ0, as J /∈ K, it is inf Gn|HJ ≤ 0,
for every s1, . . . , sn. Moreover, Gn|HJ = GJ |HJ + GJn\J |HJ ; in particular, if
we choose si = 0 for i /∈ J , it is Gn|HJ = GJ |HJ . Then, in order the condition
inf Gn|HJ ≤ 0 , ∀ s1, . . . , sn, be satisfied, it must be inf GJ |HJ ≤ 0, for every
si, i ∈ J . Therefore, the assessment MΓ0 on FΓ0 is coherent.

Remark 1. We observe that inf GJ |HJ > 0 for some si, with i ∈ J , implies
inf Gn|HJ > 0 with the same si, for i ∈ J , and si = 0, for i ∈ Jn \ J .

We give below a necessary and sufficient condition of coherence.

Theorem 6. Let be given a family Fn = {Xi|Yi, i ∈ Jn} of n conditional
random quantities and a conditional prevision assessment Mn = (µi, i ∈ Jn) on
Fn. Moreover, let K∗ be any non empty subset of Jn such that K0 ⊆ K∗. The
assessment Mn is coherent if and only if:
(i) inf Gn|Hn · supGn|Hn ≤ 0 ∀ si ∈ R, i ∈ Jn; (ii) MK∗ on FK∗ is coherent.
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Proof. Of course, coherence of Mn implies (i) and (ii). Conversely, based on
Definition 4, we have to prove that, for every K ⊆ Jn, it is inf GK |HK ≤ 0. We
distinguish two cases: (a) K ⊆ K∗; (b) K * K∗. In the case (a) the condition
inf GK |HK ≤ 0 follows from coherence of MK∗ ; in the case (b), K * K0 and
hence K /∈ K; therefore inf Gn|HK ≤ 0. Then, by reasoning as in Theorem 5,
it follows inf GK |HK ≤ 0. Therefore Mn is coherent.

We illustrate the previous result by the following

Example 2. Given a random vector (X1, X2, Y1, Y2), assume that the con-
stituents are

C1 = (X1 = 1, X2 = 0, Y1 = 0, Y2 = 1), C2 = (X1 = 1, X2 = 0, Y1 = 1, Y2 = 1),
C3 = (X1 = 0, X2 = 0, Y1 = 1, Y2 = 1), C4 = (X1 = 1, X2 = 2, Y1 = 0, Y2 = 0),
C5 = (X1 = 1, X2 = 2, Y1 = 1, Y2 = 0), C6 = (X1 = 0, X2 = 2, Y1 = 1, Y2 = 0).

Then, consider the assessment M3 = (0, 1, 0) on F3 = {X1|Y1, X2|Y2, Y2|X2}.
We observe that H3 = (Y1 ̸= 0) ∨ (Y2 ̸= 0) ∨ (X2 ̸= 0) = Ω and G3|H3 = G3 =
s1Y1X1 + s2Y2(X2 − 1) + s3X2Y2. The values of G3|H3 are

g1 = −s2 , g2 = s1 − s2 , g3 = −s2 , g4 = 0 , g5 = s1 , g6 = 0 .

Now, it can be verified that inf G3|H1 ≤ 0 and inf G3|H3 ≤ 0 for all s1, s2, s3,
which means that {1, 3} ⊆ Γ0. On the contrary, for some s1, s2, s3 (e.g. for
s2 > 0, s1 < s2 ) it is inf G3|H2 · supG3|H2 = −s2(s1 − s2) > 0. Thus,
Γ0 = {1, 3} and K0 = {2}. Moreover, GK0 |HK0 = s2Y2(X2 − µ2)|H2 = −s2;
hence the condition inf GK0 |HK0 ≤ 0 is not satisfied for every s2. This means
that condition (ii) is not satisfied, i.e. the assessment µ2 = 1 on X2|Y2 is not
coherent, so that M3 is not coherent too.
Of course, by Theorem 5, the assessment (0, 0) on {X1|Y1, Y2|X2} is coherent.

6 A procedure for checking coherence

In this section, based on a suitable alternative theorem, we characterize the
coherence of conditional prevision assessments by some theoretical results; then
we propose an algorithm for the checking of coherence.
Let z, s and A be, respectively, a row m−vector, a column n−vector and a
m × n−matrix. The vector z = (z1, . . . , zm) is said semipositive if zi ≥ 0, ∀ i ∈
Jm and z1 + · · · + zm > 0 . Then, we have (Gale 1960; Theorem 2.9)

Theorem 7. Exactly one of the following alternatives holds.
(i) the equality zA = 0 has a semipositive solution;
(ii) the inequality As > 0 has a solution.

We observe that the equality zA = 0 has a semipositive solution z =
(z1, . . . , zm) if and only if the equality pA = 0 has a semipositive solution
p = (p1, . . . , pm) with p1 + · · · + pm = 1.
Given two random vectors X = (X1, . . . , Xn), Y = (Y1, . . . , Yn), we set (X, Y ) =
(X1, . . . , Xn, Y1, . . . , Yn); moreover, we denote by CXY the realm of (X,Y ), that
is the (finite) set of points (x,y) ∈ R2n such that (X = x, Y = y) ̸= ∅. We recall
that Hi = (Yi ̸= 0), i ∈ Jn, Hn = H1∨· · ·∨Hn; moreover, we denote by C0

XY =
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{(x1,y1), . . . , (xm,ym)}, with (xr,yr) = (xr1, . . . , xrn, yr1, . . . , yrn), r ∈ Jm,
the subset of points (x,y) of CXY such that y ̸= 0; this means that, for any
(x,0) ∈ CXY , it is (x,0) /∈ C0

XY . Given an assessment Mn = (µ1, . . . , µn) on
Fn = {X1|Y1, . . . , Xn|Yn}, we denote by Cr the constituent (X = xr, Y = yr).
Then, the value gr of the random gain Gn|Hn =

∑n
i=1 siYi(Xi − µi), associated

with the constituent Cr, is given by

gr =
n∑

i=1

siyri(xri − µi) =
n∑

i=1

si(xriyri − µiyri) , r ∈ Jm .

We define the matrix A = (ari), where ari = xriyri −µiyri, r ∈ Jm, i ∈ Jn, and
the column n−vector s = (s1, . . . , sn)t. If the inequality As > 0 has a solution,
this means gr > 0, ∀ r; that is inf Gn|Hn > 0. Then, by (the alternative)
Theorem 7, the coherence condition inf Gn|Hn ≤ 0, ∀ s1, . . . , sn, means that the
equality zA = 0 has a semipositive solution p = (p1, . . . , pm), with

∑m
r=1 pr = 1.

This amounts to solvability of the following system{ ∑m
r=1 pr(xriyri − µiyri) = 0 , i ∈ Jn,∑m
r=1 pr = 1 ; pr ≥ 0, r ∈ Jm.

(5)

Remark 2. Given any K ⊂ Jn, we denote by AK = (ari) the sub-matrix of A
such that i ∈ Jn and r such that Cr ⊆ HK . By the same alternative theorem, we
have that the condition inf Gn|HK ≤ 0, ∀ s1, . . . , sn, means that the inequality
AKs > 0 has no solutions, or equivalently that the equality pKAK = 0 has
a semipositive solution pK = (pr, r : Cr ⊆ HK); i.e., the following system is
solvable { ∑

r:Cr⊆HK
pr(xriyri − µiyri) = 0 , i ∈ Jn,∑

r:Cr⊆HK
pr = 1 ; pr ≥ 0, r : Cr ⊆ HK .

(6)

We observe that, denoting by (x(i)
j , y

(i)
j ) the generic possible value of (Xi, Yi),

the system (5) can be equivalently rewritten as{ ∑
j x

(i)
j y

(i)
j

∑
r:Cr⊆(Xi=x

(i)
j ,Yi=y

(i)
j )

pr = µi

∑
j y

(i)
j

∑
r:Cr⊆(Yi=y

(i)
j )

pr, i ∈ Jn,∑m
r=1 pr = 1 ; pr ≥ 0, r ∈ Jm.

(7)
Notice that, in probabilistic terms, we have the following interpretations

pr = P (Cr|Hn) = P [(X = xr, Y = yr)|Hn] ;∑
r:Cr⊆(Xi=x

(i)
j ,Yi=y

(i)
j )

pr = P [(Xi = x
(i)
j , Yi = y

(i)
j )|Hn] ;∑

r:Cr⊆(Yi=y
(i)
j )

pr = P [(Yi = y
(i)
j )|Hn] ;

(8)

hence, system (7) can be looked at

Pr(XiYi|Hn) = µiPr(Yi|Hn), i ∈ Jn ; P (Hn|Hn) = 1 . (9)

Now, assuming that system (7) is solvable, we denote by S its (non empty) set
of solutions. Given any p = (p1, . . . , pm) ∈ S, we set

Φj(p) =
∑

r:Cr⊆Hj

pr, Mj = maxp∈S Φj(p), j ∈ Jn; I0 = {j ∈ Jn : Mj = 0}.

(10)
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Of course, solvability of system (7) implies I0 ⊂ Jn. Given any K ⊆ Jn, we
denote by (FK ,MK) the pair associated with K and by GK |HK (resp., by (SK))
the random gain (resp., the system) associated with (FK ,MK).
Of course, Gn = GJn and Fn = FJn . We have

Theorem 8. Assume that system (7) is solvable; moreover, let I0 be defined
as in (10). Then, given any K ⊂ Jn such that K \ I0 ̸= ∅, the system (SK) is
solvable; that is inf GK |HK ≤ 0. Moreover, the sub-assessment MJn\I0 on the
sub-family FJn\I0 is coherent.

Proof. Given any j ∈ K \ I0 there exists a solution p(j) = (p(j)
1 , . . . , p

(j)
m ) ∈ S

such that Φj(p(j)) > 0; moreover∑
r:Cr⊆HK

p(j)
r ≥

∑
r:Cr⊆Hj

p(j)
r = Φj(p(j)) > 0 .

Hence, p(j) is a solution of the following system related with system (7){ ∑
j x

(i)
j y

(i)
j

∑
r:Cr⊆(Xi=x

(i)
j ,Yi=y

(i)
j )

pr = µi

∑
j y

(i)
j

∑
r:Cr⊆(Yi=y

(i)
j )

pr, i ∈ K,∑
r:Cr⊆HK

pr > 0 ; pr ≥ 0, r ∈ Jm.

(11)
As it can be verified, the solvability of the system (11) is equivalent to solvability
of the system (SK); that is, by the alternative theorem, to satisfiability of the
condition inf GK |HK ≤ 0. In particular, the condition inf GK |HK ≤ 0 holds
for every K ⊆ Jn \ I0 and this amounts to coherence of MJn\I0 .

By the previous result, we obtain

Theorem 9. Let be given a family Fn = {Xi|Yi, i ∈ Jn} of n conditional
random quantities and a conditional prevision assessment Mn = (µi, i ∈ Jn) on
Fn. Moreover, let K∗ be any non empty subset of Jn such that I0 ⊆ K∗. The
assessment Mn is coherent if and only if:
(i) the system (7) is solvable; (ii) MK∗ on FK∗ is coherent.

Proof. Of course, coherence of Mn implies conditions (i) and (ii). Conversely,
based on Definition 4, we have to prove that inf GK |HK ≤ 0, ∀K ⊆ Jn. We
observe that, by (i), it is inf Gn|Hn ≤ 0 and I0 ⊂ Jn. We distinguish two cases:
(a) K ⊆ K∗; (b) K * K∗. In the case (a) the condition inf GK |HK ≤ 0 follows
from coherence of MK∗ ; in the case (b) the condition inf GK |HK ≤ 0 follows
by Theorem 8, as K \ K∗ ̸= ∅.

Remark 3. We recall that, for each r ∈ Jm, Cr represents the constituent
(X = xr, Y = yr); hence, given any K ⊆ Jn, with K \ I0 ̸= ∅, for each r such
that Cr ⊆ (Yi = y

(i)
j ) , i ∈ K, we have Cr ⊆ HK . Hence, in system (11) for all

the variables pr’s it is Cr ⊆ HK and the condition r ∈ Jm can be replaced by
r : Cr ⊆ HK . It follows that, by defining

λr =
pr∑

r:Cr⊆HK
pr

, ∀ r : Cr ⊆ HK ,

the system (11) can be rewritten as the following one{ ∑
j x

(i)
j y

(i)
j

∑
r:Cr⊆(Xi=x

(i)
j ,Yi=y

(i)
j )

λr = µi

∑
j y

(i)
j

∑
r:Cr⊆(Yi=y

(i)
j )

λr, i ∈ K,∑
r:Cr⊆HK

λr = 1 ; λr ≥ 0, r : Cr ⊆ HK .

(12)
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Moreover, concerning system (6), as s1, . . . , sn are arbitrary, by choosing si =
0, ∀ i ∈ Jn \ K, the system obtained by (6), with i ∈ Jn replaced by i ∈ K, is
equivalent to system (11). As a consequence: (i) K0 = I0; (ii) Theorems 5 and
8 are equivalent; (iii) Theorems 6 and 9 are equivalent too.

We observe that, if K ⊆ I0, nothing can be said about the solvability of
system (SK), which requires a direct checking, by starting with K = I0.
Based on Theorems 8 and 9, we can use the algorithm below for the checking
of coherence.

Algorithm 1. Let be given a conditional prevision assessment Mn = (µ1, . . . , µn)
on Fn = {X1|Y1, . . . , Xn|Yn}.
Step 1. Check the solvability of system (7); if the system is not solvable, then
Mn is not coherent.
Step 2. If the system is solvable, determine I0; if I0 = ∅, then Mn is coherent.
Step 3. If I0 ̸= ∅, then determine the pair (FI0 ,MI0); replace the pair
(Fn,Mn) by (FI0 ,MI0) and repeat the previous steps.

As we can see, using the algorithm above, we can check coherence of the
assessment Mn on Fn in a finite number of iterations. If the initial system
is solvable, a suitable sequence of sets I

(1)
0 , . . . , I

(t)
0 is computed. We have two

cases: (a) if Mn is coherent, it is t ≤ n and I
(t)
0 = ∅; (b) if Mn is not coherent,

it is t ≤ n − 1 and I
(t)
0 ̸= ∅. We give an example to illustrate Algorithm 1.

Example 3. (we continue Example 2) Concerning the assessment M3 = (0, 1, 0)
on the family F3 = {X1|Y1, X2|Y2, Y2|X2}, with each constituent Cr, we asso-
ciate a variable pr, r = 1 . . . , 6. Then, based on Algorithm 1, we check the
solvability of the initial system given below.

0(p1 + p3 + p4 + p6) + 1(p2 + p5) = 0(0(p1 + p4) + 1(p2 + p3 + p5 + p6)),
0 = 1(0(p4 + p5 + p6) + 1(p1 + p2 + p3)),
0 = 0(0(p1 + p2 + p3) + 2(p4 + p5 + p6)),∑6

r=1 pr = 1, pr ≥ 0, r = 1, . . . , 6,
(13)

which can be written{
p2 + p5 = 0 , p1 + p2 + p3 = 0 , 0 = 0 ,∑6

r=1 pr = 1, pr ≥ 0, r = 1, . . . , 6.
(14)

Each vector p = (p1, . . . , p6), with p1 = p2 = p3 = p5 = 0, p4 + p6 = 1, is a
solution of this system. We have

Φ1(p) = p2 + p3 + p5 + p6 , Φ2(p) = p1 + p2 + p3 , Φ3(p) = p4 + p5 + p6 ,

hence M1 > 0, M2 = 0, M3 > 0. Then, I0 = {2} and we have to check the
coherence of the assessment µ2 = P(X2|Y2) = 1. As conditionally on (Y2 ̸= 0)
the unique possible value of X2 is 0, it must be P(X2|Y2) = 0; hence, by the
algorithm it results that the assessment M3 is not coherent. Of course, by
Theorem 8, the sub-assessment (0, 0) on {X1|Y1, Y2|X2} is coherent.
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7 Imprecise conditional prevision assessments

In this section we briefly examine imprecise conditional prevision assessments;
we introduce below the notions of generalized coherence and total coherence.

Definition 5. Let be given any random quantities X1, . . . , Xn, Y1, . . . , Yn and
a set S ⊆ Rn. With each point Mn = (µ1, . . . , µn) ∈ S we associate the family
Fn = {X1|Y1, . . . , Xn|Yn}, where Xi|Yi = µi + Yi(Xi − µi), i ∈ Jn. We say
that the set S is coherent in a generalized sense (g-coherent) if and only if there
exists Mn ∈ S which is a coherent conditional prevision assessment on Fn.
We say that the set S is totally coherent if and only if, for every Mn ∈ S, Mn

is a coherent conditional prevision assessment on Fn.

Of course, total coherence implies g-coherence.

Given a family of n conditional random quantities Fn = {X1|Y1, . . . , Xn|Yn},
we assume (Xi, Yi) ∈ Ci , i ∈ Jn; moreover, for each i, we set C0

i = (x, y) ∈
Ci : y ̸= 0 and Hi = (Yi ̸= 0). For each i, we denote by X0

i the set of values
of Xi such that for each x ∈ X0

i there exists a possible value y of Yi such that
(x, y) ∈ C0

i . Moreover, we set mi = minX0
i , Mi = maxX0

i , i ∈ Jn. We recall
that, assuming Yi ≥ 0, or Yi ≤ 0, the assessment P(Xi|Yi) = µi is coherent if
and only if mi ≤ µi ≤ Mi. We set I = [m1,M1] × · · · × [mn, Mn]. Then, we
have the following result which concerns the total coherence of I.

Theorem 10. Let be given a conditional prevision assessment Mn = (µ1, . . . , µn)
on a family Fn = {X1|Y1, . . . , Xn|Yn}, where for each i it is Yi ≥ 0, or Yi ≤ 0.
Moreover, assume that HiHj = ∅, for each i ̸= j. Then, the assessment Mn is
coherent if and only if mi ≤ µi ≤ Mi for every i; that is, I is totally coherent.

Proof. We set Gi = siYi(Xi − µi), i ∈ Jn; then

Gn = G1 + · · · + Gn = H1G1 + · · · + HnGn ,

where s1, . . . , sn are arbitrary real numbers. Of course, for each i, the condition
inf Gi|Hi ≤ 0 ∀ si is satisfied if and only if mi ≤ µi ≤ Mi. Then, recalling that
Hn = H1 ∨ · · · ∨ Hn, from the hypothesis HiHj = ∅ for i ̸= j, it follows

Gn|Hn =

 G1|H1, H1 true,
. . . . . . . . . . . .
Gn|Hn, Hn true.

Then
inf Gn|Hn = min {inf Gi|Hi , i ∈ Jn} ,

and the condition inf Gn|Hn ≤ 0 ∀ s1, . . . , sn, is satisfied if and only if it is
satisfied the condition inf Gi|Hi ≤ 0 ∀ si, i ∈ Jn; that is mi ≤ µi ≤ Mi ∀ si, i ∈
Jn. Of course, a similar reasoning can be applied to each sub-family of Fn; hence
I is totally coherent.

We illustrate the previous result by the following

Example 4. Assume that the random vector (X1, X2, X3, Y1, Y2, Y3) has the
following possible values

(1, 1, 1, 1, 0, 0) , (−1,−1,−1, 1, 0, 0) , (1, 1, 1, 0, 1, 0) ,
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(−1,−1,−1, 0, 1, 0) , (1, 1, 1, 0, 0, 1) , (−1,−1,−1, 0, 0, 1) ;

moreover, let M = (µ1, µ2, µ3) a conditional prevision assessment on F3 =
{X1|Y1, X2|Y2, X3|Y3}. We observe that [mi, Mi] = [−1, 1], i = 1, 2, 3, and
I = [−1, 1]3. Moreover, we have the following values for the random gain G3|H3

s1(1 − µ1) , −s1µ1 , s2(1 − µ2) , −s2µ2 , s3(1 − µ3) , −s3µ3 .

As it can be easily verified, the condition minG3|H3 ≤ 0 , ∀ s1, s2, s3, is satisfied
if and only if −1 ≤ µi ≤ 1, i = 1, 2, 3; of course, a similar reasoning can be
applied to each subfamily of F3. Hence the interval I = [−1, 1]3 is totally
coherent.

8 Conclusions

In this paper we have introduced the notion of coherence for conditional pre-
vision assessments on finite families of general conditional random quantities.
Moreover, we have examined the compound prevision theorem and the relation
between P(X|Y ) and P(Y |X). Then, we have given some theoretical results
on random gains and, based on a suitable alternative theorem, we have given
a characterization of coherence. We have also proposed an algorithm for the
checking of coherence. Finally, we have introduced the notions of generalized
and total coherence; then, we have briefly examined the case of imprecise condi-
tional prevision assessments. To illustrate our results we have considered some
examples. Future work should concern the deepening of the case of imprecise
prevision assessments.
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Abstract

In this paper we are going to show a new way to find a consistent
compromise among different opinions expressed through conditional prob-
ability assessments. This procedure will profit from the nice properties of
a discrepancy measure among partial conditional probability assessments
already introduced to adjust incoherent assessments. The use of such
discrepancy for this further goal will be described through exemplifying
examples.
Keywords: Belief revision and inconsistency handling, information merg-
ing, coherent conditional probability assessments, inference.

1 Introduction

The need of finding a consistent compromised among different opinions is an
actual problem in all the ambit where information is mainly expressed through
expertise or when there is the need to join different sources. Of course there are
several possible way to express the available information and consequentially to
operate. For example, limitedly to the field of probabilistic approaches, aggre-
gation is deeply studied both in precise (see e.g. [10, 12, 21, 23]) and imprecise
(see e.g. [11, 19, 18, 22]) frameworks. Some of the proposed aggregation rules
are solely based on the assessed values, others rely on auxiliary over structures,
e.g. second order assessments or risk neutral probabilities. Our choice is in
between: once a specific “distance” among probability distributions is chosen,
then the aggregation proceeds “alone” by working only on the assessed values.

In this paper we focus on the specific field of knowledge expressed through
partial conditional probability assessments. In this area we recently introduced
a procedure to correct inconsistent evaluations, see [4]. This procedure is based
on a discrepancy measure among partial conditional probabilities derived by a
particular scoring rule. Such a scoring rule is inspired by the one introduced by
Lad in [17] for unconditional probability distributions, and adapted to partial
conditional frameworks. This permits a behavioral interpretation and a prob-
abilistic justification of the correction procedure, differently from other similar
proposal, e.g. [16], that mainly rely on purely geometrical interpretations. By
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profiting of the same discrepancy measure, we can now propose a way to merge
different opinions. In fact the solution will be the “closest” coherent evaluation
to the given disparate values.

We face two different kind of merging: in the first we tackle with evaluations
given on overlapping domains, i.e. different probability values can be given on
the same conditional events; in the second we join together evaluations given
on separate domains, i.e. each source of information is given on a specific set of
conditional events.

2 Basic notions

The different sources of information, that could represent expert’s opinions
and/or knowledge bases, will be indexed by a subscript index s varying on
a finite set S.

We formalize the domain of the different evaluations through finite families
of conditional events of the type Es = [E1s|H1s, . . . , Ens|Hns], s ∈ S. The
events Eis’s usually represent the situations under consideration in the source
s, while the His’s usually represent the different contexts, or scenarios, under
which the Eis’s are evaluated.

The basic events E1s, . . . , Ens,H1s, . . . , Hns can be endowed with logi-
cal constraints, that represent dependencies among particular configurations
of them (e.g. incompatibilities, implications, partial or total coincidences, etc.).

In the following EisHis will denote the logical connection “Eis and His”,
¬Eis will indicate “not Eis” and the event H0

s =
∨n

i=1 His will represent the
whole set of contexts taken under consideration in the source of information
s ∈ S.

By the basic events E1s, . . . , Ens,H1s, . . . ,Hns, it is possible to span a
sample space Ωs = {ω1s

, . . . , ωks
}, where ωjs

represents generic atoms, in some
context named “possible worlds ”. Note that the sample space Ωs, together
with H0

s , are not part of the assessment but only auxiliary tools.
The numerical part of the different assessments can be elicited either through

precise numerical values ps = (p1s, . . . , pns) thought as honest evaluation of
the probabilities P (Eis|His), i = 1, . . . , ns, or through interval values ps =
([lb1s, ub1s], . . . , [lbns, ubns]) thought as honest ranges for the probabilities
P (Eis|His), i = 1s, . . . , ns.

Any single assessment (Es,ps), s ∈ S, is supposed to be consistent, i.e.
coherent. For precise assessments, coherence requires the existence of at least a
probability distribution that induces the assessed pis. For interval assessments,
coherence requires the existence of a class of probability distributions that induce
probability values for the Eis|His inside the ranges [lbis, ubis] and, at the same
time, each lower (lbis) or upper (ubis) bound is actually reached through one of
such distributions. For a complete and rigorous description of such notions the
reader can refer to the exhaustive treatise [9].

When the different evaluations are merged, we get a unique assessment with
repetitions, i.e. conditional events with different absolute frequencies, and the
numerical part with both precise and imprecise values. To distinguish the whole
merged assessments by its components we simply ignore the indexes s ∈ S,
so that we deal with the domain E = [E1|H1, . . . , En|Hn] =

∪
s∈S Es with

associated assessment p = ([lp1, up1], . . . , [lpn, upn]) =
∪

s∈S ps.
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The whole set of basic events E1, . . . , En, H1, . . . ,Hn span a unique sample
space Ω = {ω1, . . . , ωk}, that actually turns out to be a refinement of each Ωs.

Usually such merged assessment (E ,p) is inconsistent, i.e. there is not a set
of probability distributions over the sample space Ω fulfilling all the constraints
induced by the different assessments. For this we want to find a consistent con-
ditional probability assessment over E that will represent a compromise among
the (Es,ps).

The fact that the whole assessment (E ,p) is the result of a merging action
does not matter, we can treat it as a generic incoherent partial conditional, pre-
cise and/or imprecise, probability assessment. In fact, the possible multiplicity
of some conditional event Ei|Hi in E can be simply treated as peculiar logical
relations. Hence, the searched compromise solution can be simply detected as
the closest coherent assessment to (E ,p).

Closeness notion implies the choice of some kind of distance, and we will
profit from the aforementioned discrepancy measure. Before to introduce it
again, for the sake of comprehensiveness, we need some further auxiliary notion.

Every probability distribution α : P (Ω) → R corresponds to a non-negative
vector α = [α1, . . . , αk], with αj = α(ωj), so that for every event E ∈ P (Ω) it
results α(E) =

∑
ωj⊆E αj .

We need to introduce a nested hierarchy among probability distribution sets:

• let A =
{

α = [α1, . . . , αk],
∑k

1 αi = 1, αj ≥ 0, j = 1, . . . , k
}

represents the
whole set of probability distributions on Ω;

• let A0 =
{
α ∈ A|α(H0) = 1

}
be the subset of probability distributions on

Ω that concentrate all the probability mass on the contemplated scenarios;

• let A1 = {α ∈ A0|α(Hi) > 0, i = 1, . . . , n} be the subset of probability
distributions on Ω that give positive probability to every scenario;

• let A2 = {α ∈ A1|0 < α(EiHi) < α(Hi), i = 1, . . . , n} be the subset of
probability distributions that avoid boundary values {0, 1} for the condi-
tional probabilities.

It is easy to see that the sets Ai are convex sets and A0 is the closure of A2

(and A1) in the usual topology.
Note that in conditional frameworks the focusing on A0 is commonly done to
avoid unpleasant consequences. See Walley[24] about Avoiding Uniform Loss
assessments or Holzer[14] about the Principle of Conditional Coherence.

Every probability distribution α ∈ A1 generates a coherent assessment qα
on E through the usual formula

qαi =

∑
ωj⊆EiHi

αj∑
ωj⊆Hi

αj

∀i = 1, . . . , n (1)

Note that qα is a continuous function of α when α ∈ A1.
When α ∈ A0, previous formula (1) defines qα only on

Eα := {Ei|Hi ∈ E , α(Hi) > 0} . (2)



38 A.CAPOTORTI, G.REGOLI, F.VATTARI

Coherence of qα is guaranteed by the theorem of Coletti (1994)[7].
Associated to any (coherent or not) assessment p ∈ (0, 1)n over

E = [E1|H1, . . . , En|Hn] we can introduce a scoring rule

S(p) :=
n∑

i=1

|EiHi| ln pi +
n∑

i=1

|¬EiHi| ln(1 − pi) (3)

with | · | indicator function of unconditional events.
Note that such scoring rule is not defined for boundary values 0 or 1 for the

assessed probabilities. This is of course a limitation in our approach but we
anyhow believe in its significance. In particular, if any of the pis, or of the lbis,
or of the ubis, is 0 or 1, they can be maintained fixed in their values, if this of
course will not induce any evident contradiction. This can be legitimated by
the fact that, if the source had a so strong belief to asses such extreme values,
it is reasonable to suppose it does not want to reach a compromise for them.

Such score S(p) is an “adaptation” of the total-log “proper scoring rule” for
probability distributions proposed by Lad in [17](pag. 355). We have extended
it to partial and conditional probability assessments.

The motivation of such a score derives from the fact that a conditional event
Ei|Hi is a three-valued logical entity, partitioning Ω in three parts: the atoms
satisfying EiHi and thus verifying the conditional, those satisfying ¬EiHi, thus
falsifying the conditional, and those not fulfilling the context Hi, to which the
conditional may not be applied at all. Hence the assessor of p “loses less” the
higher are the probabilities assessed for events that are verified, and at the same
time, the lower are the probabilities assessed for those that are not verified. The
values assessed on events that turn out to be undetermined do not influence the
score. In fact the realization of the random value S(p) when the atom ωj occurs
is

Sj(p) =
∑

EiHi⊇ωj

ln pi +
∑

¬EiHi⊇ωj

ln(1 − pi). (4)

The choice of a scoring rule closely related to the usual logarithmic one, apart
from its useful mathematical properties, is motivated by its strict connection
with the well known principle of minimum cross-entropy (see e.g. [20]). Hence
we follow the paradigm of informational economy, and our approach is strictly
related to that of [15] but with different assumptions and techniques.

Note moreover that the concurrent involvement in the score (3) of the events
that turn out to be true and those that turn out to be false, modifies the peculiar
property of the usual logarithmic scoring rule to depend only on the true ones.

We have all the elements now to introduce the “discrepancy” between an
assessment p over E and a distribution α ∈ A2, with respect to its induced
conditional coherent assessment qα, as

∆(p, α) := Eα(S(qα) − S(p)) =
k∑

j=1

αj [Sj(qα) − Sj(p)] . (5)

The need of a “discrepancy” instead of a usual “distance” (or better “diver-
gence”) is motivated by the (general) non-convexity of the coherent set of con-
ditional assessment (see [13] and the next Ex.1 we borrowed from it). It is easy
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to see that

∆(p, α) =
n∑

i=1

α(EiHi) ln(
qi

pi
) + α(Ec

i Hi) ln(
1 − qi

1 − pi
) (6)

=
n∑

i=1

α(Hi)
(

qi ln(
qi

pi
) + (1 − qi) ln(

1 − qi

1 − pi
)
)

(7)

The restriction to the distributions α in A2 is because only there the scoring rule
S(qα) is properly defined. Anyhow, it is possible to extend by continuity the
previous definition of ∆(p, α) to any distribution α in A0 trough the expression

∆(p, α) :=
∑

i|α(Hi)>0

α(Hi)
(

qi ln(
qi

pi
) + (1 − qi) ln(

1 − qi

1 − pi
)
)

(8)

adopting the usual convention 0 ln(0) = 0.
Such discrepancy ∆(p, α) behaves analogously to other usual Bregman di-

vergences1 (see [2]). In fact in [5] we formally prove that the following properties
hold.

• ∆(p, α) ≥ 0 ∀α ∈ A;

• ∆(p, α) = 0 iff p|Eα
≡ qα;

• ∆(p, ·) is convex on A2;

• ∆(p, ·) always admits a minimum on A0;

• If ∆(p, ·) attains its minimum value on A1; then there is a unique coherent
assessment qα on E such that ∆(p, α) is minimum;

• If ∆(p, ·) attains its minimum value on A0 \ A1, then any distribution
α ∈ A0 that minimize ∆(p, ·) induce the same significant conditional
probabilities (qα)j on the conditional events Ej |Hj such that α(Hj) > 0.

• Amongst the distributions α ∈ A0 that minimize ∆(p, ·) there exists at
least one α̃ that maximize the number of positive conditioning events
α̃(Hj) > 0 so that q

eα has the largest number of uniquely determined
components.

The last three items are the crucial ones: for precise numerical evaluations p,
they always guaranty the existence of a coherent assessment (E ,q

eα) “close as
much as possible” to (E ,p). And if there is the need to explore deeper “zero
layers” (see again [9] for details about this delicate and crucial notion), the pro-
cedure to determine (E ,q

eα) can be easily iterated over the residual conditioning
events Ei|Hi with α̃(Hi) = 0. A fully detailed procedure has been proposed in
[5]. Note anyhow that the mixed-integer programs to determine α̃

max
∑

Ei|Hi∈E

I(α′(Hi)) (9)

s.t.
1Actually ∆(p, α) turns out to be a generalization of the sum of two different “Bregman

divergences”.
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α′ ∈ A0 (10)
∆(p, α′) = ∆(p, α) (11)

I(α′(Hi)) =
{

1 if α′(Hi) > 0
0 if α′(Hi) = 0 (12)

can be operationally solved through the equivalent ordinary non-linear programs

max
n∑

j=1

yj (13)

s.t.
0 ≤ yj ≤ 1, j = 1, . . . , n (14)
1
m

α′(Hj) ≥ yj , j = 1, . . . , n (15)

m = min
Hi:α′(Hi)>0

α′(Hi) (16)

α′ ∈ A0 (17)
∆(p, α′) = ∆(p, α). (18)

3 Merging precise assessments with overlapping
domains

Let us see how the aforementioned properties of ∆(p, α) could help us on the
merging problem. In particular we firstly focus one the specific case where the
domains Es overlaps, i.e. Es′

∩
Es′′ ̸= ∅, for some s′ and s′′ in S, and the nu-

merical parts are all precise assessments (hence of the type ps = (p1s, . . . , pns),
s ∈ S).

This will imply that some of the conditional events Ei|Hi ∈ E of the joined
support will be duplicated and with associated, possibly, different, precise values
pis. For the sake of simplicity let us start by supposing that this will appear just
for a single conditional event Ed|Hd with just two distinct associated conditional
probabilities pds′ ̸= pds′′ . The structure of ∆(p,α) remains the same, but using
its expression (7) we can join the two terms involving Ed|Hd obtaining

α(Hd)
(

qd ln(
q2
d

pds′pds′′
) + (1 − qd) ln(

(1 − qd)2

(1 − pds′)(1 − pds′′)
)
)

. (19)

Since, by hypothesis, the two distinct assessments (E ,ps′) and (E ,ps′′) were
coherent, the optimal solution α̃ of the minimization problem of ∆(p, α) under
the constraint of α ∈ A0 will turn out as convex combination of the distributions
compatible with (E ,ps′) and (E ,ps′′). Consequently, the compromise value for
qd turns out to be simply the value in (0,1) minimizing (19), all the others terms
in (7) being zero.

The same will not happen in general when there are more than one repeated
conditional event in E . In fact the set of coherent conditional assessment on E
is not convex, hence it is not always guaranteed the optimal solution α̃ being
a convex combination of the distributions compatible with the single sources of
information. Anyhow, the form of ∆(p, α) remains technically unchanged and
we have the same complexity to minimize it.

Let us see how this works with a simple example.



Merging different probabilistic information sources through a new discrepancy measure 41

Example 1 By borrowing the framework from [13], we consider two coincident
domains E1 ≡ E2 = [C|A,C|B, C|A ∨ B] built by three basic unconditional logi-
cally independent events A,B, C. Hence the whole sample space would be of 8
atoms, but those inside H0 ≡ A ∨ B are 6. The set of coherent assessments on
E = E1 = E2 is made by the triples [q1, q2, q3] ∈ (0, 1)3 with the last component
q3 forced to belong to the range [ q1 q2

q1+q2−q1 q2
, q1+q2−2q1 q2

1−q1 q2
] (see Fig.1). Note the

evident non-convexity of such coherent set.

Figure 1: The lower and upper bounds for coherent assessments on E =
[C|A,C|B, C|A ∨ B]

Let us consider two distinct coherent assessments

E1 ≡ E2 C|A C|B C|A ∨ B

p1 .2 .3 .14
p2 .2 .3 .4

. (20)

We can see that we have only the third element C|A ∨ B with two distinct
probability values. So the joint assessment results

E C|A C|B C|A ∨ B C|A ∨ B

p .2 .3 .14 .4
. (21)

By performing the minimization2 of ∆(p, α), we get directly an optimal dis-
tribution α̃ that makes positive all the conditioning events. So we obtain directly
as merged assessment the following compromise q

eα that leaves the first two as-
sessment unchanged, while the third is a convex combination of the original
ones:

E C|A C|B C|A ∨ B

q
eα .2 .3 .248

. (22)

If we consider a third assessment only on the first element p3 ≡ P (C|A) = .3
we have to consider the joint assessment

E C|A C|A C|B C|A ∨ B C|A ∨ B

p .2 .3 .3 .14 .4 (23)

2The numerical results along all the examples have been obtained trough the nonlinear
optimization software CONOPT of the package General Algebraic Modeling System (GAMS)
[3]



42 A.CAPOTORTI, G.REGOLI, F.VATTARI

that has as merged solution

E C|A C|B C|A ∨ B

q
eα .245 .287 .254

. (24)

Note that also the value associated to C|B has been changed, being incoherent
to remain on its original value.

In the joint assessment (21) we miss the information that some element of the
joint domain has different frequency. This suggest us a further generalization.
In fact, it is possible to associate different weights to the elements of the joined
assessment (E ,p). This to reflect either possible repetitions of the values or
different trust on the various sources of information. We can denote by w =
[w1, . . . , wn] such weights and adjust the expression of ∆(p, α) as

∆w(p, α) =
n∑

i=1

α(Hi)
(

qi ln(
qwi
i

pwi
i

) + (1 − qi) ln(
(1 − qi)wi

(1 − pi)wi
)
)

. (25)

Let us see what are its effects on the previous example

Example 2 If we consider on the joint assessment (23) how many times each
value has been assessed, we have the following weights association

E C|A C|A C|B C|A ∨ B C|A ∨ B

p .2 .3 .3 .14 .4
w 2 1 2 1 1

. (26)

By performing the minimization of (25) we obtain the following merged solution

E C|A C|B C|A ∨ B

q
eα .229 .292 .255

. (27)

By comparing (24) with (27), we can note that the highest weights have the effect
to “attract” the compromise solution to the associated values.

4 Merging knowledge bases with disjoint sup-
ports

Let us face now a different situation. Specifically, consider the case where the
supports Es of the various sources are disjoint. Equivalently, consider when we
have all multiplicity 1 in E . This is the case for example when we join together
different knowledge bases. Of course the interesting cases are those where, even
disjoint, the supports Es are correlated.

The problem of finding a compromise among the different assessments obvi-
ously arise when the joined assessment (E ,p) turns out to be incoherent.

If all the numerical parts are precise, then the solution is simply the assess-
ment q

eα derived by the optimal solution α̃ that minimize ∆(p, α). A different
approach is instead needed in presence of some imprecise assessment. The so-
lution will be the result of several corrections, each one obtained by fixing one
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of the boundary values (lbis or ubis) and letting the other components to vary
inside their ranges [lbjs, ubjs] (that could be actually points pjs).

A detailed description of the procedure has been given in [6]. Here we give
an idea of how it could work by illustrating a simplified example.

Example 3 Let us suppose to merge a physician expertise about the separate
validity of two distinct bio-markers for a specific tumoral lesion. Specifically,
let D denote the event that a patient being diagnosed to have the lesion, F the
expression of the first bio-marker and S the expression of the second one. There
are not particular logical relations among the three unconditional events D, F
and S.

Consider the following physician opinion about the ratio of patients with
specific symptoms being diagnosed to have the lesion and about the expression
of the two bio-markers among those patients:

E1 D F |D S|D
p1 .51 .231 .77 . (28)

On the other hand, the physician is interested in the correlation between the
two bio-markers. He founds out in the literature the expected ratio of expressions
of the first bio-marker among those that express also the second between 65%
and 75%. Hence we have a second source of information composed by a single
imprecise assessment

E2 F |S
p2 [.65, .75] . (29)

Note that the joint assessment

E D F |D S|D F |S
p .51 .231 .77 [.65, .75] (30)

seen as a lower-upper conditional probability assessment is g-coherent [1] (a
notion equivalent to Walley’s avoiding uniform loss). In fact there exists at least
one coherent (in de Finetti’s sense) precise conditional probability assessment
compatible with the numerical ranges. On the other side, it is not coherent in
the more strict sense (see for example [8]) because, by taking p1 as valid, not
all the values inside the range [.65,.75] for P (F |S) can be reached. In particular
the upper bound .75 is outside the coherent extension [.0005, .6886] for P (F |S).

If we try to adjust the upper evaluation

E D F |D S|D F |S
p̄ .51 .231 .77 .75 (31)

we get as closest coherent assessment the following:

E D F |D S|D F |S
q .49 .256 .752 .723

. (32)

Hence we can conclude that the best coherent merging compromise is

E D F |D S|D F |S
q

eα [.49, .51], [.231, .256] [.752, .77] [.65, .723]
. (33)
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Note that even being p1 a precise assessment, in the merging solution we have all
interval values. This sounds reasonable because the information p1 provided by
the physician is usually based on his specific knowledge base, while the literature
information p2 is usually made by collecting several case studies and the merging
procedure reflect this.

5 Conclusion

In this paper we have shown that the tool of the discrepancy measure ∆(p, α),
introduced originally to adjust incoherent partial conditional probability as-
sessments, turns out useful also for reasonable merging of different source of
information.

This procedure does not require any particular further theoretical investiga-
tion but just a careful use of the already stated properties of the discrepancy
measure.

Even being limited to specific situations, the merging procedures reported
here are quite representative of the most common applications. Obviously a
much deep and complete analysis is needed. In particular, formal properties
(axioms) that our aggregation operation satisfies must be investigated. We can
anticipate that surely it is not associative, as already noted in [4], while it is
surely symmetric and preserves unanimity (see [22]).
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Abstract

The classic belief conditioning rules (BCRs) and DSm BCRs applied to
classic belief functions are briefly recalled in the contribution. A general
idea of belief conditioning by a given evidence is analysed and a new plain
BCR is presented. This rule is compared with both the classic and the
DSm BCRs. Finally, general formulas for described BCRs and a new
general BCR are presented and defined.

1 Introduction

Belief functions are one of the widely used formalisms for uncertainty repre-
sentation and processing. Belief functions enable representation of incomplete
and uncertain knowledge, belief updating and combination of evidence. Origi-
nally belief functions were introduced as a principal notion of Dempster-Shafer
Theory (DST) or the Mathematical Theory of Evidence [8, 12].

For combination of beliefs, Dempster’s rule of combination and a series of its
alternatives is used in DST. Namely Dempster’s rule of conditioning [8] is used
for belief function conditioning by evidence, i.e. in the case that we obtain a
sure assupmtion that the true is definitely in some proper subset of the frame of
discernment. The alternative belief focusing rule completely ignores basic belief
mases of all focal elements which are not a subset of the conditioning set.

In a new DSm (Dezert-Smarandache) approach to belief functions [5] a long
series of 31 belief conditioning rules (BCRs) was defined [9]. Due to the fact that
the DSm approach can be considered both as a generalization and also a special
case of Dempster-Shafer theory [3], the series of DSm BCRs is reduced to 9
conditioning rules for classic belief functions (where one of them is belief focusing
in fact). All BCRs (including Dempster’s rule) add some additional information
to the conditioned belief functions. Unfortunately majority of DSm BCRs add
more information than it is necessary. Some of these rules are non-intuitive or
even counter-intuitive, thus only BCR12 is considered to be reasonably useful
[4]. Nevertheless the analysis of the entire series of 31 DSm BCRs motivated

∗This work was supported by ESF EUROCORES FP006 project ICC/08/E018 of the Grant
Agency of the Czech Republic, and in part by the Institutional Research Plan AV0Z10300504
”Computer Science for the Information Society: Models, Algorithms, Applications”.
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the author to look for a conditioning rule which adds no additional information
within conditioning.

Refusing the usual assumption that conditioning of a Bayesian belief func-
tion should be again Bayesian belief function, we can define a new plain rule of
belief conditioning, which adds no additional information to the conditioned be-
lief. By application of a probability transformation to the resulting conditioned
belief function we obtain a Bayesian belief function again, thus our reduction
of assumptions brings no principal limitation either on the belief level or on the
decisional (pignistic) level.

On the other hand, when applying various probability transformations [1],
we obtain various conditioned Bayesian belief functions; in the special case of
normalised belief of singletons, we obtain the same conditioned Bayesian belief
function as when the belief focusing, BCR12 or Dempster’s rule of conditioning
are used.

Properties of the plain BCR are described and presented in examples. Mul-
tiple conditioning with the plain BCR is weakly commutative and associative.
The plain BCR can be expressed using both Dubois-Prade [6] and Yager’s [11]
rules of combination of belief functions.

In the end, a new general formula of BCR is presented, which expresses not
only all of the above mentioned rules (belief focusing, BCR12, Dempster’s rule
of conditioning, the plain BCR), but also a new general conditioning rule — a
combination of the four previously presented ones.

2 Preliminaries

Let us assume an exhaustive finite frame of discernment Ω = {ω1, ..., ωn}, whose
elements are mutually exclusive.

A basic belief assignment (bba) is a mapping m : P(Ω) −→ [0, 1], such
that

∑
A⊆Ω m(A) = 1, the values of bba are called basic belief masses (bbm).1

P(Ω) = {X|X ⊆ Ω} is often denoted also by 2Ω.
A belief function (BF) is a mapping Bel : P(Ω) −→ [0, 1], Bel(A) =∑

∅̸=X⊆A m(X). A plausibility function is a mapping Pl : P(Ω) −→ [0, 1],
Pl(A) =

∑
∅̸=X∩A m(X). Belief function Bel, Plausibility function Pl and the

corresponding bba m uniquely correspond to each other.
Dempster’s (conjunctive) rule of combination ⊕ is given as (m1 ⊕m2)(A) =∑

X∩Y =A Km1(X)m2(Y ) for A ̸= ∅, where K = 1
1−κ , κ =

∑
X∩Y =∅ m1(X)m2(Y ),

and (m1 ⊕ m2)(∅) = 0, see [8]; putting K = 1 and (m1 ⊕ m2)(∅) = κ we obtain
the non-normalized conjunctive rule of combination ∩⃝.

Yager’s rule of combination Y⃝, see [11], is given as (m1 Y⃝m2)(∅) = 0,
(m1 Y⃝m2)(A) =

∑
X,Y ⊆Θ, X∩Y =A m1(X)m2(Y ) for ∅ ≠ A ⊂ Θ, and

(m1 Y⃝m2)(Θ) = m1(Θ)m2(Θ) +
∑

X,Y ⊆Θ, X∩Y =∅ m1(X)m2(Y );
Dubois-Prade’s rule of combination DP⃝ is given as (m1DP⃝m2)(A) =∑

X,Y ⊆Θ, X∩Y =A m1(X)m2(Y )+
∑

X,Y ⊆Θ, X∩Y =∅,X∪Y =A m1(X)m2(Y ) for ∅ ̸=
A ⊆ Θ, and (m1DP⃝m2)(∅) = 0, see [6].

Probabilistic transformations: pignistic transformation BetT , (normalized)
plausibility transformation Pl T , (normalized) belief transformation Bel T , pro-

1m(∅) = 0 is often assumed in accordance with Shafer’s definition [8]. A classical counter
example is Smets’ Transferable Belief Model (TBM) which admits m(∅) ≥ 0 [10].



48 M. DANIEL

portional belief transformation PropBelT , are mappings from the set of belief
functions to the set of probability functions, see [1, 2].

In this contribution we deal with belief conditioning by event, i.e. we suppose
a sure assumption, that the truth (the true element ω0 ∈ Ω) is in some specified
proper subset A of frame of discernment Ω.

3 Classic belief conditioning rules

There are several equivalent forms of Dempster’s rule of conditioning (DRC).
The original introduced by Shafer in [8] uses plausibility measure: Pl(X|A) =
Pl(X∩A)

Pl(A) , the expression which uses bba is the following

m(X|A) = 1
1−k

∑
Y ∩A=X m(Y ),

for X ⊆ A, where k =
∑

Y ∩A=∅ m(Y ); m(X|A) = 0 for X ̸⊆ A. The rule
is defined (applicable) whenever Pl(A) > 0, i.e., whenever there exists some
Y ∩ A ̸= ∅ such that m(Y ) > 0. For a comparison with DSm BCRs, we can
equivalently write:

m(X|A) = m(X) +
∑

Y ∩A=X
Y ̸=X

m(Y ) +
∑

Y ∩A=X m(Y )∑
Y ∩A̸=∅ m(Y )

∑
Y ∩A=∅

m(Y )

For DRC it holds that m(X|A) = (m ⊕ mA)(X), where mA(A) = 1,
mA(X) = 0 for X ̸= A.

There is another belief conditioning rule, called also belief focusing2 (BFR):

m(X||A) = m(X)
Bel(A) = m(X)

P

Y ⊆A m(Y )

for X ⊆ A, m(X||A) = 0 for X ̸⊆ A. This rule is applicable whenever Bel(A) >
0, i.e., whenever there exists some ∅ ≠ Y ⊆ A such that m(Y ) > 0, see [7].

4 DSm belief conditioning rules

There are 31 DSm belief conditioning rules (BCRs) defined and presented in [9].
These rules are defined on DSm hyper-power sets constructed from frames of
with overlapping elements. Considering the classic case with exclusive elements,
some of these rules become mutually equivalent. Hence we obtain 9 different
DSm BCRs for classic belief functions which are defined on P(Ω).

BCR1 is equivalent to the belief focusing rule for classic BFs. Unfortunately,
majority of DSm BCRs are not intuitive and some of them are even counter-
intuitive. All these rules add additional information to conditioned BFs within
conditioning process. Only BCR12, which adds the least amount of additional
information (and which is equivalent to BCR2 for classic BFs), has been founded
to be reasonable for belief conditioning in [4]. Thus we consider only BCR12 in
this text.

2We use a notation m( || ) to distinguish it from Dempster’s conditioning rule m( | ).
This rule was mentioned in [7], unfortunately, the authors of that chapter does not know its
original publication.
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We can present BCR12 for classic belief functions, i.e. for BFs on Shafer’s
model in DSm terminology, as it follows3 (see [4]):

mBCR12(X qA) =
∑

W∩A=X

m(W ) +
m(X)
Bel(A)

·
∑

Z∩A=∅

m(Z)

for X ⊆ A, mBCR12(X q A) = 0 for X ̸⊆ A. This rule is applicable4 whenever
Bel(A) > 0 or Pl(A) = 1.

5 General idea of belief conditioning rules

Let us look at particular BCRs, how bbms of individual focal elements are
transformed from an input belief function to the corresponding conditioned
one. We can divide focal elements of input BFs according to their relation to
conditioning set A into 3 disjoint subsets: focal elements which are subset of
the conditioning set A: S = {XS |XS ⊆ A ⊆ Ω}, elements which are not subset
of A but which have non-emty intersection with A: I = {XI |XI ⊆ Ω, XI ̸⊆
A,XI ∩ A ̸= ∅}, and the remainig focal elements which are disjunctive with A:
D = {XD|XD ⊆ Ω, XD ∩ A = ∅}, see figure 1. We can use SΩ,A, IΩ,A, DΩ,A for
specification of the frame of discernment Ω and the conditioning set A. In the
same way we can split entire P(Ω) into 3 disjoint parts SΩ,A ∪ IΩ,A ∪ DΩ,A =
P(Ω).

Figure 1: Three disjoint subsets of focal elements.

BFR performs normalization of bbms of focal elements from S (briefly bbms
of XSs). In another words, we can say that BFR keeps bbms of all XSs and
proportionalizes bbms of all focal elements from I and D (bbms of XIs and
XDs) according to bbms of XSs.
BCR12 also keeps bbms of XSs, it transfers bbms of XIs to XI ∩A (adds m(XI)
to m(XI ∩A) and finally proportionalizes bbms of XDs according to input bbms
of XSs.
DRC keeps again bbms of XSs, and it transfers bbms of XIs to XI ∩ A in
the same way as BCR12. But the final proportionalization of bbms of XDs is
performed according to bbms of XSs increased by bbms of corresponding XIs
(such that XS = XI ∩ A).

3We use a notation m( q ) to simply distinguish bba m conditioned by BRC12 from the
same bba m conditioned by Dempster’s conditioning rule m( | ) and from that conditioned
by the belief focusing m( || ).

4We have to mention here the Dezert-Smarandache idea of extension BCR definition do-
mains, mBCRi(AqA) = 1, whenever BCRi is not defined; for comments about correctness of
application of this idea to DSm BCRs see [4].
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Have a look at this in general: all XSs are completely contained in A, they
are in full accord with A, thus there is no need to transfer or redistribute their
bbms within the conditioning process. This is fulfilled by all 3 BCRs presented
above (and this is true also for all BCRs from [9]).

In the case of XIs we have an input belief that ω0 (true) is in XI and
sure assumption/condition that ω0 ∈ A, thus we should believe that ω0 is in
XI ∩ A ̸= ∅ under the condition. Thus, there really should be no problem
with XIs. This is fullfilled by BCR12 and DRC but not by BFR (also not by
any BCRs from [9] which are not equivalent to BCR12 in the classic Shafer’s
case). BFR completely ignores bbms of all XIs and it adds to the input BF the
additional assumption that the conditioned bbms must be in the same ratio as
the input bbms of XSs are.

The most complicated is the situation of XDs: similarly to the previous case,
we have an input belief that ω0 (true) is in XD and sure assumption/condition
that ω0 ∈ A, but XD ∩A = ∅. How to solve this conflicting situation? We have
the sure assumption/condition that ω0 must be in A and we have a belief that
it is in XD, i.e. out of A. We assume, that we have no other additional belief,
information or assumption within the conditioning process. Thus there is no
reason for any proportionalization of bbms of XDs, there is neither reason for
any other redistribution of bbms of XDs among proper subsets of A. We only
assume that ω0 is in A thus we have to transfer bbms of XDs to bbm of A (to
add all m(XD) to m(A)). This is performed by none of the above BCRs (nor
by any BCRs from [9]). Hence a new BCR should be defined as it follows in the
next section.

6 The plain belief conditioning rule

Based on the ideas from the previous section, we can define a new plain belief
conditioning rule (plain BCR) as it follows:

m(X
...A) =

∑
Y ∩A=X m(Y )

for X ⊂ A,

m(A
...A) =

∑
Y ∩A=A m(Y ) +

∑
Y ∩A=∅ m(Y ),

m(X
...A) = 0 for X ̸⊆ A. In difference from the other BCRs, the plain BCR

is defined for any BF defined on P(Ω). For a comparison with DSm BCRs,

we can equivalently write: m(X
...A) = m(X) +

∑
Y ∩A=X

Y ̸=X
m(Y ) for X ⊂ A, and

m(A
...A) = m(A) +

∑
Y ∩A=A

Y ̸=X
m(Y ) +

∑
Y ∩A=∅ m(Y ).

6.1 Properties of the plain BCR

When a Bayesian BF is conditioned by any of BFR, BCR12 and DRC, the
resulting conditioned BF is again Bayesian. This does not hold in the case
of the plain BCR as bbms of all singletons out of the conditioning set A are
summed to the m(A). Thus Bayesianity is kept only in non-interesting trivial
cases by the plain BCR: 1) for singleton A and 2) for BBFs with positive bbms
only for singletons from A.
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Thus Shafer’s assumption of coincidence of conditioning of BBFs with proba-
bility conditioning is not satisfied by the plain BCR. Is it a serious disadvantage
for BCR? It is not. When working with BFs we should use their wider ex-
pressibility than probability distributions have, and there is no necessity to be
forced to Bayesian results in the credal level. The result is more general as it
is possible to use different probability transformations and to obtain different
corresponding results on the decisional level. Moreover when (normalized) be-
lief probability transformation Bel T is applied to a BBF conditioned by the
plain BCR, we obtain just the same result as if Dempster’s rule of conditioning
is applied to the input BBF.

Let us suppose situation, where two or more conditioning sets subsequently
appear now. Thus conditioning rule should be applied twice or several times to
the given belief function(s). As we want accept all the subsequentially appeared
conditioning sets Ai, the resulting conditioned BF may have positive bbas only
for focal elements which are subset or equal to the intersection

∩
i Ai of all the

considered conditioning sets.

Statement 1 The plain belief conditioning rule is weakly commutative in the

following sense: m((X
...A)

...A ∩ B) = m((X
...B)

...A ∩ B).

This statement directly follows the fact that the following holds true:
m((X

...A)
...A ∩ B) = m(X

...A ∩ B).

Corollary 2 The plain belief conditioning rule is weakly associative in the fol-

lowing sense: m(((X
...A)

...A ∩ B)
...A ∩ B ∩ C) = m(((X

...C)
...B ∩ C)

...A ∩ B ∩ C).

A relation of the plain BCR and of the belief combination rules is expressed
by the following statements.

Statement 3 (i) For the plain belief conditioning rule and for Yager’s rules of
combination the following holds true:

m(X
...A) = (m Y⃝mA)(X),

m(A
...A) = (m Y⃝mA)(A) + (m Y⃝mA)(Ω)

m(Ω
...A) = 0,

where X ̸= A,Ω, mA(A) = 1, mA(Y ) = 0 for Y ̸= A.
(ii) For the plain belief conditioning rule and for Dubois-Prade rules of combi-
nation the following holds true:

m(X
...A) = (mDP⃝mA)(X),

m(A
...A) =

∑
A⊆Y

(mDP⃝mA)(Y )

m(Z
...A) = 0,

where X ⊂ A, Z ̸⊆ A, mA(A) = 1, mA(Y ) = 0 for Y ̸= A.

We can summarize this by the following theorem.
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Theorem 4 For the plain belief conditioning rule and for Yager’s and Dubois-
Prade rules of combination the following holds true:

m(X
...A) = (m Y⃝mA)(X) = (mDP⃝mA)(X),

m(A
...A) = (m Y⃝mA)(A) + (m Y⃝mA)(Ω) =

∑
A⊆Y

(mDP⃝mA)(Y ),

where X ⊂ A, mA(A) = 1, mA(Y ) = 0 for Y ̸= A,

m(X
...A) = 0 for X ̸⊆ A.

It also holds that

m(X
...A) = (m Y⃝mA)(X

...A) = (mDP⃝mA)(X
...A),

m(X
...A) = (m Y⃝mA)(X|A) = (mDP⃝mA)(X|A),

m(X
...A) = (m Y⃝mA)(X qA) = (mDP⃝mA)(X qA).

For proper subsets of the conditioning set, the bbms of BF conditioned by
the plain belief conditioning rule coincide with values obtained by Dubois-Prade
and Yager’s rules of combination with one argument fixed to categorical
BF mA. Value m(A

...A) is equal to the remainder of the sum of m(X
...A) to 1,

where X ⊂ A. Thus the plain BCR is compatible with both Dubois-Prade and
Yager’s rules of combination.

7 Properties and comparison of BCRs

7.1 Definition Domains

BFR has the least definition domain DomBFR = {Bel | Bel(A) ̸= ∅} among the
presented rules, DomBCR12 = {Bel | Bel(A) ̸= ∅ ∨ Pl(A) = 1}5, DomDRC =
{Bel | Pl(A) ̸= ∅}, the plain BCR has the largest possible definition domain,
i.e. set of all belief functions DomPBCR = {Bel}.

7.2 Conditioning of Bayesian belief functions

When a Bayesian BF is conditioned by any of BFR, BCR12 and DRC, the
resulting conditioned BF is again Bayesian. In the case of the plain BCR the
resulting conditioned BF is more general, usually not Bayesian.

7.3 Multiple conditioning

Let us suppose again situations, where two or more conditioning sets subse-
quently appear, thus conditioning rules should be applied twice or several times
to the given belief function(s).

Both BFR and DRC are commutative and associative in the following sense:
m((X

...A)
...B) = m((X

...B)
...A), m(((X

...A)
...B)

...C) = m(((X
...C)

...B)
...A). The plain

BCR has only weak version of these properties, see the previous section. For
BCR12 neither the weak version of these properties holds true, see the following
example.

5We have to note, that Dezert & Smarandache additionally extended definition domains
of all DSm BCRs with formula mBCRi(A|A) = 1, for all BFs out of the original definition
domains of the rules. Their idea is discussed in the Appendix of [4].
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Example: Let suppose Ω6 = {ω1, ω2, ..., ω6}, conditioning sets A = {ω2, ω3, ω4},
B = {ω1, ω2, ω3}, and Bel given by m as it follows: m({ω2}) = 0.1, m({ω5, ω6})
= 0.3, m({ω3, ω4, ω5}) = 0.5, m({ω4, ω5, ω6}) = 0.1.
Thus we obtain m({ω2}

...A) = 0.1, m({ω3, ω4}
...A) = 0.5, m({ω4}

...A) = 0.1,
m(A

...A) = 0.3 and m(({ω2}
...A)

...A ∩ B) = 0.1, m(({ω3}
...A)

...A ∩ B) = 0.5,
m((A ∩ B

...A)
...A ∩ B) = 0.4;

m({ω2}
...B) = 0.1, m({ω3}

...B) = 0.5, m(B
...B) = 0.4 and m(({ω2}

...B)
...A ∩ B) =

0.1, m(({ω3}
...B)

...A ∩ B) = 0.5, m((A ∩ B
...B)

...A ∩ B) = 0.4.
We further obtain m({ω2} q A) = 0.15, m({ω3, ω4} q A) = 0.75, m({ω4} q A) =
0.1, and m(({ω2}qA)qA ∩ B) = 0.25, m(({ω3}qA)qA ∩ B) = 0.75;
whereas m({ω2}qB) = 0.5, m({ω3}qB) = 0.5, and m(({ω2}qB)qA ∩B) = 0.5,
m(({ω3}qB)qA ∩ B) = 0.5.

7.4 Relation of BCRs to combination rules

DRC coincides with Dempster’s rule of combination with one argument fixed to
BelA, where corresponding bba is given as mA(A) = 1, mA(X) = 0 otherwise.
The plain BCR compatible with Yager’s and Dubois-Prade rules of combination
with one argument fixed to BelA.

BFR and BCR12 are not compatible with any combination rule in this sense.

7.5 Addition of additional information during condition-
ing

The plain BCR adds no additional information within the conditioning process.
DRC and BCR12 add additional information when bbas of conflicting focal
elements (focal element from the set D, see Sect. 5) are normalized or propor-
tionalized. BFR adds the greatest amount of additional information because
bbas of focal elements intersecting conditioning set A are also normalized.

7.6 Comparison of BCRs

Let us compare the presented BCRs according to their above mentioned prop-
erties. We left aside compatibility of BCRs with combination rules. This prop-
erty is criticised and strictly rejected by Dezert and Smarandache in the case
of DRC and Dempster’s rule of combination. On the other hand, this property
does not look important for evaluation of rules, this property is not important
for conditioning process, but it is important for understanding of nature of the
conditioning rules, it is important for their compatibility with belief combina-
tion.

Both positive properties of BFR processing of BBFs and its commutativity
and associativity are possesed also by DRC. On the other hand DRC has larger
definition domain and adds less additional information, thus DRC is better than
BFR is.

When comparing DRC and BCR12, both the rules keep Bayesians BFs and
add the same amount of (different) additional information. DRC has greater
definition domain and posses commutativity and associativity when multiple
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conditioning is applied. Thus DRC is also better6 than BCR12 is.
When comparing BCR12 and BFR, BCR12 may possible be evaluated as

a better one from the applicational (def. domain and additional information),
but not from the theoretical point of view (not even weak commutativity).

When comparing DRC and the plain BCR, DRC is commutative and asso-
ciative whereas the plain BCR posses only weak version of these properties, and
DRC keeps BBFs. Both the conditioning rules are compatible with some belief
combination rule(s). The plain BCR is better from the applicational point of
view (greater definition domain and less additional information). Hence it is
not possible to say which of the rules is better in general.

When comparing the plain BCR with BCR12, the only advantage of BCR12
is keeping of BBFs, nevertheless it is not possible to say which of the rules is
better in general.

When comparing all four presented BCRs, we can point out DRC and the
plain BCR: as DRC is better than BFR and BCR12 and the plain BCR is not
better or worse than the others in general. Moreover both DRC and the plain
BCR are compatible with some combination rule: DRC with Dempster’s one
and the plain BCR with Yager’s and Dubois-Prade rules of combination.

8 General formula for belief conditioning rules

We can reformulate BFR, BCR12, DRC, and the plain BCR on their definition
domains as it follows:

m(X||A) = m(X)
P

Y ∩A̸=∅ m(Y )
P

Y ⊆A m(Y ) + m(X)
P

Y ∩A=∅ m(Y )
P

Y ⊆A m(Y ) for X ⊆ A,

mBCR12(X qA) =
∑

W∩A=X m(W ) + m(X)
Bel(A) ·

∑
Z∩A=∅ m(Z) for X ⊆ A,

m(X|A) =
∑

Y ∩A=X m(Y ) +
P

Y ∩A=X m(Y )
P

Y ∩A̸=∅ m(Y )

∑
Y ∩A=∅ m(Y ) for X ⊆ A,

m(X
...A) =

∑
Y∩A=X

m(Y ) for X⊂A, m(A
...A) =

∑
Y∩A=A

m(Y ) +
∑

Y∩A=∅
m(Y ),

m(X||A) = mBCR12(X qA) = m(X|A) = m(X
...A) = 0 for X ̸⊆ A.

Using the idea m(X ≀ A) = pm(X||A) + q mBCR12(X q A) + r m(X|A)+

s m(X
...A), where p, q, r, s ∈ {0, 1} such that p + q + r + s = 1, we obtain the

following general formulas for the presented belief conditioning rules:

m(X ≀ A) = pm(X)

∑
Y ∩A̸=∅ m(Y )∑

Y ⊆A m(Y )
+ (q + r + s)

∑
Y ∩A=X

m(Y )

+(p + q)m(X)
∑

Y ∩A=∅ m(Y )∑
Y ⊆A m(Y )

+ r

∑
Y ∩A=X m(Y )∑
Y ∩A̸=∅ m(Y )

∑
Y ∩A=∅

m(Y ),

m(A ≀ A) = p m(A)

∑
Y ∩A ̸=∅ m(Y )∑

Y ⊆A m(Y )
+ (q + r + s)

∑
Y ∩A=A

m(Y )

+(p + q)m(A)
∑

Y ∩A=∅ m(Y )∑
Y ⊆A m(Y )

+ (r
∑

Y ∩A=A m(Y )∑
Y ∩A̸=∅ m(Y )

+ s)
∑

Y ∩A=∅

m(Y ).

6We have to note, that the coincidence of DRC with Dempster’s rule, which is criticised
and strictly rejected by Dezert and Smarandache is not considered in this comparison.
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for X ⊂ A whenever Bel(A)>0 or p=0 & Pl(A)=1 or p+q=0 & Pl(A)>0 or
p+q+r=0 (i.e. s=1); m(X ≀ A) = 0 for X ̸⊆ A.

The above general formulas represent FCR for p = 1, BCR12 for q = 1,
DRC for r = 1 and the plain BCR for s = 1. Admitting p, q, r, s ∈ [0, 1]
such that p + q + r + s = 1, we can consider the above general formulas as a
definition of a new general BCR. Unfortunately such a general rule overtakes
all negative properties of all four single rules from the least definition domain
of BFR ({Bel|Bel(A) > 0}) to the greatest additional information. The rule is
neither compatible with any of the classic combination rules.

As we have shown that DRC has all the above investigated properties better
or equal to the properties of BFR and BCR12, we can improve the properties of
the new general BCR by setting p = q = 0, hence we obtain simpler improved
version of the general BCR for r, s ∈ [0, 1] such that r + s = 1. The rule, of
course, cumulate negative properties of DRC and of the plain BCR in general.
In the special cases of r = 1 or s = 1, it coincides with DRC or with the
plain BCR, respectively. We can correctly extend its definition domain using
Desert-Smarandache idea m(A|A) = 1 whenever rule is not defined by the above
formulas, i.e. m(A ≀ A) = 1 when Pl(A) = 0 and s ̸= 1 as it follows:

m(X ≀ A) = (r + s)
∑

Y ∩A=X

m(Y ) + r

∑
Y ∩A=X m(Y )∑
Y ∩A̸=∅ m(Y )

∑
Y ∩A=∅

m(Y ),

m(A ≀ A) = (r + s)
∑

Y ∩A=A

m(Y ) + (r
∑

Y ∩A=A m(Y )∑
Y ∩A̸=∅ m(Y )

+ s)
∑

Y ∩A=∅

m(Y ),

for X ⊂ A whenever Pl(A) > 0 or s = 1;
m(A ≀ A) = 1 when Pl(A) = 0 and s ̸= 1; m(X ≀ A) = 0 for X ̸⊆ A.

This general rule is defined for all classic BFs, it is weakly commutative in
the sense of Section 6, its additional information is comparable with those of
DRC. The rule preserves BBFs only for r = 1 (or in consequence with Bel T
[1, 2], in that case it preserves BBFs and coincides with DRC for BBFs for any
r, s ∈ [0, 1] such that r + s = 1). In general case the rule is not compatible
with any classic rule of belief combination, for r = 1 it is compatible with
Dempster’s rule of combination and for s = 1 with Yager’s and Dubois-Prade
rules of combination.

9 Conclusion

The new belief conditioning rule — the plain BCR — was presented in this
contribution. Properties of the plain BCR were compared with the properties
of the classic BCRs including BCR12 — the most useful DSm BCR — applied
to the classic belief functions. Dempster’s rule of conditioning (DRC) has been
shown to be better than the belief focusing rule (BFR) and BCR12 from the
point of view of the investigated properties. Hence DRC and the plain BCR are
recommended for belief conditioning, moreover DRC is compatible with with
Dempster’s rule of combination and the plain BCR is compatible with Yager’s
and Dubois-Prade rules of combination.
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In the end a general BCR, which includes DRC and the plain BCR as its
special cases, was defined and presented.
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Abstract

The paper looks at the conditional independence search approach to
causal discovery, proposed by Spirtes et al. and Pearl and Verma, from
the point of view of the mechanism-based view of causality in economet-
rics, explicated by Simon. As demonstrated by Simon, the problem of
determining the causal structure from data is severely underconstrained
and the perceived causal structure depends on the a priori assumptions
that one is willing to make. I discuss the assumptions made in the inde-
pendence search-based causal discovery and their identifying strength.

1 Introduction

An accepted scientific procedure for demonstrating causal relations is experi-
mentation. If experimental manipulation of one variable (called the independent
variable) results in a change in value of another variable (called the dependent
variable), assuming an effective control for all possible intervening variables, one
usually concludes that in the system under study the two variables stand in a
causal relation with each other. Unfortunately, conducting such experiments is
for many practical systems impossible, because of our inability to manipulate
the system variables, forbidding costs of experimentation, or ethical considera-
tions. Numerous examples of such systems are found in economics, medicine,
meteorology, or social sciences. Still, one wants to predict the impact of pol-
icy decisions, such as whether to impose a tax, introduce or abolish the death
penalty, or restrict smoking, on such variables as the gross national product,
crime rates, or the number of lung cancer cases in the population. Where ex-
perimentation is impossible, one must rely on observations and assumptions in
order to form a theory of causal interactions.

One discipline where much attention has been paid to model construction
from observations is econometrics. Work in late 1940s and early 1950s (see for
example [4] or [3]) concentrated on formulating economic theories in the form of
systems of structural equations, i.e., equations describing mechanisms by which
variables interact directly with each other. It was commonly believed that sys-
tems of structural equations should be formulated either entirely on the basis of
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economic theory or economic theory combined with systematically collected sta-
tistical data for the relevant variables in the system. Construction of a system
in the second case consisted of proposing a theoretical model, i.e., specifications
of the form of the structural equations (including designation of the variables
occurring in each of the equations) and then estimating the constant parameters
from observations. The limits of such estimation raised the problem of “identi-
fiability,” i.e., whether it is theoretically possible, given prior knowledge about
the functional forms of equations in a set of simultaneous equations, to deter-
mine unique values of parameters of these equations from observations. Simon
[7] related the problem of identifiability to the causal structure of the system,
showing theoretical conditions under which a structure is identifiable.

In their influential work, Spirtes et al. [9] and Pearl and Verma [5],1 pro-
posed that, under certain circumstances, observation is sufficient to determine
all or part of the causal structure of a system. They have outlined methods for
identifying the narrow class of causal structures (ideally a unique causal struc-
ture) that are compatible with particular observations. I will refer to the view of
causality that underlies this work as independence search-based view of causal-
ity (or briefly ISC). As Simon [8] demonstrated, the problem of determining the
causal structure from data is severely underconstrained and the perceived causal
structure depends on the a priori assumptions that one is willing to make. From
this point of view, there is little doubt that these new methods rest on some
powerful identifying assumptions.

The goal of this paper is to explicate these assumptions, express them in
terms of the earlier work in econometrics on structural equation models, and
discuss their identifying strength. I will build on the results presented in [2],
which reviews the mechanism-based view of causality (MBC) and shows a link
between causal ordering and directed probabilistic graphs. The main conclusion
resulting from this analysis is that with respect to the meaning of causality, the
ISC and MBC views are almost identical. The power of the new methods rests
on additional assumptions about causal relations that had not been made in
econometrics. The two new powerful identifying assumptions are (1) that the
causal structure is acyclic and (2) that each observed independence and depen-
dence is a reflection of the causal structure and not merely coincidental (the
latter called in the ISC view “faithfulness assumption”). With respect to the
faithfulness assumption, the new, previously unexplored, element is dependence
of causes conditional on a common effect.

The remainder of the paper is structured as follows. Section 2 starts with a
brief review of the mechanism-based view of causality in directed probabilistic
graphs. Section 3 offers a summary of the main assumptions made in the causal
discovery work. Section 4 covers important concepts at the foundations of causal
discovery: independence, conditioning, Markov condition, and faithfulness. It
proposes a deterministic notion of independence and explains the link between
this and the probabilistic view. Section 5 translates the assumptions in ISC into
the MBC and explicates their identifying power.

1I will refer frequently to the book by Spirtes et al. [9] rather than to the work of Pearl
and Verma, because I am more familiar with the former. I believe that for the purpose of
this analysis, both approaches are equivalent. There are other, Bayesian approaches to causal
discovery originating from the seminal work of Cooper and Herskovitz [1], which I will leave
outside this discussion.
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2 Mechanism-Based View Of Causality

The mechanism-based view of causality rests on the observation that individual
causal mechanisms, while normally symmetric (e.g., forces are reciprocal), ex-
hibit asymmetry when embedded in the context of a model. Simon [7] proposed
a procedure for deriving a directed graph of interactions among individual vari-
ables, called causal ordering, and tied it to the econometric notion of structure.
He postulated that when each of the equations in the model is structural and
each of the exogenous variables is truly exogenous, the asymmetry reflects the
causal structure of the system. Druzdzel and Simon [2] have shown the link
between causal ordering and directed probabilistic graphs. I will briefly review
the main results from that work.

The following theorem demonstrates that the joint probability distribution
over n variables of a Bayesian network (BN) can be represented by a model
involving n simultaneous equations with these n variables and n additional
independently distributed latent variables.

Theorem 1 (representability) Let B be a BN model with discrete random
variables. There exists a simultaneous equation model S, involving all variables
in B, equivalent to B with respect to the joint probability distributions over its
variables.

The following theorem establishes an important property of a structural equa-
tion model of a system with the assumption of causal acyclicity.

Theorem 2 (acyclicity) The acyclicity assumption in a causal graph corre-
sponding to a self-contained system of equations S is equivalent to the following
condition on S: Each equation ei ∈ S : f(x1, . . . , xn, Ei) = 0 forms a self-
contained system of some order k and degree one, and determines the value of
some argument xj (1 ≤ j ≤ n) of f , while the remaining arguments of f are
direct predecessors of xj in causal ordering over S.

The last theorem binds causal ordering with the structure of a directed proba-
bilistic graph.

Theorem 3 (causality in BNs) A Bayesian belief network B reflects the cau-
sal structure of a system if and only if (1) each node of B and all its direct
predecessors describe variables involved in a separate mechanism in the system,
and (2) each node with no predecessors represents an exogenous variable.

The above results show a link between structural equation models and causal
graphs. They also make it clear that the former give a more general notion of
structure than the letter. Directed probabilistic graphs are acyclic, while causal
ordering in structural equation models can lead to cyclic structures. While
equations can easily model dynamic processes with feedback loops, directed
acyclic graphs can capture only their equilibrium states.

Theorem 3 demonstrates that directed arcs in BNs play a role that is similar
in its representational power to the structure (presence or absence of variables in
equations) of simultaneous equation models. The graphical structure of a BN,
if given causal interpretation, is a qualitative specification of the mechanisms
acting in a system.
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3 Causal Discovery

Causal discovery in ISC is based on two axioms binding causality and proba-
bility. Informally, the first axiom, causal Markov condition, states that once we
know all direct causes of an event, the event is probabilistically independent of
its causal non-descendants. For example, suppose that we see a broken glass
bottle on the bicycle path with small pieces of glass lying all around. Learning
the cause of this broken bottle or that a piece from the bottle hurt a passing
dog, does not change our expectation of a flat tire caused by the pieces of glass
on the road.2 The formal statement of the causal Markov condition is as follows:

Causal Markov Condition: [9, page 54,] Let G be a causal graph
with vertex set V and P be a probability distribution over the ver-
tices in V generated by the causal structure represented by G. G
and P satisfy the Causal Markov Condition if and only if for every
W in V, W is independent of V\(Descendants(W ) ∪ Parents(W ))
given Parents(W ).

The second axiom, the faithfulness condition, assumes that all interdependencies
observed in the data are structural, resulting from the structure of the causal
graph, and not accidental (e.g., by some particular combination of parameter
values that result in causal effects canceling out). Spirtes et al. demonstrate
that purely accidental dependencies and independences have, under a wide class
of natural distributions over the parameters, a probability of measure zero. The
formal statement of the faithfulness condition is as follows:

Faithfulness Condition: [9, page 56,] Let G be a causal graph and
P a probability distribution generated by G. < G,P > satisfies the
Faithfulness Condition if and only if every conditional independence
relation true in P is entailed by the Causal Markov Condition applied
to G.

One of the consequences of the causal Markov condition in combination with
the faithfulness condition is conditional dependence: all causal predecessors of
an observed variable v become probabilistically dependent conditional on v.
Suppose that while riding a bicycle we get a flat tire. This makes all possible
causes of the flat tire probabilistically dependent conditional on the flat tire.
Observing pieces of glass on the road, for example, makes thorns less likely (the
glass “explains away” the thorns).

Markov and faithfulness conditions bind causality with probability and along
with other assumptions, such as acyclicity of the causal structure, reliability of
the statistical tests applied, or independence of error terms, place constraints
on the causal structure. The constraints provide clues to the causal structure
that generated the observed patterns of interdependencies. Spirtes et al. show
that given their assumptions, they are often able to reconstruct from a set of

2Many of these properties of causes have been long known. Reichenbach described “causal
forks” consisting of a cause and two or more effects. The effects are normally probabilistically
dependent because of the common cause, but this dependence vanishes if we condition on
the cause [6, page 158,]. The causal Markov condition is not completely uncontroversial.
Salmon [6] postulates the existence of “interactive forks,” that violate the causal Markov
condition. Spirtes et al. give an appealing explanation of Salmon’s examples and postulate
that interactive forks do not exist, at least in the macroscopic world [9, Section 3.5.1,].
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observations a unique causal structure of the system that generated them. The
search for that causal structure is a search for the class of faithful models that
are structurally able to generate the observed independences, and sometimes
this search provides a unique structure.

4 Independence, Conditioning, Markov Condi-
tion, and Faithfulness

This section builds a bridge from the MBC to the ISC view of causality by
introducing a deterministic notion of independence between a system’s variables.
This is a purely theoretical exercise that allows to talk about dependences among
variables in a system of simultaneous structural equations. Please note that the
concept of causal ordering, as explicated by Simon, operates on systems of
simultaneous structural equations with no notion of uncertainty. Uncertainty
enters these systems through variability of exogenous variables (error terms are
simply exogeous variables on the par with other exogenous variables ).

4.1 Deterministic Independence

I propose to base the deterministic definition of independence on the notion of
dimensionality of the Cartesian product of variables. Followings the conven-
tions in physics and mathematics, I define the dimension of a space roughly as
the minimum number of coordinates needed to specify every point within it.
A Cartesian product of n independent variables has dimensionality n, for, as
each of the variables can vary independently over its domain, the points in this
product cover an n dimensional space. If there is any interdependency among
the variables, there will be loss in the dimensionality of this space. For exam-
ple, if the element binding the two variables is an equation describing a unit
circle, all we need to specify a point in this space is the polar coordinate angle.
The Cartesian product of two independent variables forms a plane. If these two
variables are dependent, then the domain of their Cartesian product will have
a lower dimensionality and will be a line. The value of one of the variables puts
a constraint on the value of the other.

Definition 1 (independence) Sets of variables X and Y in a simultaneous
equation model S are independent if the dimensionality of the Cartesian product
of the variables in X ∪ Y is equal to the sum of dimensionalities of Cartesian
products of variables in X and Y separately.

Loss of dimensions is caused by functional relations that bind variables between
the sets X and Y. Each functional relation causes, in general, loss of one
dimension. Because the exercise is theoretical, I will leave out of this paper
the question how to test for deterministic independence in practice, along the
lines of testing probabilistic independence.

4.2 Conditioning

Conditioning within a system of simultaneous equations means selecting a sub-
set of observations that fulfills some specified condition. Such a condition forms
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a constraint on the values that a measured variable or a set of measured vari-
ables can take in the selected subset. Typically, one requires the value of a
variable to be equal to some constant value. Conditioning is a passive way of
“experimenting” with the system without modifying its causal structure. One
selects those instances of the system’s output that produce a specified value. If
we condition on, for example, xi = xi0 , then we add to the system an additional
constraint

xi = xi0 . (1)

It is important to distinguish conditioning from direct manipulation of xi, which
is referred to in econometrics by change in structure. A change in structure is
represented by replacing the equation that is made inactive by an equation
describing the manipulation. In this case, one would replace the equation ei

that determines the value of xi by the equation xi = xi0 . In conditioning, on
the other hand, the selected data set needs to satisfy the equation ei and, in
addition, Equation 1. Conditioning on one variable reduces, thus, the system
from a self-contained set of n equations with n variables to a set of n+1 equations
with n variables (or, if we choose to replace xi by a constant, n equations with
n−1 variables), a system that is overconstrained. (This system still has solutions
— these are the observed data points.)

4.3 Markov Condition

It turns out that in deterministic models, Markov condition can be derived
rather than assumed and the following theorem can be proven.

Theorem 4 (Markov condition) Let S be a simultaneous equation model
with n variables V and n independent error variables. Let G be a directed
acyclic graph with vertex set V reflecting causal ordering over variables V in S.
For every w ∈ V, w is independent of Z ≡ V\(Descendants(w) ∪ Parents(w))
given Parents(w).

The theorem shows that the Markov condition is a simple consequence of the
fact that the system is modeled by a set of simultaneous structural equations.

Theorem 2 shows that under the assumption of acyclicity, each of the equa-
tions determines one variable. Let equation ei determine the variable xi and
precede (in the causal ordering over the model) all equations ej , such that i < j.
Because none of the equations ek, such that k < i, contained xi, each remains
unchanged when we condition on xi. Each of those equations ek such that i < k
that contained xi will now contain one fewer variable. This will lead to making
the causal path from the predecessors of xi to its causal successors inactive: note
that as xi becomes constant, none of the equations for the causal successors of
xi will depend on causal predecessors of xi through xi (they may, of course,
depend through other paths).

4.4 The Faithfulness Assumption

I propose the following deterministic definition of faithfulness.

Definition 2 (faithfulness) A structural equation model S is faithful with re-
spect to its structure if and only if every independence between sets of variables
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in S is entailed by the structure of S (i.e., by the presence and the absence of
variables in individual equations in S).

What this definition requires practically is that the model not contain equations
that structurally look as if they were putting a constraint on a variable or a set
of variables, but where in reality, the actual functional form and the actual
values of the coefficients imply no constraint. Unfaithfulness may happen when
a variable is present in an equation, but the coefficient of that variable is zero
or becomes zero when influence through different paths is being computed (i.e.,
when the total effect of a variable on another variable through different paths
“cancels out”).

There are dependencies that do not result in loss of dimensionality, such as
Peano or Sierpiński curves, or even the simple absolute value function. How-
ever, one has to remember that there are dependences that do not result in
probabilistic dependence, for example deterministic dependences, excluded by
the faithfulness axiom in the ISC approach.

4.5 Useful Properties of Causal Graphs

I report three properties of the relation between causal ordering and indepen-
dence. Proofs are quite straightforward and omitted due to space constraints.

Theorem 5 (causal dependence) If y precedes x in causal ordering, then y
and x are dependent.

Theorem 6 (spurious dependence) If z precedes both x and y in the causal
ordering, then x and y are dependent.

One of most useful conclusions that can be drawn from conditioning is con-
ditional dependence. Conditioning on a variable in a simultaneous equation
model yields a data set in which all variables that are causal predecessors of that
variable are dependent, contrary to the situation before conditioning, where ex-
ogenous variables in the system under study were independent by assumption.
This observation shows that conditioning on a set of variables allows one to draw
inferences about the causal ordering of variables, namely to discriminate, under
certain circumstances, between causal predecessors and causal successors of the
variables that were conditioned on. This property is captured by the following
theorem.

Theorem 7 (conditional dependence) Let S be a self-contained simultane-
ous equation model. Let Ψ be the set of causal predecessors of a variable x.
Given the faithfulness assumption, any two subsets of variables Y,Z ∈ Ψ, are
dependent conditional on x.

The above three theorems show that causal ordering and interdependence are
related. Causal ordering of the variables in a system of equations will result in
a pattern of interdependencies in the observed data. This pattern, in turn, will
give clues to the causal ordering or, more exactly, to the structural equations of
the system.
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5 Assumptions in Causal Discovery

Using elementary algebraic considerations, Simon [8] demonstrated that the
problem of determining a causal structure, either from experimental or obser-
vational data, is severely underconstrained. The way one perceives the causal
structure of a system is strongly dependent on the assumptions that one is will-
ing to make. In particular, one might assume that a causes b only from an
observed correlation between a and b, if one is willing to make the assumptions
of time precedence and causal sufficiency (the latter excludes the possibility of
a common cause) [8]. Similarly, one may be reluctant to accept even an experi-
mental demonstration of causation, if one rejects critical assumptions about the
experimental setup. It is, therefore, essential to state explicitly the assumptions
made and provide the motivation for their validity.

In this section, I will outline the identifying information supplied by each
of the assumptions made in causal discovery and the exact gains for discov-
ering causality. I will use the structure matrix notation introduced in [2] and
reproduced below to show the gains from each of the assumptions in terms of
the number of coefficients of structural equations that are determined by the
assumption. Some of the assumptions work in combination, and it is, therefore,
difficult to assess the net gain obtained by each separately.

5.1 Initial Observations

The following definition, reproduced from [2], introduces a convenient notation
for the structure of equations in simultaneous equation models.

Definition 3 (structure matrix) The structure matrix A of a system S of n
simultaneous structural equations e1, e2, . . . , en with n variables x1, x2, . . . ,
xn is a square n× n matrix in which element aij (row i, column j) is non-zero
if and only if variable xj participates in equation ei. Non-zero elements of A
will be denoted by X and zero elements by 0.

Our starting point is the observation that any system can be modeled by n
measured variables (x1, x2, . . . , xn) and n unmeasured latent variables (E1, E2,
. . . , En), called error terms (note that I am not making any assumptions about
their interdependence). If we denote the ith measured variable by xi and the
ith error term by Ei, we can write the following structure matrix A for the set
of 2n simultaneous structural equations with 2n variables. A solution of this set
for any given set of values of the exogenous variables E1, E2, . . . , En describes a
single observed data point.

x1 . . . xn E1 . . . En

(e1) a11 . . . a1n a1n+1 . . . a12n

(e2) a21 . . . a2n a2n+1 . . . a22n

. . . . . . . . . . . . . . . . . . . . .
(en) an1 . . . ann ann+1 . . . an2n

(en+1) an+11 . . . an+1n an+1n+1 . . . an+12n

(en+2) an+21 . . . an+2n an+2n+1 . . . an+22n

. . . . . . . . . . . . . . . . . . . . .
(e2n) a2n1 . . . a2nn a2nn+1 . . . a2n2n


(2)

5.2 Acyclicity of the Causal Structure

The acyclicity assumption is probably the strongest assumption made in ISC
causal discovery. It technically amounts to assuming that there are no feedback
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loops in the causal graph of the system. The implication of this assumption
for a simultaneous structural equation model has been captured by Theorem 2.
Every equation in such a model determines the value of exactly one endogenous
variable.

Before showing the implications of the acyclicity assumption for causal dis-
covery, I will rearrange the coefficients of the structure matrix to a form conve-
nient in causal discovery. Without loss of generality we are free to assume that
row i (i = 1, . . . , n) in (2) represents equation ei that determines the value of
variable xi, and row n + j (j = 1, . . . , n) represents equation en+j that deter-
mines the value of the error variable Ej . Also, column i (i = 1, . . . , n) of the
matrix will contain coefficients for the variable xi and column n+j (j = 1, . . . , n)
will contain coefficients of the error variable Ej . Mathematically this assump-
tion amounts to rearranging the structure matrix by row and column exchanges
(renaming the variables and the equations), which, as shown in [7], preserves
the causal structure of the system.

The following three properties hold in this rearranged matrix A:

Property 1 (diagonal elements) ∀1≤i≤2n aii ̸= 0

Because I assumed that equation ei determines variable xi, and, therefore,
xi must be present in ei, each diagonal element of A must be non-zero (i.e.,
∀1≤i≤n aii ̸= 0). The same holds for the error variables Ei.

Property 2 (off-diagonal elements) There are at least 2n(2n − 1)/2 zeros
among off-diagonal elements of A. All non-zero off-diagonal elements in A
represent direct causal predecessors of the diagonal element of the same row.

In the proof of Theorem 2 [2], I demonstrate that another implication of the
acyclicity assumption is that the structure matrix is triangular and, therefore,
contains at least 2n(2n − 1)/2 zeros. The location of these zeros is only partly
disclosed and can be retrieved only in combination with the properties of the
observed data and other assumptions during the discovery process.

By Theorem 2, all variables that participate in an equation, except the
one that is determined by the equation, are direct causal predecessors of that
variable. By Property 1, the diagonal elements denote the variables that are
being determined, therefore, it follows that all non-zero off-diagonal elements
represent direct causal predecessors of the diagonal elements. Note that no
assumptions have been made so far about interdependence of error variables
and each of the equations en+i (i = 1, . . . , n) can model dependencies among
these.

Property 3 (acyclicity) ∀i ̸=j aij ̸= 0 =⇒ aji = 0

aij ̸= 0 implies that xj is a direct predecessor of xi and aji ̸= 0 would imply
that xi is a direct predecessor of xj , which then implies a cycle in the causal
graph. Note that Property 3 captures only cycles of degree two. It is possible
to capture cycles of higher degrees, although the conditions for these become
increasingly complex.
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5.3 Causal Sufficiency

The assumption of causal sufficiency3 is equivalent to the assumption of indepen-
dence of exogenous variables Ei. Independence of exogenous variables amounts
to assuming that half of the 2n equations contain just one variable, namely one
of the n error terms. As the remaining n equations each involves exactly one
distinct variable of the n error variables, we get 3n2 − 2n structural zeros.

x1 x2 . . . xn E1 E2 . . . En

(e1) X 0 . . . 0 X 0 . . . 0
(e2) a21 X . . . 0 0 X . . . 0
(e3) a31 a32 . . . 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

(en) an1 an2 . . . X 0 0 . . . X

(en+1) 0 0 . . . 0 X 0 . . . 0
(en+2) 0 0 . . . 0 0 X . . . 0
(en+3) 0 0 . . . 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
(e2n) 0 0 . . . 0 0 0 . . . X


For the sake of simplicity of the subsequent discussion, we can remove the error
term parts of the above structure matrix (note that the removed parts contain
no unknown values of parameters), obtaining:

x1 x2 x3 . . . xn

(e1) X 0 0 . . . 0
(e2) a21 X 0 . . . 0
(e3) a31 a32 X . . . 0
. . . . . . . . . . . . . . . . . .
(en) an1 an2 an3 . . . X

 (3)

In the structure matrix above, I have assumed that all zeros are located above
the diagonal to show graphically the number of structural zeros obtained by
the acyclicity assumption. In fact, the location of zeros is not disclosed a-
priori and is only constrained by Property 3. The actual inference from the
observed pattern of interdependencies concentrates on determining for each of
the remaining n(n − 1)/2 coefficients in (3) whether it is zero or non-zero.

6 Conclusion

Because the problem of causal inference from observations is severely undercon-
strained, the perceived causal structure depends on the a priori assumptions
that one is willing to make. This paper has explicated the assumptions made in
the causal discovery work (ISC view) and expressed them in terms of the earlier
work in econometrics on structural equation models (mechanism-based view).
I discussed the identifying strength of each of the assumptions in terms of the
number of structural zeros and non-zeros that can be implied in the structure
matrix.

The power of the ISC methods seems to rest on additional assumptions about
causal relations that had not been made in econometrics. The two new powerful

3This assumption can be relaxed in ISC causal discovery — some search algorithms pro-
posed by Spirtes et al. allow for discovery of models that are not causally sufficient. In this
case, the algorithm suggests possible common causal predecessors of any pair of the measured
variables [9, Chapter 6,].
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identifying assumptions are acyclicity of the causal structure and the assump-
tion that each observed independence and dependence is a reflection of the
causal structure of the system and is not merely coincidental (the latter called
by Spirtes et al. “faithfulness assumption”). With respect to the faithfulness
assumption, the new, previously unexplored, element is dependence of causes
conditional on a common effect: a conditional dependence observed in this case
is assumed to be structural and allows for distinguishing between predecessors
and successors of the node conditioned on.
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Abstract

Linguistic models of vagueness usually record contexts of possible pre-
cisifications. A link between such models and fuzzy logic is established
by extracting fuzzy sets from context based word meanings and analyz-
ing standard logical connectives in this setting. In a further step Lawry’s
voting semantics for fuzzy logics is used to re-interpret standard t-norm
based truth functions from the point of view of context update semantics.

1 Introduction

Vagueness is a significant and ubiquitous phenomenon of human communication.
Adequate models of reasoning with vague information are not only of perennial
interest to philosophers and logicians (see, e.g., [15, 14, 31, 5, 28] and references
there), but are also a topic of current linguistic research. Of particular interest
from a logical point of view are approaches to formal semantics of natural lan-
guage that can be traced back to Richard Montague’s ground breaking work,
firmly connecting formal logic and linguistics (see, e.g., [24, 12]).

At a first glimpse it seems that most linguistic models of vagueness are in-
compatible with the degree based approach offered by fuzzy logic. In particular,
there are indeed good reasons why we should not simply replace Montague’s
type t = {0, 1} for sentences, i.e. the classical truth values false and true, by the
unit interval [0, 1] if we aim at a realistic and adequate model of meaning in nat-
ural language. What is rather needed, as is made clear e.g. in [25, 3, 1, 16, 18],
are models that systematically take into account contexts of utterance that
record relevant possible precisifications of vague word meanings. Our aim is to
bridge the seemingly wide gap between such linguistic models and fuzzy logic by
demonstrating how fuzzy sets can be systematically extracted from the meaning
of predicates in a given context. To make this concrete we will refer to a specific
linguistic framework—dynamic context semantics—as used by Chris Barker [1]
for the analysis of vagueness. Building on this connection between contexts
and fuzzy sets we will also investigate how the truth functional approach of
fuzzy logic can be justified under certain conditions. Again, we will refer to
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a specific example, namely Lawry’s [19] voting semantics, to illustrate how a
corresponding re-interpretation of logical operators could look like.

2 Linguistic approaches to vagueness

Linguists, like logicians, often focus on predicates and predicate modifiers in
modeling the semantics of vague language. It is impossible to provide a survey
on the relevant literature that does justice to all linguistic approaches to vague-
ness in short space.1 For our purpose it suffices to note that there seems to
be wide agreement that adequate truth conditions for vague sentences have to
refer not only to fixed lexical entries, but also to contexts of utterance that may
be identified with sets of contextually relevant possible precisifications. Indeed,
many authors take it for granted that a realistic and complete formal seman-
tics of natural languages has to take into account the context dependence of
truth conditions, anyway, e.g., to be able to resolve ambiguities and to handle
anaphora. However, some care has to be taken, since ‘context’ can mean differ-
ent things here that may operate on different levels. For example, it is obviously
relevant to know, whether in applying the adjective tall the reference is to trees
in a forest, to basket ball players, to women in central Europe, to school kids, or
to a tall story. But even if, say, it is clear that the general context of asserting
Jana is tall is a discussion about my students and not about basket players, ar-
guably something like Lewis’s conversational score [20] (cf. also [28]) is needed
in addition to understand whether Jana is tall is meant to communicate in-
formation about Jana’s height to someone who doesn’t know her or whether
speaker and hearer both have precise common information about Jana’s height
and the speaker intends to establish a standard of tallness by making this ut-
terance. Reference to such ‘conversational contexts of possible precisifications’
is convincingly argued to be an essential ingredient of adequate models of com-
munication with vague notions and propositions (see, e.g., [25, 3, 1, 16, 28]).

Instead of surveying the mentioned arguments, we will illustrate the versa-
tile use of contexts in formal semantics by outlining just one particular, rather
recent approach, due to Chris Barker [1]. This will serve as motivation and
bridgehead—to stick with the metaphor in the title of this contribution—for
exploring connections to fuzzy logic in the following sections. Barker casts
his analysis of various linguistic features of vagueness in terms of so-called dy-
namic semantics (see [10]), that has been successfully employed to handle, e.g.,
anaphora. In this approach the meaning [[φ]] of a declarative sentence (propo-
sitional expression) φ is given by an update function operating on the set of
contexts. As already indicated above, semantic theories differ in their intended
meaning and formal manifestation of the notion of contexts. Barker [1], follow-
ing Stalnaker [29], identifies a context with a set of ‘worlds’, where in each world
the extension of all relevant predicates with respect to the actual universe of dis-
course is completely precisified ; i.e., each (relevant) atomic proposition is either
true or false in a given world. For gradable adjectives these precisifications are
specified by a delineation δ that, for each world, maps every gradable adjective—
or more precisely: every reference to the meaning of a gradable adjective—into
a particular value or degree of a corresponding scale. These values represent

1For this we refer to the handbook article [26], but also to the classic monograph [25], the
more recent papers [1, 16, 18] and the references there.
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local standards of acceptance. For instance, if δ(c) is the delineation function
associated with world c, then d = δ(c)(↑[[tall]]) yields the standard of tallness
in c expressed, say, in cm; i.e. every individual that is at least d cm tall in c will
be accepted as tall in c.

In fact, only a simple form of update functions is needed; namely filters,
where [[φ]](C) ⊆ C holds for all contexts C—the result [[φ]](C) being the set
of worlds in C that survive the update of C with the assertion that φ. This
observation entails that dynamic semantics is just a notational variant of a
more traditional specification of ‘truth at a world’: φ is true (accepted) at c
if [[φ]]({c}) = {c} and φ is false (rejected) at c if [[φ]]({c}) = {}. Moreover,
we assume that every world c of a given context C refers to the same domain
(relevant universe of discourse) DC .

Gradable predicates, like tall, express a relation involving degrees and indi-
viduals. The denotation of tall is modeled by a function tall such that tall(d, a)
returns the set of worlds in which the individual a is at least d cm tall. Accord-
ingly Barker presents the (dynamic) meaning of tall by2

[[tall]] =df λxλC.{c ∈ C : c ∈ tall(δ(c)(↑[[tall]]), x)}

Among other features, this semantic setup allows Barker to capture the intuitive
difference in the meaning of the modifiers very, definitely, and clearly. To define
[[very]] an underlying relation very over degrees is used, such that very(s, d, d′)
holds iff the difference between d and d′ is larger than the (vague, i.e., world
dependent) standard s:

[[very]] =df λαλxλC.{c ∈ α(x)(C) : ∃d(c[d/α] ∈ α(x)(C)∧
very(δ(c)(↑[[very]]), δ(c)(↑α), d)}

where c[d/α] denotes a world that is like c, except for setting δ(c)(↑α) = d. E.g.,
in c[185cm/[[tall]]] the standard of tallness is 185cm. Thus [[Ann is very tall]] =
([[very]]([[tall]]))(Ann) is a filter (update) that is survived by exactly those worlds
of a given context where Ann exceeds the standard of tallness by at least some
amount s. This amount s not only depends on the meaning of tall and very,
but also on the world itself. Thus the vagueness of very is modeled by a twofold
context dependence: the meaning of very may obviously vary from context to
context, but even within a fixed context different worlds may have different
standards of accepting that an individual is very tall, granted that it is tall.

Note that, on the level of an individual world c, the update function for very
refers only to information pertaining to c. In contrast, Barker suggests to model
definitely as a type of modal operator:

[[definitely]] =df λαλxλC.{c ∈ α(x)(C) : ∀d(c[d/α] ∈ C → c[d/α] ∈ α(x)(C))}

This means that a world c ∈ C survives the update with [[Ann is definitely tall]]
iff all worlds in C in which Ann has the same height as in c judge Ann as tall
according to their local standard.3

2In fact Barker does not distinguish between [[tall]] and the purely referential use of it. Our
notation is meant to indicate that the circularity is of a harmless type.

3Note that there might be uncertainty about Ann’s height. I.e., Ann may have different
heights in different worlds. Therefore definitely tall is not just equivalent to ‘tall in all worlds
of the context’.
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Finally, essential elements of [[very]] and [[definitely]] are combined in the
following suggestion for the meaning of clearly:4

[[clearly]] =df λαλxλC.{c ∈ α(x)(C) : very(δ(c)(↑[[clearly]]),maxα,maxC)}

where maxα = {d : c[d/α] ∈ α(x)} and maxC = {d : c[d/α] ∈ C}. The reference
to [[clearly]] in the first argument of the relation very entails that, while the same
comparison relation is used, the (world dependent) amount that the difference
between the second and the third value has to exceed, may be different for clearly
and very, respectively. However the essential difference between [[very]] and
[[clearly]] is another one: while for very tall one compares the local standard of
tallness with the local value for an individuals’ height in each world, clearly tall
involves a comparison of the highest standard of tallness in the whole context
with the maximal height that the individual may have according to any world
of the context.

3 Extracting fuzzy sets from contexts

Our main pillar in building a bridge between linguistics and fuzzy logics con-
sists in connecting the meaning of predicates like tall with fuzzy sets. We
define logical operators and, or, and not directly on predicates5 in a natural
way and explore how they relate to the corresponding operations on fuzzy sets.
Note that linguists may seek to preserve the difference between statements like
Jana is tall and clever and Jana is tall and Jana is clever, respectively. How-
ever, it will be straightforward to lift our analysis of predicate operators to the
propositional level.

We introduce the notion of an element filter. These are filters parameterized
by a domain element. Element filters that we have already encountered are e.g.
[[tall]] but also [[very]]([[tall]]), where for a domain element x both [[tall]](x) and
([[very]]([[tall]]))(x) are filters.

Given a context C we can extract a fuzzy set from the meaning α = [[A]]
of a predicate A by applying for each domain element x the filter α(x) to C
and measuring the amount of surviving worlds of C. For simplicity we stipulate
contexts to be finite sets of worlds and identify fuzzy sets with their membership
functions to obtain the following:

Definition 1. Let C be a context with domain DC and α an element filter.
Then the fuzzy set [α]C is given by

[α]C : DC → [0, 1] : x 7→ |α(x)(C)|
|C|

Note that the collection of fuzzy sets [α]C for all relevant element filters α
carries less information that C itself. This will get apparent when we compare
logical operators defined on predicates with corresponding operations on fuzzy
sets.

Extending the framework of Barker, we model compound predicates (like
tall and clever), built up from logically simpler predicates (tall, clever), in a
straightforward manner:

4Our version of [[clearly]] differs in inessential details from Barker’s in [1].
5For brevity we focus on monadic predicates, but the concepts can easily be extended to

relations of higher arity.
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Definition 2.

• [[and]] =df λαλβλxλC.α(x)(C) ∩ β(x)(C)

• [[or]] =df λαλβλxλC.α(x)(C) ∪ β(x)(C)6

• [[not]] =df λαλβλxλC.C\(α(x)(C))

Note that in the above definition α = [[A]] and β = [[B]] are element fil-
ters representing the meaning of the predicates A and B, respectively. Using
the usual infix notation, [[A andB]] is an element filter as well. In general, ap-
plying [[A andB]] is not equivalent to applying the element filters [[A]] and [[B]]
consecutively. We may additionally define

• [[and∗]]7 =df λαλβλxλC.[[B]](x)([[A]](x)(C))

Then [[A and∗B]] is, in general, different from [[A andB]] (and from [[B and∗A]]).
The membership degree of x in the fuzzy set [A andB]C8 is determined by

applying the filter [[A andB]](x) to the context C and calculating the fraction
of worlds in C that survive this update. Proceeding a step further on our
bridge from linguistics to fuzzy logics, the question arises if we can determine
[A andB]C(x) from the membership degrees [A]C(x) and [B]C(x) alone. This,
of course, would give us a fully truth-functional semantics for and, or, and not.
However, fuzzy sets abstract away from the internal structure of contexts that
may show various possible dependencies of worlds. We illustrate this by the
following example.

Let C be a context consisting of the five possible worlds c1 to c5 as in Table 1.
Furthermore, let [[jana]] = j be a domain element and let tall, clever, and heavy
be the denotations of the unary predicates tall, clever, and heavy, respectively,
just as already demonstrated for tall and tall in Section 2.

c δ(c)(↑[[tall]]) maxdj
↑[[tall]] δ(c)(↑[[clever]]) maxdj

↑[[clever]]
δ(c)(↑[[heavy]]) maxdj

↑[[heavy]]

c1 170 175 100 105 80 75
c2 160 170 120 125 75 70
c3 170 180 100 95 90 100
c4 180 175 105 100 85 75
c5 170 165 110 115 70 65

with maxdxp denoting the maximum degree to which to individual x fulfills the predicate referenced by p.

Table 1: Example Context C

Then [[heavy]] is an element filter with [[heavy]](j)(C) = {c3}. Accordingly,
[heavy]C(j) = 1/5. Likewise we have [clever]C(j) = [tall]C(j) = 3/5. Since these
latter are equal, also the membership degrees of j in the fuzzy sets [tall andheavy]C
and [clever andheavy]C . respectively, had to be equal if the (context update)
meaning of and were truth functional. But [[tall andheavy]](j)(C) = {c3}, thus
[tall andheavy]C(j) = 1/5, while [clever andheavy]C(j) = 0. As we see, by ex-
tracting the three fuzzy sets from the corresponding element filters we lose the

6In natural language one can also find exclusive disjunction, e.g. Jana is either tall or
clever (but not both). He we focus on inclusive disjunction as this directly corresponds to
disjunction as it is normally used in logics.

7Arguably, and∗ corresponds to certain uses of and even and of but, respectively.
8For the sake of readability we write [X]C instead of [[[X]]]C .
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information about the specific overlap of the corresponding updates in the given
context.

The following bounds encode our best knowledge about membership degrees
for fuzzy sets extracted from to composite predicates with respect to member-
ship degrees referring to the corresponding components.

Theorem 1. Let C be a context, d ∈ DC , and let α = [[A]] and β = [[B]] be two
element filters. Then the following bounds are tight:

• max{0, [α]C(d) + [β]C(d)− 1} ≤ [A andB]C(d) ≤ min{[α]C(d), [β]C(d)}

• max{[α]C(d), [β]C(d)} ≤ [A orB]C(d) ≤ min{1, [α]C(d) + [β]C(d)}

• [notA]C(d) = 1− [α]C(d)

Proof. The value 1 − [α]C(d) for negation follows directly from the relevant
definitions.

For conjunction and disjunction we focus on the extremal cases: the sets
α(d)(C) and β(d)(C) may either be ‘as disjoint as possible’ or one set may
contain the other one. In the latter case we have min{[α]C(d), [β]C(d)} as a tight
upper bound for conjunction, but also as a tight lower bound for disjunction.

Now assume that both sets are as disjoint as possible. We distinguish:
Case 1. [α]C(d) + [β]C(d) ≤ 1: Then α(d)(C) ∩ β(d)(C) = {}, thus

[A andB]C(d) = 0 and [A orB]C(d) = [α]C(d) + [β]C(d).
Case 2. [α]C(d)+[β]C(d) > 1: Then α(d)(C)∩β(d)(C) 6= {}. As we assume

the sets to be as disjoint as possible, their intersection is as small as possible;
therefore |α(d)(C) ∩ β(d)(C)| = [α]C(d)+[β]C(d)−1, and α(d)(C)∪β(d)(C) = 1

Combining the cases yields the specified bounds.

Remark. Note that ∗G = min and ∗̄G = max are the Gödel t-norm and
co-t-norm, respectively. Moreover, ∗ L = λx, y.max{0, x + y − 1} and ∗̄ L =
λx, y.min{1, x+ y} are the  Lukasiewicz t-norm and co-t-norm, respectively. In
other words, Theorem 1 shows that the truth functions of (strong) conjunction
and (strong) disjunction in Gödel and  Lukasiewicz logic (see [11]) correspond
to opposite extremal cases of context based evaluations of conjunction and dis-
junction.

The above analysis on logical predicate operators can easily be lifted to the
propositional level. For a sentence like Jana is tall its meaning [[Jana is tall]] is
a filter (rather than an element filter). Usual logical connectives on propositions
can be defined in analogy to Definition 2:

Definition 3.

• [[φ ∧ ψ]] =df λC.[[φ]](C) ∩ [[ψ]](C)

• [[φ ∨ ψ]] =df λC.[[φ]](C) ∪ [[ψ]](C)

• [[¬φ]] =df λC.C\[[φ]](C)

In the following the set of all propositions formed in this way is called Prop.
Similarly to the predicate level, we can associate a ‘degree of truth’ ||φ||C for

every φ ∈ Prop by applying the filter [[φ]] to context C:

||φ||C =df
|[[φ]](C)|
|C|

.
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In other words we identify the degree of truth of φ in a context C with the
fraction of worlds in C that survive the update with the filter [[φ]]. E.g., returning
to the context C specified in the example following Definition 2, Jana is tall is
true to degree 3/5 in C since three out of five worlds in C classify Jana’s height
as above the relevant local standard of tallness.

Once more we note that contexts allow to model specific constraints on the
worlds (i.e. contextually relevant possible precisifications) of which they consist.
Therefore, in general, there are no truth functions that determine ||φ ∧ ψ||C and
||φ ∨ ψ||C in terms of ||φ||C and ||ψ||C alone. However the optimal bounds of
Theorem 1 also apply at the level of sentences:

• ∗ L(||φ||C , ||ψ||C) ≤ ||φ ∧ ψ||C ≤ ∗G(||φ||C , ||ψ||C), and

• ∗̄G(||φ||C , ||ψ||C) ≤ ||φ ∨ ψ||C ≤ ∗̄ L(||φ||C , ||ψ||C),

where ∗G(∗̄G) and ∗ L(∗̄ L) are the Gödel and  Lukasiewicz t-norms (co-t-norms),
respectively.

4 Translating voting semantics to contexts

As we have seen in Section 3, the context based semantics of logical connectives
is more fine grained than any specification by some particular truth function
over degrees. The fraction of worlds surviving an update with [[φ ∧ ψ]] is not
determined by the fractions of worlds surviving the filters [[φ]] and [[ψ]], respec-
tively: t-norm based truth functions provide optimal bounds, but in general the
internal structure of contexts determines the corresponding fractions of worlds
surviving updates with logically complex propositions. The following question
arises: can one constrain and/or modify the structure of contexts in a manner
that leads to standard fuzzy truth functions at the level of such contexts. For
a positive answer we rely on an analogy between Lawry’s voting semantics [19]
and our (or rather Barker’s) version of contextual semantics.

To explain the assignment of truth values ∈ [0, 1] to a statement φ Lawry [19],
but also many other researchers (e.g., [7, 13]) suggest to consider the following
scenario. Ask each of N agents whether she accepts the statement φ. It is
assumed that the agents are all competent speakers of the respective language
and are fully informed about the relevant facts. Therefore they will all agree
on whether φ is to be accepted or to be rejected if φ is a precise statement.
However, if φ is vague9 then they may diverge on their judgements in spite of
their linguistic competence and factual knowledge. In this setting one assigns
the ‘truth value’ v = n/N to φ, where n is the number of agents that accept φ.

Let us write as(φ) = 1 if agent s accepts φ and as(φ) = 0 otherwise. If the
agents have to satisfy the following consistency conditions

as(φ ∧ ψ) = 1 ⇐⇒ as(φ) = 1 and as(ψ) = 1
as(φ ∨ ψ) = 1 ⇐⇒ as(φ) = 1 or as(ψ) = 1
as(¬φ) = 1 ⇐⇒ as(φ) = 0

then the resulting global ‘fuzzy truth value assignment’ turns out to be simply a
probability function (see, e.g., [21]) and therefore does not justify a truth func-
tional semantics of fuzzy logic if the agents’ votes are independent. However, if

9We deliberately focus on vagueness and ignore other forms of indeterminateness and
uncertainty here.
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we require that the agent’s voting behaviour is determined by an associated ‘de-
gree of scepticism’ in a particular way, than usual fuzzy truth functions emerge.

Definition 4. A family of functions aσ : Prop 7→ {0, 1}, where σ ∈ [0, 1] is
called a scepticism degree based voting behaviour if the following conditions
hold:

if σ ≤ σ′ and aσ(φ) = 0 then aσ′(φ) = 0
aσ(φ ∧ ψ) = 1 ⇐⇒ aσ(φ) = 1 and aσ(ψ) = 1
aσ(φ ∨ ψ) = 1 ⇐⇒ aσ(φ) = 1 or aσ(ψ) = 1
aσ(¬φ) = 1 ⇐⇒ a1−σ(φ) = 0

The intended interpretation of the scepticism degree σ is the level of will-
ingness to assert a positive statement. The first condition means that an agent
rejects at least all those propositions that are rejected by less skeptic agents.
The condition for negated statements implies that an agent with a high degree
of scepticism is willing to accept ¬φ whenever an agent with inverted (low) de-
gree of scepticism is willing to reject φ. This implies that, in general, agents do
not evaluate classically: we may have aσ(φ ∨ ¬φ) = 0 but also aσ(φ ∧ ¬φ) = 1;
only a0.5 is always a classic valuation. To obtain a (global) fuzzy valuation from
such families of (local) para-consistent {0, 1}-valuations, we have to measure
‘amounts of acceptance’.

Definition 5. Let Λ = {aσ : σ ∈ [0, 1]} be a scepticism degree based voting
behaviour and let µ be a measure on the Borel subsets of [0, 1]. Then the corre-
sponding fuzzy truth value assignment is defined by

vµA(φ) = µ{σ ∈ [0, 1] : aσ(φ) = 1}

Proposition 1. ([19]) For all scepticism degree based voting behaviors Λ and
measures µ, as above, we have:

vµA(φ ∧ ψ) = min(vµA(φ), vµA(ψ))
vµA(φ ∨ ψ) = max(vµA(φ), vµA(ψ))

Moreover, if µ is symmetric, i.e. if µ[a, b] = µ[1 − b, 1 − a] for 0 ≤ a ≤ b ≤ 1,
then

vµA(¬φ) = 1− vµA(φ)

How does this relate to contextual dynamic semantics? The most obvious
transfer of voting semantics to contexts is to associate with each world a value
that directly corresponds to the scepticism degree of an agent and to evaluate
logically complex statements as specified above. But remember that this entails
that local evaluations violate either the law of excluded middle (φ ∨ ¬φ) or
the law of contradiction (¬(φ ∧ ¬φ)) in general. Of course, a world c of a
context C is something different than a voter among many voting agents. But c
can be viewed as a local semantic test : it specifies for each sentence φ whether
φ holds according to certain precisified standards or not. It does not seem to
be unnatural to compare these semantic tests with respect to their strictness
in analogy to the comparison of agents with respect to degrees of scepticism.
Moreover, considering the intended application of contextual semantics, we may
assume that only one or at most a few directly related predicates are relevant
in a given context. Also the domain of any particular context can realistically
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be assumed to be small. This makes it plausible that worlds of a context may
often be characterized solely by their degree of strictness. Let us illustrate this
by an example from natural language. A realistic context for evaluating

(1) Jana is tall

might be represented by worlds (i.e. precisifications) that agree on Jana’s actual
height (say 178cm) but differ in their standards of accepting 178cm as being
above the local standard of tallness. Obviously we can then define linearly
ordered degrees of strictness induced by increasing standards of tallness for the
worlds of such a context. A similar observation holds for

(2) The weather is cold today

Again, we have no troubles to extract degrees of strictness corresponding to
decreasing threshold values (temperatures) for accepting (2). Using our re-
interpretation of voting semantics we can extract truth values ∈ [0, 1] for (1)
and for (2) in the respective contexts indicated above. In contrast, one might
argue that there simply is no natural context in which the conjunction of (1)
and (2) has to evaluated, which nicely fits our model.

While the above remarks may be sufficient to justify the focus on contexts
with associated linearly ordered degrees of strictness, the fact that the transla-
tion of voting semantics to contexts calls for ‘non-classical worlds’ seems to be
more problematic. However we claim that this is compatible with Barker’s con-
text based model [1], as introduced in Section 2. Note that Barker does not pro-
vide a semantics for logical connectives. Only non-compound vague predicates
and vagueness-related predicate modifiers are investigated. While, following
voting semantics, one can straightforwardly generalize to include conjunctions
and disjunctions at the local level of individual worlds, negation is viewed in
this model as an inherently global operator, which only receives meaning at the
level of whole contexts.

5 Summary and outlook

We started by noting the fact that linguists usually analyze the semantics of
vague words by reference to contexts of utterance that register relevant possible
precisifications. This seems to be at variance with the degree based approach
to vagueness suggested by fuzzy logic. However, taking Barker’s [1] version of
dynamic (update) semantics as a concrete point of reference, we have demon-
strated that fuzzy sets can be associated in a systematic manner with contexts
and corresponding filters as used in Barker’s model. While the structure of con-
text filters used to specify the different meanings of modifiers like very, definitely,
and clearly allows to take into account information that is abstracted away in
corresponding fuzzy sets, standard t-norm based operators faithfully register
the extremal cases that may result from applying logical connectives to vague
predicates and sentences.

While it is rather straightforward to identify intermediate truth values with
the fraction of worlds in a given context that survive certain updates codifying
the meaning of vague expressions, it is not clear how one might derive specific
truth functions in such a setting (beyond providing the indicated bounds). This
problem, of course, is just a particular instance of a well known challenge for



78 C. FERMÜLLER, C. ROSCHGER

deductive fuzzy logic: how to justify particular truth functions with respect
to more fundamental semantic notions, like votes or arguments for and against
accepting a vague assertion. In [23] Jeff Paris provides an overview over semantic
frameworks for fuzzy logics that support truth functionality. Here we picked a
particular approach, namely so-called voting semantics as suggested by Lawry
[19] to illustrate how one might connect context based update semantics with
frameworks that model the meaning of logical connectives by particular t-norm
based truth functions.

We emphasize that both, Barker’s specific update functions over contexts
and Lawry’s voting semantics, should be understood as just two particular spots
on either side of the river dividing linguistics from fuzzy logic, that may be cho-
sen as end points of a bridge crossing that troubled water. On the linguistic side
context and precisification based approaches suggested, e.g., by Kennedy [16],
Kyburg and Moreau [18], and already earlier by Pinkal [25] and Bosch [3] are
certainly worth investigating from this perspective. On the fuzzy logic side we
just mention similarity semantics [27, 17, 30], Robin Giles’s dialogue and bet-
ting game based characterization of  Lukasiewicz logic [9, 8] (extended to other
logics in [4, 6]), acceptability semantics [22], rerandomising semantics [13, 11],
and approximation semantics [2, 23] as alternative candidates for corresponding
bridge heads. We plan to explore at least some of these options in future work.
In any case, we hope to have shown already here that constructing such a bridge
is neither a futile nor a completely trivial matter.
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Abstract

Conditionals are central to inference. Before people can draw inferences
about a natural language conditional, they must interpret its meaning. We
investigated interpretation of uncertain conditionals using a probabilistic
truth table task, focussing on (i) conditional event, (ii) material condi-
tional, and (iii) conjunction interpretations. The order of object (shape)
and feature (color) in each conditional’s antecedent and consequent was
varied between participants. The conditional event was the dominant
interpretation, followed by conjunction, and took longer to process than
conjunction (mean difference 500 ms). Material conditional responses were
rare. The proportion of conditional event responses increased from around
40% at the beginning of the task to nearly 80% at the end, with 55% of
participants showing a qualitative shift of interpretation. Shifts to the
conditional event occurred later in the feature-object order than in the
object-feature order. We discuss the results in terms of insight and sug-
gest implications for theories of interpretation.

1 Introduction

Consider a fair die with the following patterns on the sides:

The die is thrown and lands with one side facing up. How sure can you be
that if the side shows a square, then the side shows black? Before you can
respond you first interpret the meaning of the conditional and the task you are
meant to perform. If your answer was 2/3, then it is likely you interpreted the
conditional as the conditional event; if your answer was 5/6, then it is likely your
interpretation was the material conditional of classical logic; and if your answer
was 2/6 (or 1/3), then it is likely your interpretation was the conjunction. The
present contribution investigates how people interpret the indicative conditional
using this dice task. Specifically we aim to investigate: (i) what are the dominant

∗Supported by the European Science Foundation EUROCORES programme LogICCC, and
the Austrian Science Fund projects I141 and P20209. Thanks to Hans Lechner for producing
our response box and Sabine Eichbauer for response sheet design and scanning.

†Corresponding author. Email: andy.fugard@sbg.ac.at
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interpretations of the conditional in the task, (ii) how do linguistic features
influence interpretation, and (iii) does interpretation change over time?

The conditional in all its forms has received much attention across the disci-
plines as it is ubiquitous in inference, for instance in conversation and problem
solving, and in inferences about inference, for instance in mathematical logic.
Until the late 1990s, the majority of psychological theories of conditional reason-
ing have used classical logic as the framework for competence and performance
models. For instance the theory of mental models stems from a fragment of
model theory of classical logic [5]. The mental rules or mental logic theories
stem from Gentzen’s natural deduction systems for classical logic (e.g., [14]).
The conjunction (A∧B) and the material conditional (A ⇒ B) interpretations
of the natural language conditional are postulated by the mental model theory
[5], which is one of the most influential theories in the psychology of reasoning.

An alternative view gaining in popularity in psychology is that the indicative
‘if A, then B’ is interpreted as a conditional event, B|A [4, 8, 11]. Ramsey [13,
p. 155] argued that when people infer their degree of belief in ‘if A, then B’,
they assume A, and ‘fix their degrees of belief’ in B. If the antecedent A turns
out to be false, ‘these degrees of belief are rendered void’. Unlike the conditional
event, the material conditional can be reduced in various ways to combinations
of Boolean operators: for instance A ⇒ B is equivalent to ¬A ∨ B, which
is a disjunction, and to ¬(A ∧ ¬B), a negated conjunction. A psychological
implementation of the ‘Ramsey test’ has been proposed [4, p. 325]. In this,
conjunction responses are argued to be due to an incomplete execution of the
test, because of limited working memory or insufficient motivation.

Given the variety of interpretations shown on reasoning tasks, it has been
proposed to separate reasoning to interpretations and from interpretations [15].
Reasoning to an interpretation requires (i) a formal language to be chosen, (ii) a
semantics to be assigned, and (iii) a characterization of when an argument is
valid [15, p. 25]. Once these choices have been made, then reasoning from
the fixed interpretation (i.e., derivation) may proceed. From this viewpoint,
errors in reasoning may be due either to mismatches in interpretation (e.g.,
between experimenter and participant) or a failure of derivational processes.
For the above dice task we assume that the language, semantics, and deriva-
tional apparatus of a probability theory are appropriate. While there are many
approaches to probability, we favor coherence based probability logic [3]. Coher-
ence has many advantages for psychological modeling compared to alternative
approaches [10, 11], e.g., conditional events are primitive and not defined by un-
conditional probabilities, they are undetermined if the antecedent is false, and
probabilities are conceived as degrees of belief rather than ‘objective’ quantities
[3]. The main interpretational problem in the dice task is deciding whether the
natural language ‘if A, then B’ is interpreted as (i) a conditional event (B|A),
(ii) a conjunction (A ∧ B), or as (iii) a material conditional (A ⇒ B).

The standard test paradigm for investigating how people interpret indicative
uncertain conditionals is the probabilistic truth table task [4, 9]. In this task, the
joint frequency distribution is provided (i.e., frequencies of conjunctions) and
participants are asked to assess how sure they are that a conditional is true. A
characteristic feature of probabilistic truth table tasks is that they are problems
under full probabilistic knowledge, since all joint probabilities are given. Full
probabilistic knowledge allows for precise (i.e., point rather than interval) prob-
ability assessments of the conclusions and the coherent predictions according to
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the different interpretations are easily calculated. The task allows the experi-
menter to infer how the participants interpret the conditional. Overall studies
using probabilistic truth table tasks have found that just over half of partic-
ipants responded with the conditional event interpretation and the remainder
responded with a conjunction interpretation [4, 9]. Little support was observed
for the material conditional interpretation.

The present study extends previous research on uncertain conditionals by
(i) presenting the task material graphically, without using numerals; (ii) not
priming a representations in terms of joint frequencies; (iii) presenting a series of
systematically enumerated items; (iv) studying reaction times; (v) investigating
the time-course of interpretation within-participants, for instance whether there
are any shifts of interpretation; and (vi) studying facilitation effects of object-
first versus feature-first conditionals.

Task development We developed a task concerning six-sided dice, using
patterns on each side of a given die rather than the usual numerals. These
patterns were varied systematically from two independent dimensions: shape
(e.g., square or circle) and the shape’s color (e.g., red or blue). There are 84
possible assignments of two shapes and two colors to the six-sides of the dice. A
priori, many of the resulting items do not distinguish between interpretations,
however this is not always a problem if few or no participants give a non-
uniquely classifiable response for a particular item, e.g, if an item does not
distinguish between P (B|A) and P (A ⇒ B), but no participants give this non-
distinguishable response but rather respond with P (A ∧ B). The non-uniquely
classifiable responses may still help to exclude certain interpretations, e.g., if
a response can only be classified as either P (B|A) or P (A ∧ B), it excludes
P (A ⇒ B). From each participant’s pattern of responses we can infer how they
interpreted the conditional.

The task and instructions were implemented in Python using the Pygame
graphical library.1 Participants were told that the aim of the experiment was to
investigate how people understand if-then sentences. It was emphasized that the
die varied between trials and that they were to reason about each independently.
Three examples were also given of how the sides of the die would be represented
on screen. A simple animation was shown to convey the idea of a die being
placed in a cup, randomly shaken, and then the cup placed on the table so
that one cannot see what side of the die shows up. Four example trials were
then presented to check that the participant understood the response modality.
These asked how sure the participant can be that atomic sentences hold, e.g.,
‘The side shows a circle’ (Die Seite zeigt einen Kreis).

Each test trial began with a fixation cross displayed for 1 second. Partici-
pants were shown the patterns on the sides of the die and were asked to estimate
how sure they were that a given conditional, for example, ‘If the side shows a
square, then the side shows red’ (Wenn die Seite ein Viereck zeigt, dann zeigt
die Seite rot), was true2 of a thrown die. Since we were interested in studying
interpretation rather than mental arithmetic, we asked participants to respond
with ‘x out of y’ (x aus y), rather than a probability or percentage, thus elimi-

1Python version 2.6.1 (www.python.org) and Pygame version 1.8.1 (www.pygame.org).
2The German word stimmt was used which is weaker than the German word for ‘true’

(wahr).
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Absolut sicher,
dass der Satz
NICHT stimmt

Absolut sicher,
dass der Satz

stimmt

0 aus 1
…

0 aus 3
…

0 aus 6

...

1 aus 6

1 aus 3
2 aus 6

1 aus 2
...

3 aus 6

3 aus 4

1 aus 1
…

3 aus 3
…

6 aus 6

... ... ... ...

0 1 2 3 4 5 6

aus

Würfel 1:

1 2 3 4 5 6

aus

0 1 2 3 4 5 6
OK

1 2 3 4 5 6

(b)

(c)

(a)

Figure 1: (a) Diagram used to convey the meaning of ‘out of’. (b) Example of
item response format on answer sheet. (c) Diagram of response box. ‘Würfel ’
translates to ‘die’; ‘aus’ to ‘out of’; and ‘Absolut sicher, dass der Satz (NICHT)
stimmt ’ to ‘Absolutely certain that the sentence is (NOT) true’.

nating the need to divide numbers and rescale, which many people find difficult.
We presented a visual scale to explain the meaning of ‘out of’ (see Figure 1(a))
and showed that the numerator should not exceed the denominator.

The task was piloted in a seminar room to 18 students, with presentation
using a data projector. We selected 77 items such that the probability of the
antecedent is not zero, so that the conditional event is determined. From the
original 77 items, responses to 51 could all be uniquely classified. Counting
first each participant’s most common strategy, 13 responded mostly with the
conditional event (median 49, range 10–51), four with the conjunction (median
41, range 36–50), and one person according to none of the competence models.
There were no responses according to the material conditional. Feedback from
students was used to improve instructions for Experiment 1.

First steps towards a process model All reasoning tasks involve premises
and a conclusion, but what exactly are they in this task? The instructions are
supposed to communicate that the die is six sided, fair and thrown randomly,
and that the probability of a side landing up is 1/6. Probabilities are obtained
by counting the relevant joint or marginal frequencies (i.e., the frequencies of the
conjuncts). The conclusion is a natural language conditional and must be inter-
preted. Table 1 shows how the chosen interpretation determines which premises
are relevant, and how the presented information may be used to compute the
coherent probability inferences for the three predicted interpretations. These
choices of premises and how they are integrated are not unique. For example
the probability of the material conditional interpretation may be calculated us-
ing only one joint frequency, P (A ⇒ B) = 6−|A∧¬B|

6 (where |φ| denotes the
frequency of φ), rather than summing up three joint frequencies. Also |A| may
be inferred from the sum |A ∧ B| + |A ∧ ¬B|.

Although mathematically the task is straightforward, the psychological pro-
cesses required to solve the task are complex. To understand possible processes
we must first decompose the task into the abilities required for its solution. The
conditional, ‘if A, then B’, must be parsed and committed to working mem-
ory. Previous experiments on generating analogies suggest that the order of the
object-feature positions in the conditionals may affect performance [6]. For a
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|A ∧ B| = f1 |A ∧ B| = f1 |A ∧ B| = f1

|A| = f2 |Sides| = 6 |¬A ∧ B| = f2

|= P (B|A) = f1/f2 |= P (A ∧ B) = f1/6 |¬A ∧ ¬B| = f3

|Sides| = 6
|= P (A ⇒ B) = f1+f2+f3

6

Table 1: Examples of premises obtainable from the dice presentations and how
they may be used to infer the probability of the if-then according to the three
interpretations.

feature, F (e.g., red), and concrete object, o (e.g., a square), it is easier first
to form a representation of o, and second bind it to F (o), than first to form a
representation of F , and second bind it to F (o). For the conditional event and
material conditional interpretations (though not conjunction), order matters,
thus this must be respected in the memory representation of the conditional.
The visual depiction of the sides of the die must be perceived and categorized.
Runs of patterns of the same type may facilitate this process. For each of the
competence models, the number of sides with each relevant property (relative to
interpretation) must be counted. For instance for the conditional event interpre-
tation, participants need |A∧B| and |A|. There are different ways of obtaining
these frequencies. One may start at the left-most die-side and count y = |A|
and then count how many of these also had the property B; denote the result
x. Then the response is ‘x out of y’. Alternatively one may begin by counting
x = |A∧B|, store the value, and then count y = |A|, responding ‘x out of y’. In
both cases the result will be the same. At each point in the task it is possible
to refresh one component, e.g., the number of sides with a particular property
may be recounted or the conditional statement re-parsed. An additional mem-
ory component is required for goal maintenance, e.g., remembering not only the
conditional and counts, but also the very fact that these have been remembered,
what information has to be obtained next from the task presentation, and how
the information must be integrated. Finally the response has to be made.

This sketch allows us to generate experimental hypotheses which may be
operationalized. In Experiment 1 we tested the interpretation of the conditional.
Participants may respond with a conjunction probability if they leave out the
step of computing |A|, e.g., because of a failure of goal memory. In Experiment
2 we test if the order of responses reveal the strategy pursued. Participant
who first calculate |A| may wish to unburden their working memory before
calculating |A∧B|. Allowing them to do so may reveal their order of processing.
Reaction times ought to be faster for a conjunction rather than a conditional
event interpretation (as you need not count both |A ∧ B| and |A|). In both
experiments we tested for an effect of the object-feature (i.e., shape-color) order
in the conditional using a between-participant design. Previous work found
a reaction time benefit for the object-feature order, but we also investigated
whether the proportion of conditional event responses was influenced by order.

2 Experiment 1

Method The task was presented in a lecture theater to 66 students (57 females
and 9 males), whose ages ranged from 20 to 40 (M = 23.8; SD = 3.5), at the be-
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ginning of an introductory psychology course to thinking and reasoning (before
conditional reasoning had been introduced) at the University of Salzburg.

For the between-participant manipulation of object-feature order, 33 partici-
pants were assigned to the object-feature condition, and 33 were assigned to the
feature-object condition (conditions alternated in the distribution of booklets).
From the original bank of 84 items, 71 were selected such that probability of the
antecedents for both object-feature orders were not zero. The instructions and
item presentation were computer controlled and displayed on the theater screen
using a data projector. Responses were given on a response sheet designed for
automatic scoring (see Figure 1(b)). The item number was displayed on screen
and on the response sheet. For the first trial, participants were given 30 sec-
onds to respond. The second trial lasted 10 seconds, followed by a pause during
which the experimenter explained that the task was about to begin. Each test
trial lasted 10 seconds, the end of which was indicated by three beeps.

Results and discussion Responses to 46 of the 71 items could be uniquely
classified. No effect was found for the object-feature order, so we pooled the
data of both conditions. Counting each participant’s modal response type, 50
participants responded mostly with the conditional event (median 43, range
15–46), eight with the conjunction (median 27, range 17–46), and six with
some other non-predicted response (median 27, range 23–34). There was one
participant responding mostly with the reversed conditional event (a score of
23) and one material conditional responder (all responses).

As participants proceeded through the task, the proportion of conditional
event interpretations increased (r(44) = .82, p < .001) and the proportion of
conjunction responses decreased (r(44) = −.73, p < .001). See Figure 2(a–c).
We have two explanations for the convergence on the conditional event. One
is that participants learn the conditional event interpretation as they progress
through the task. It could be that after many presentations of the dice stimuli,
the antecedent frequencies become more salient and are included in the inter-
pretation of the probability of the conditional. Another explanation is in terms
of speed-accuracy trade-off. More time may be required to process the material
using the conditional event interpretation, so those participants who appeared
to shift interpretation actually had a fixed interpretation, but adapted to task
demands. Those who shifted from a conjunction response may first have cal-
culated the joint probability. The absence of an effect for the object-feature
order may be because the conditional remained constant throughout the task
and thus needed to be processed only once. This problem will be addressed in
the next experiment.

3 Experiment 2

In this experiment we adapted the task for computer-controlled individual test-
ing to (i) collect response times, (ii) determine whether participants respond first
with the numerator or with the denominator, (iii) vary the shapes and colors in
the conditionals between trials to ensure reprocessing of the conditional for each
item, and (iv) improve experimental conditions compared to those in a lecture
theater. We hypothesized that response times will be shorter for participants
using a conjunction interpretation as they have to count only one joint and no
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(f) A and B

Item Position

Figure 2: Proportion of participants giving a response of each class, as a function
of item position in (a–c) Experiment 1 and in (d–f) Experiment 2. Only the
uniquely classifiable items are included.

marginal frequency. Further we hypothesize that if the object is presented in the
antecedent, then participants will be faster in evaluating its probability, than if
it is presented in the consequent.

Method Participants were 65 students (32 females and 33 males) whose ages
ranged from 18 to 30 (M = 22.9; SD = 2.9) from the University of Salzburg, 49
of whom study a natural science, and 16 study a humanities subject. Students
of psychology, mathematics, or with a special background in formal logic, were
not included in the sample. We paid 5 Euros for participation.

A button box was designed (see Figure 1(c)) with a layout similar to the
pen-and-paper response sheet layout used in Experiment 1. We added an extra
shape (triangle) and color (green), and randomly cycled through colors and
shapes to encourage participants to reprocess the conditional, thus making it
more likely that an effect of object-feature order can be detected. The areas of
the objects were adjusted so that they have the same perceivable area. Between-
participant we crossed sex, random order (one order, forwards/backwards), and
object-feature order. Within-participant we varied the frequencies of shapes
and colors with the constraint that the probabilities of the antecedents are not
zero. Each item remained on screen until participants made their responses.

Results and discussion Counting each participant’s modal response type
for the 46 uniquely classifiable items, 45 participants responded mostly with the
conditional event (median 40, range 19–46), 11 with the conjunction (median
42, range 20–46), 2 with the reversed conditional event (18 and 39), nobody with
the material conditional, and 7 with some other response (median 29, range 19–
37). We replicated the result found in Experiment 1: as participants proceeded
through the task, the proportion of conditional event interpretations increased
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(r(63) = .68, p < .001) and the proportion of conjunction responses decreased
(r(63) = −.73, p < .001).3 See Figure 2(d–f).

We sought to investigate within-participants the nature of this increase in
conditional event responses. Do participants smoothly increase the probability
of a conditional event interpretation, or is there a sudden shift in interpretation?
Visual inspection of responses suggested that many participants shifted suddenly
to a particular interpretation after some time. Thus we decided to investigate
interpretation shifts systematically to detect for whom and when this occurred.
To find a shift point for each participant, we used the following simple algorithm:

1. Let S = ⟨s1, . . . s71⟩ denote the binary sequence of 71 conditional event
scores. C = ⟨c1, . . . c71⟩ denotes a sequence of 71 scores, where each el-
ement of C represents how many different interpretations a ‘1’ in the
conditional event score could represent, e.g., if the ith response could be
either a conditional event or conjunction, then si = 1 and ci = 2. For a
given i, ci ∈ [0, 5] (0 if the response is an ‘other’ response).

2. Use these two sequences to create a weighted sequence, W = ⟨w1, . . . w71⟩:
if ci = 0, then set wi := 0, as this response is an ‘other’ response; otherwise
set wi := si/ci.

3. For every i ∈ [2, 71], compute the proportions li =
∑i−1

j=1 wj/(i − 1) and
ri =

∑71
j=i wj/(71 − i + 1). Note that ri includes position i.

4. The split point is found by maximizing ri − li. When there is more than
one i where this difference is maximal, we take the first.

We also computed the modal interpretation to the left and right of this split
point, and the proportion of responses of these modal types, using the 46
uniquely classifiable responses. Just over half of the participants (36, around
55%) shifted from some other interpretation to the conditional event interpre-
tation. Of these, the majority (29, around 80%) shifted from the conjunction
interpretation, three from the reversed conditional event (A|B), three from some
non-classifiable response, and only one from the material conditional—but in it’s
reversed form (B ⇒ A).

The earliest shift occurred at item position 2 (one participant), with most
(64%) shifting at least by position 8. Figure 3(a) shows the distribution of the
splits. Figures 3(b) and (c) show the proportion of responses of the modal type
to the left and conditional event to the right of (and including) the split. As
may be seen, most participants are very consistent once they have shifted to
the conditional event (mean proportion of conditional event responses after the
shift is .93, SD = .10).

We also have some self-report data from the participants on their strate-
gies. Participant 34 (who settled into a conjunction interpretation) said: ‘I only
looked at the shape and the color, and then always out of 6; this was the quickest
way.’ Participant 37, who shifted from the conjunction to the conditional event,
said: ‘In the beginning [I] always [responded] ‘out of 6’, but then somewhere in

3Correlations were computed using the original item positions (1 to 71), not their relative
position (1 to 46). Since data from the two random orders were pooled, 65 rather than 46 pairs
of values resulted, as data were available for a particular item position in only one direction
for 19 positions.
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Figure 3: (a) Distribution of split point positions. (b) Proportion of responses to
the left of the split point which are of the modal class to the left. (c) Proportion
of responses to the right of (and including) the split point which are consistent
with the conditional event interpretation. (For the 36 participants who shift.)

the middle. . . Ah! It clicked and I got it. I was angry with myself that I was so
stupid before.’ Five participants spontaneously reported when they shifted dur-
ing the task, e.g., saying, ‘Ah, this is how it works.’ Such unprompted comments
are typical indicators of insight effects [2].

Fourteen participants (around 20%) pressed a button from the bottom row
first at least once. Eight of these did so exactly once, and the remainder be-
tween 10–40 times out of 71 responses. Only one conjunction response from one
participant was made by pushing the bottom button first. For conditional event
responses, only four participants pressed the bottom button first a non-negligible
number of times: 15–25. Thus the hypothesized benefit of unburdening working
memory has not received strong support.

We tested our hypothesis that participants would be faster for a conjunction
versus a conditional event response using mixed-effects models4 with the basic
structure as follows:

log(RT ip) = β0 + γ0p + γ1i + β1 · posip + β2 · pos2
ip

+ β3 · [A|B]ip + β4 · [A ∧ B]ip + β5 · [A ⇒ B]ip
+ β6 · [B ⇒ A]ip + β7 · Other ip + ϵip

where p is a participant, i an item, pos is the item position (added with a
quadratic term to model the overall speedup of responses), and [φ] is coded 1 if
the response is according to the prediction for φ, and 0 otherwise (the conditional
event, B|A, interpretation is the baseline category thus does not appear as a
predictor). The coefficient γ0p represents between-participant variation in mean
reaction time and γ1i represents participant-invariant effects of items.

First the effect of the response type was tested. Adding this variable im-
proved the fit of the model (∆AIC = −8, log-likelihood ratio (LLR) χ2(5) =
18.1, p = .003). As predicted, conjunction responses were faster than the con-
ditional event (95% CI ∈ [−0.15,−0.04]). The mean difference predicted using
the model’s fixed effect terms was 503ms. Confidence intervals for all other

4Models were fitted using the lme4 package [1] in R (www.r-project.org). HPD intervals
were estimated using MCMC draws from the posterior distributions. Log-likelihood ratio
tests, and Akaike’s information criterion (AIC), derived from the maximum log-likelihood
estimates and penalized for the number of parameters, were used to compare fitted models.
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Figure 4: Interaction between item position and object-feature order.

strategy-type predictors versus the conditional event included 0. To the base
model we also added main effects of sex and object-feature order, and two- and
three-way interactions between these variables and the response type. There was
a hint of an effect of the three-way interaction (LLR χ2(5) = 10.1, p = .07), but
since ∆AIC = 0 (suggesting over-fitting) and the effect is so weak, for the sake
of model parsimony we removed it. Next we tested two-way interactions, in the
presence of all others. There was an interaction between sex and the response
type (∆AIC = −6, LLR χ2(5) = 15.6, p = .008), object-feature order and the
response type (∆AIC = −3, LLR χ2(5) = 13.2, p = .02), but we found no evi-
dence of an interaction between sex and object-feature order (LLR χ2(1) = 0).
We simplified the model accordingly. The coefficient for the conjunction re-
sponse versus the conditional event was still negative (95% CI ∈ [−0.30,−0.13]).
There was a weak main effect that males were faster than females (95% CI
∈ [−0.23,−0.01]) and complicated interactions with the response type, inter-
pretation of which we defer to another occasion. There was no main effect of
object-feature order, but participants were slower when giving a conjunction
response in the feature-object condition (95% CI ∈ [0.06, 0.26]).

We also investigated whether the tendency to interpret the material ac-
cording to the conditional event was affected by the object-feature order. A
generalized linear mixed effect model was fitted with binomial errors and a
logit link. The dependent variable was the probability of a conditional event
response. As before predictors were added for item position (pos). Also a pre-
dictor, order, was added for the object-feature order: 1 if feature-object and
0 if object-feature. We found no main effect of object-feature order (∆AIC =
2, LLR χ2(1) = 0.03, p = .9), however there was an interaction between item
position and object-feature order (∆AIC = −17, LLR χ2(1) = 18.5, p < .001).
The final model chosen was as follows:

logit(P (yip = 1)) = β0 + γ0p + γ1i + β1 · posip + β2 · posip · order ip + ϵip

Figure 4 shows predictions from the model’s fixed-effect estimates. At the be-
ginning of the task, participants in the object-feature condition were more likely
to use a conditional event interpretation than in the feature-object condition.
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4 Discussion

The conditional event was the most common interpretation of the if-then (modal
response for 76% of participants in Experiment 1 and 69% in Experiment 2),
followed by the conjunction (12% in Experiment 1 and 24% in Experiment 2).
Material conditional responses were rare. We provided evidence of interpreta-
tion shifts: 55% of participants shifted to a conditional event response during the
task, and 80% of these shifted from conjunction responses. Conjunction is con-
sistent with an implicit model in mental models theory [5], however the theory
would predict a shift to the material conditional rather than to the conditional
event. Changes of interpretation have been observed in an experiment using a
non-probabilistic truth table task [12]: participants changed from a conjunction
interpretation to either equivalence or the material conditional, and from equiv-
alence to the material conditional. This effect was argued to be cued by the
process of going through the truth table cases. We have also provided evidence
that the shift to the conditional event interpretation was later for feature-object
order compared to the object-feature order, extending a result from analogies
processing [6] to an uncertain reasoning task.

It is difficult to distinguish between effects due to individual differences in
interpretation and those due to differences in derivation. It seems unlikely, how-
ever, that a shift from a conjunction response to a conditional event response—
the most common kind of shift—would be due to a change in derivation strategy.
If people had a fixed interpretation of conditional event but got better at deriva-
tion, this would result in a shift from noise (giving an ‘other’ classification) to
the conditional event. Only three participants shifted in this way. Therefore it
is more likely that it is the interpretation that shifts and not the derivation.

Insight is often defined as the effect of suddenly understanding how to solve a
problem after a period of impasse, often accompanied with an ‘Aha!’ feeling [2].
Our results suggest that participants who shifted interpretation demonstrated
such an effect, both by qualitative shifts in response type, and also (for some
participants) by spontaneous self-reports of insight. Problems used to study
insight, e.g., anagrams, usually have a clear goal; the difficulty comes from how
to achieve that goal from the starting state. For our reasoning task, however, the
difficulty is in understanding what the goal is, i.e., what probability should be
computed. The interpretation shift is thus a shift in understanding of the goal,
rather than how to achieve the goal (simple counting). Another difference in
our task is that there was no impasse: participants continue to do the best they
can with their first interpretation. Again this is because they have a clear goal,
however transitory, and know how to achieve it. Although the shift is sudden, it
is still possible that parallel competing processes incrementally compute two (or
many more) interpretations, then after some time, the most likely interpretation
is inferred to be the conditional event. A similar incremental account has been
given of sudden ‘pop-out’ solutions in anagram solving [7].

These results have important implications for building process models. Not
only do different people reason to different interpretations, but individuals shift
interpretations during a task. Studying trajectories of interpretation change
reveals participants’ inferences about correctness of interpretation. It is thus
interesting that so many participants converge on the conditional event. Future
work is needed to clarify when and for whom these shifts of interpretation occur,
and what cues can facilitate or impede the process.
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Abstract

With the aid of the Maximum Entropy principle, a solution to the
marginal problem is obtained in a form of parametric exponential (Gibbs-
Markov) distribution. The unknown parameters can be calculated by an
optimization procedure that agrees with the maximum likelihood estimate
but it is numerically hardly feasible for highly dimensional systems. A nu-
merically easily feasible solution can be obtained by the algebraic Möbius
formula. The formula, unfortunately, involves terms that are not directly
available but can be approximated. And the main aim of the present
paper consists in this approximation.

1 Introduction

We address the so-called marginal problem, i.e. the problem of reconstruction
of a joint (global) distribution from a collection of marginal (local) ones. To the
contrary with some other approaches, where the problem is studied either by
graphical or combinatorial reasoning, or by iterative computational algorithms
(see, e.g., [6] or [7]), here the solution is inspired, more-or-less, by a ”statistical”
point of view.

In order to find a unique representing joint distribution for the system, we
employ the maximum entropy principle. Then, providing some technical as-
sumptions being satisfied, the solution agrees with a parametric exponential
(Gibbs) distribution as the most natural and convenient representative. The
distribution is also Markovian with the neighborhood system induced by the
system of marginals (Section 5.). Thus the structure of the distribution is known
but the parameters are given only implicitly. In order to fix the parameters,
we have to solve the same task as within the problem of statistical estimation.
In particular, the parameters are obtained by an optimization procedure that
agrees with the maximum likelihood (ML) estimate (as if the marginals were
obtained from data). Thus, we may imagine the “input” information contained
in the system of marginal (local) distributions as an evidence, and the problem
of finding the unknown joint distribution is re-formulated as a parameter esti-
mation problem. But, as it is well known, under a certain size of the model, any
direct optimization method is unfeasible. Therefore, for calculating parameters
of the representing distributions in full generality we need to apply some sim-
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ulation procedure, usually based on the Markov Chain Monte Carlo methods
(see Section 6.).

But, as we show finally in Section 7., we can also apply the combinatorial
Möbius formula for direct evaluating the potentials of the Gibbs distributions,
and these potentials are equal exactly to the unknown parameters.

Unfortunately, the formula involves marginals over larger sets of nodes,
namely over the neighborhoods of particular nodes. Thus, for an easy calcula-
tion of the maximal entropy solution to the marginal problem , we have, at first,
to extend the original marginals to these larger sets, at least approximately.

An approximative method of these extension, based partly on the ideas in-
troduced in [6] or [7], is presented in Section 8. as the main goal of this paper.

For many topics of the present paper [7] or [9] are the basic references. For
exponential distributions see [1]. For stochastic gradient method see [9] or [10],
for general MCMC simulations see [2]. For the marginal problem see, e.g., [6]
and the references therein. Some specific approaches can be found, e.g., in [4]
or [8].

2 Basic definitions

Let us consider a finite set S of indices (sites, variables, nodes), and the space
of configurations

XS =
⊗
s∈S

Xs

where Xs is a finite state space for every s ∈ S. For every V ⊂ S we denote
by PrV : XS → XV the projection onto the space XV =

⊗
s∈V Xs, and by

BV = σ(PrV ) the σ-algebra of cylinder (local) sets.
Further, by PV we denote the class of all probability measures on BV , and

by FV the class of all real-valued BV -measurable functions. (PV can be al-
ternatively understood as the set of probability measures on XV , and FV as
the set of functions on XV . We shall not distinguish these two modes.) For
PV ∈ PV and W ⊂ V we shall denote by PV/W ∈ PW its projection into the
space PW , i.e., the corresponding marginal distribution. ( Whenever no confu-
sion may occur, we shall write directly PW .) On the other hand, by PA|B for
A,B ⊂ S, A ∩ B = ∅, we denote the corresponding conditional distribution.

3 Problem

Let us consider a system of (non-void) subsets V ⊂ exp S, satisfying V \W ̸= ∅
for V, W ∈ V, V ̸= W , and a collection of marginal distributions

Q = {QV }V ∈V

where
QV ∈ PV for every V ∈ V.

Let us denote

PQ = {PS ∈ PS ; PS/V = QV for every V ∈ V}.

If PQ ̸= ∅ we quote the collection Q as strongly consistent.
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The problem to be solved now consists in finding a suitable representative

PS ∈ PQ,

providing Q is strongly consistent.

4 Maximum entropy principle

Whenever |PQ| > 1 we have to employ some additional criterion for selecting
PS , which, in our case, will be the maximum entropy principle . For a justifi-
cation of such approach see, e.g., [5] as the standard reference.

Let us recall the formulas for the entropy and the I -divergence, respectively,
namely

H(P ) =
∫

− log P dP =
∑

xS∈XS

− log P (xS)P (xS),

and

I(P |Q) =
∫

log
P

Q
dP =

∑
xS∈XS

log
P (xS)
Q(xS)

P (xS)

providing the terms are well defined. Otherwise we set I(P |Q) = ∞.
Thus, applying the maximum entropy principle , we seek for

PS ∈ argmaxPS∈PQ
H(PS)

or, more generally,
PS ∈ argminPS∈PQ

I(PS |RS)

where RS ∈ PS is some fixed reference probability measure.
For the sake of brevity, we shall deal directly with the first definition, which,

after all, agrees with the latter one for uniform RS .

5 Gibbs-Markov distributions

Further, we shall quote PS ∈ P as the Gibbs distribution with the potential
U = {UA}A∈A where UA ∈ FA for every A ∈ A ⊂ exp S (see, e.g., [9] for
detailed treatment) if

PS(yS) ∝ exp{
∑
A∈A

UA(yA)}.

Then we shall write PS = PU
S . Moreover, since

PU
{s}|S\{s}(y{s}|yS\{s}) ∝ exp{

∑
A∈A,A∋s

UA(yA)},

PU
S is also Markovian with the neighborhood system ∂ = {∂(s)}s∈S given by

t ∈ ∂(s) iff {t, s} ⊂ A for some A ∈ A.
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6 Maximum entropy solution

Now, let us fix a configuration 0S ∈ XS . For B ⊂ S we denote X 0
B =

⊗
b∈B(Xb \

{0b}). Further, we denote

V = {W ⊂ S; ∅ ̸= W ⊂ V for some V ∈ V}.

Let as consider the class of potentials

U0 = {U = (UW )W∈V ; UW ∈ FW andUW (xW ) = 0 for everyxW ∈ XW \ X 0
W }.

Then U0 is the space of so-called vacuum potentials (see, e.g., [3]). We may also
write UW =

∑
xW ∈X 0

W
UW (xW )δxW with some real constants {UW (xW )}xW ∈X 0

W

for every W ∈ V.

Proposition 1. Let PU
S ∈ PQ for some U ∈ U0. Then U ∈ U0 is given

uniquely and
PU

S = PS = argmaxPS∈PQ
H(PS).

Proof. See Proposition 1 and 2 in [3].

Remark 1. We shall omit here the question of existence of PU
S ∈ PQ (see

also, e.g., [3]). Here it will be simply assumed. Let us emphasize that such
assumption involves also the condition

QV > 0 for every V ∈ V.

That will make the further calculations much easier since we do not have to
take care about zeros.

We shall rather discuss the problem of numerical feasibility. Namely, the
unknown parameters {UW (xW )}xW ∈X 0

W ,W∈V should be identified by the condi-
tion

PU
S ∈ PQ

which means

PU
W (xW ) = QW (xW ) for every xW ∈ X 0

W , W ∈ V

or, equivalently, by

U = arg max
U∈U0

 ∑
W∈V

∑
xW ∈X 0

W

UW (xW )QW (xW ) − log
∑

xS∈XS

exp{
∑

W∈V

UW (xW )}

 .

Both methods contain terms that involve summing over the set XS which is
numerically hardly feasible for large S.

Hence, the stochastic gradient method (cf. [9], Section 15.4, or [10]) was
introduced, based on substituting the “theoretical” terms by their simulated
counterparts. The Markov Chain Monte Carlo (MCMC) – or some similar
method – can be used for the simulation (cf., e. g., [2] for a survey).
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Let us recall here that, in principle, the above method of identifying the pa-
rameters agrees with the statistical parameter estimation, namely the maximum
likelihood (ML), or, equivalently, the minimum I-divergence method. The only
difference consists in the fact that within the statistical estimation the collection
{QW (xW )}xW ∈X 0

W ,W∈V is given as an ”evidence” obtained from observed data,

in particular QW (xW ) = P̂S/W (xW ) for every xW ∈ X 0
W ,W ∈ V where P̂S is

the empirical distribution.

7 Möbius formula

Nevertheless, due to the problems as described above, we prefer much more
straightforward method, given by Möbius formula (see, e.g., [9]), for identifying
the parameters. Let us introduce the formula, which is rather general, in a form
suitable for our purposes.

Proposition 2.
Let us denote Φ(xS) = log PU

S (xS) with U ∈ U0. Then

UW (xW ) =
∑

B⊂W

(−1)|W\B| [Φ(xB , 0S\B) − Φ(0S)
]

for every xW ∈ X 0
W , W ∈ V.

Proof.
The relation can be verified by direct substitution. See, e.g.,[3] or [9].

Now, by elementary rearrangements, we obtain

UW (xW ) =
∑

B⊂W

(−1)|W\B|

[
log

PU
S (xB , 0S\B)

PU
S (0S)

]
=

=
∑

B⊂W\{s}

(−1)|W\B|

[
log

PU
S (xB , 0S\B)

PU
S (xB∪{s}, 0S\{B∪{s}})

]
=

=
∑

B⊂W\{s}

(−1)|W\B|

[
log

PU
{s}|∂(s)(0{s}|xB , 0∂(s)\{B∪{s}})

PU
{s}|∂(s)(x{s}|xB , 0∂(s)\{B∪{s}})

]

for every xW ∈ X 0
W ,W ∈ V, where s ∈ W is arbitrary fixed. For the last ex-

pression note that (W \ {s}) ⊂ ∂(s) since s ∈ W .
Now, suppose we are able to extend the original system of marginals Q

consistently into the system

Q∂ = {Q∂(s)}s∈S ,

where ∂(s) = ∂(s) ∪ {s}, i.e.

PU
S ∈ PQ ∩ PQ∂
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can be guaranteed. Then we can calculate the parameters {UW (xW )}xW ∈X 0
W ,W∈V

directly from the Möbius formula, namely

UW (xW ) =
∑

B⊂W\{s}

(−1)|W\B|
[
log

Q{s}|∂(s)(0{s}|xB , 0∂(s)\{B∪{s}})
Q{s}|∂(s)(x{s}|xB , 0∂(s)\{B∪{s}})

]

for every xW ∈ X 0
W ,W ∈ V.

Actually, we do not need to know the complete distributions Q∂(s), s ∈ S,
but only Q∂(s)(xW , 0∂(s)\W ) for every W ∈ V,W ⊂ ∂(s), and xW ∈ XW .

8 Approximation

Unfortunately, the exact extension is usually hardly available, but, from the
practical point of view, a reasonable approximation can be sufficient. Let us
continue with the above reasoning in order to obtain

UW (xW ) =
∑

B⊂W\{s}

(−1)|W\B|

[
log

Q∂(s)(xB , 0∂(s)\B})

Q∂(s)(xB∪{s}, 0∂(s)\{B∪{s}})

]

=
∑

B⊂W

(−1)|W\B|

[
log

Q∂(s)(xB , 0∂(s)\B})

Q∂(s)(0∂(s))

]
.

Now, for approximating Q∂(s) we shall use a rather standard product form

(see, e.g., [4],[6], or [7]), but, first of all, we need some more notation.
For s ∈ S we denote Vs = {V ∈ V;V ∋ s}, vs = |Vs|, and Is the set of all

possible enumerations of the elements of Vs. Then, for every ρ ∈ Is, we may set

Q̂ρ

∂(s)
=

∏
A∈Vs

QA∏
j=1,...,vs

QBρ
j

where Bρ
j = Aρ(j) ∩ (

∪j−1
i=1 Aρ(i) ) for every j = 1, . . . , vs, as a natural estimate.

Remark 2. The product form for Q̂ρ

∂(s)
can be also justified by the assump-

tion

Q∂(s)(xB , 0∂(s)\B})

Q∂(s)(xB∪{s}, 0∂(s)\{B∪{s}})
=

Q{s}|∂(s)(0{s}|xB , 0∂(s)\{B∪{s}})
Q{s}|∂(s)(x{s}|xB , 0∂(s)\{B∪{s}})

=

=
PU
{s}|∂(s)(0{s}|xB , 0∂(s)\{B∪{s}})

PU
{s}|∂(s)(x{s}|xB , 0∂(s)\{B∪{s}})

where the latter term can be factorized by definition (see Section 5.).
Further, for every pair A,W ∈ V let us denote

ûW,A(xW ) =
∑

B⊂W

(−1)|W\B|
[
log

QA(xA∩B , 0A\B})
QA(0A)

]
.
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Proposition 3. Let W \ A ̸= ∅. Then ûW,A ≡ 0.

Proof. We may write

ûW,A(xW ) =∑
B1⊂W∩A

∑
B2⊂W\A

(−1)|(W∩A)\B1|(−1)|(W\A)\B2|
[
log

QA(xA∩B1 , 0A\B1})
QA(0A)

]
.

And for W \ A ̸= ∅ we have∑
B2⊂W\A

(−1)|(W\A)\B2| = 0.

With the above defined terms, by substituting the estimate Q̂ρ

∂(s)
into the

expression for UW , we may introduce the approximation

Ûs,ρ
W =

∑
A∈Vs,A⊃W

uW,A −
∑

j=1,...,vs:Bρ
j ⊃W

uW,Bρ
j

for every W ∈ V, s ∈ W, and ρ ∈ Is. Since s ∈ W and ρ ∈ Is are ”free
parameters”, we may, finally average over all possible choices, and obtain

ÛW = |W |−1
∑
s∈W

|Is|−1
∑
ρ∈Is

Ûs,ρ
W

for every W ∈ V.

Remark 3. It is apparent that for large W many terms disappear. E.g., for
W ∈ V we have actually Ûs,ρ

W = uW,W for every s ∈ W and ρ ∈ Is, and therefore
also ÛW = uW,W .

Remark 4. The main advantage of the method is given by its non-sensitivity
to the break of assumptions. In practise, we do not have to check the con-
sistency assumption for the original system Q, and the possible zeros can be
substituted by some small ϵ > 0. In addition, the model does not require any
interconnections between the approximated potential functions ÛW , W ∈ V.

Remark 5. With the model parameters {UW (xW )}xW ∈X 0
W ,W∈V we can eas-

ily calculate the relative values of the probability, namely PU
S (xS)/PU

S (yS) for
xS , yS ∈ XS , and the conditional distributions PU

A|∂A for ”small” A ⊂ S. More
complex terms can be again simulated, similarly as in Section 6.
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Abstract

It is a generally accepted fact that the Dempster’s rule of combination
plays a key role in Dempster-Shafer Theory of Evidence. In this paper
the authors compare this combination rule with another one, which is
called composition, and which was designed to create multidimensional
basic assignments from a system of low-dimensional ones. The goal of
this paper is to show that though the mentioned methods of combination
were designed for totally different reasons, they manifest some similar
formal properties and under very special conditions they even coincide.

1 Introduction

Dempster’s rule of combination is often used as a method of fusion of several
sources of information: combining two subjective evaluations of beliefs one can
get a “summarized” evaluation expressing knowledge from both the considered
sources (e.g. [6, 1, 4]).

It is not the goal of this paper to bring arguments for or against the above
mentioned way of interpretation of the Dempster’s rule of combination. Our goal
is to compare this rule of combination with another combining tool, so called
operator of composition, proposed for construction of multidimensional models
from a number of low-dimensional ones. Here we do not consider fusion in its
proper meaning. The purpose why the operator of composition was designed
was not to fuse imprecise descriptions about the same object but to compose
a number of descriptions each of them describing different properties of the
object to get its global description. Using the terminology of AI, operator
of composition was proposed to construct a model of global knowledge from

∗The research was partially supported by Ministry of Education of the Czech Republic un-
der grant no. 2C06019, and by Czech Science Foundation under the grants no. ICC/08/E010
and 201/09/1891.



There are combinations and compositions in Dempster-Shafer theory of evidence 101

a system of pieces of local knowledge. So, it corresponds to the process of
knowledge integration.

Keeping this in mind, it is quite natural that we do not want to compare
the mentioned two ways of combination to show that one of them is better
than the other. Having been inspired by an anonymous referee of [3], we want
to compare them from the formal point of view, because, though they were
designed for different purposes, they manifest some similar properties, and they
even coincide under some very special situations.

2 Notation and basic notions

2.1 Set notation

In the whole paper we will deal with a finite number of variables X1, X2, . . . , Xn

each of which is specified by a finite set Xi of its values. So, we will consider
multidimensional space of discernment

XN = X1 × X2 × . . . × Xn,

and its subspaces. For K ⊂ N = {1, 2, . . . , n}, XK denotes a Cartesian product
of those Xi, for which i ∈ K:

XK =×i∈KXi.

A projection of x = (x1, x2, . . . , xn) ∈ XN into XK will be denoted x↓K , i.e.
for K = {i1, i2, . . . , iℓ}

x↓K = (xi1 , xi2 , . . . , xiℓ
) ∈ XK .

Analogously, for K ⊂ L ⊆ N and A ⊂ XL, A↓K will denote a projection of A
into XK :

A↓K = {y ∈ XK : ∃x ∈ A (y = x↓K)}.

Let us remark that we do not exclude situations when K = ∅. In this case
A↓∅ = ∅.

In addition to the projection, in this text we will need also the opposite
operation which will be called join. By a join of two sets A ⊆ XK and B ⊆ XL

we will understand a set

A ⊗ B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Notice that if K and L are disjoint then their join is just their Cartesian
product

A ⊗ B = A × B.

If K = L then
A ⊗ B = A ∩ B. (1)

If K ∩ L ̸= ∅ and A↓K∩L ∩ B↓K∩L = ∅ then also A ⊗ B = ∅. Generally,

A ⊗ B = (A × XL\K) ∩ (B × XK\L). (2)
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2.2 Basic assignment notation

The role of a probability distribution from a probability theory is in Dempster-
Shafer theory played by a basic (probability or belief ) assignment. In this paper
we shall use exclusively normalized basic assignments.

A basic assignment m on XK is a function

m : P(XK) −→ [0, 1],

for which m(∅) = 0 and ∑
A⊆XK

m(A) = 1.

A basic assignment on XK is called vacuous if m(XK) = 1, and it is called
simple basic assignment focused on A (for ∅ ̸= A ⊂ XK) if m(A) = a for a > 0
and m(XK) = 1 − a.

If m(A) > 0, then A is said to be a focal element of m. If all the focal
elements of m are singletons (i.e. m(A) > 0 implies that |A| = 1) then we say
that m is Bayesian.

For L ⊂ K and basic assignment m on XK one gets its marginal basic
assignment m↓L by computing for each B ⊆ XL:

m↓L(B) =
∑

A⊆XK :A↓L=B

m(A).

Conversely, let m be a basic assignment on XL. Its vacuous extension on
XK is defined for all A ⊆ XK in the following way

m↑K(A) =
{

m(A↓L) if A = A↓L × XK\L,
0 otherwise. (3)

2.3 Dempster’s rule of combination

Dempster’s rule of combination is usually defined for two basic assignments
m1,m2 defined on the same frame of discernment (say XK) by the formula

(m1 ⊕ m2)(C) =

∑
A,B⊆XKA∩B=C

m1(A)m2(B)

1 −
∑

A,B⊆XK :A∩B=∅
m1(A)m2(B)

, (4)

for each C ⊆ XK . For the purpose of this paper we need its generalization
to cover situations when one wants to combine two basic assignments, which
are not defined on the same frame of discernment. Regarding equality (1), the
natural generalization, which will be used in this paper, is the one introduced
in the following definition.

Definition 1. For two arbitrary basic assignments m1 on XK and m2 on XL

(K ̸= ∅ ̸= L) their combination is computed according to the formula (for all
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C ⊆ XK∪L)1:

(m1 ⊕ m2)(C) =

∑
A⊆XK

∑
B⊆XL:A⊗B=C

m1(A)m2(B)

1 −
∑

A⊆XK

∑
B⊆XL:A⊗B=∅

m1(A)m2(B)
.

Substituting vacuous extensions of m1 and m2 on XK∪L into formula (4),
one gets

(m1 ⊕ m2)(C) =

∑
A,B⊆XK∪LA∩B=C

m↑K∪L
1 (A)m↑K∪L

2 (B)

1 −
∑

A,B⊆XK∪L:A∩B=∅
m↑K∪L

1 (A)m↑K∪L
2 (B)

=

∑
D⊆XK

∑
E⊆XL:(D×XL\K)∩(E×XK\L)=C

m1(D)m2(E)

1 −
∑

D⊆XK

∑
E⊆XL:(D×XL\K)∩(E×XK\L)=∅

m1(D)m2(E)
,

which is equivalent (taking into account expression (2)) the formula in Defini-
tion 1.

It is well known [5] that the following basic properties hold true for Demp-
ster’s rule of combination.

Lemma 1. Let K,L, M ⊆ N . For arbitrary basic assignments m1,m2,m3

defined on XK ,XLXM , respectively:

(i) m1 ⊕ m2 is a basic assignment on XK∪L;

(ii) m1 ⊕ m2 = m2 ⊕ m1;

(iii) (m1 ⊕ m2) ⊕ m3 = m1 ⊕ (m2 ⊕ m3).

2.4 Operator of composition

An operator of composition was for basic assignments defined in [2] by the
following definition.

Definition 2. For two arbitrary basic assignments m1 on XK and m2 on XL

(K ̸= ∅ ̸= L) a composition m1 ◃ m2 is defined for each C ⊆ XK∪L by one of
the following expressions:

[a] if m↓K∩L
2 (C↓K∩L) > 0 and C = C↓K ⊗ C↓L then

(m1 ◃ m2)(C) =
m1(C↓K) · m2(C↓L)

m↓K∩L
2 (C↓K∩L)

;

1For the purpose of this paper we do not consider situations when
X

A⊆XK

X

B⊆XL:A⊗B=∅
m1(A)m2(B) = 1.
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[b] if m↓K∩L
2 (C↓K∩L) = 0 and C = C↓K × XL\K then

(m1 ◃ m2)(C) = m1(C↓K);

[c] in all other cases (m1 ◃ m2)(C) = 0.

Example 1. Let X1 = {a, ā},X2 = {b, b̄} and X3 = {c, c̄} be three frames of
discernment and let us consider the following two simple basic assignments m1

and m2 defined on X1 × X2 and X2 × X3, respectively:

m1(X1 × {b}) = 0.4,

m1(X1 × X2) = 0.6,

m2(X2 × {c}) = 0.5,

m2(X2 × X3) = 0.5.

From Definition 2 one can immediately see that the formula in case [a] can
assign a positive value to (m1 ◃ m2)(A) and/or (m2 ◃ m1)(A) only for those
A ⊆ X1 × X2 × X3 for which

A↓{1,2} = X1 × {b} or A↓{1,2} = X1 × X2,

and
A↓{2.3} = X2 × {c} or A↓{2,3} = X2 × X3.

There are only two such sets, namely:

X1 × X2 × {c} and X1 × X2 × X3.

For these sets we get

(m1 ◃ m2)(X1 × X2 × {c}) =
m1(X1 × X2) · m2(X2 × {c})

m
↓{2}
2 (X2)

=
0.6 · 0.5

1
= 0.3,

(m1 ◃ m2)(X1 × X2 × X3) =
m1(X1 × X2) · m2(X2 × X3)

m
↓{2}
2 (X2)

=
0.6 · 0.5

1
= 0.3

and similarly

(m2 ◃ m1)(X1 × X2 × {c}) =
m2(X2 × {c}) · m1(X1 × X2)

m
↓{2}
1 (X2)

=
0.5 · 0.6

0.6
= 0.5,

(m2 ◃ m1)(X1 × X2 × X3) =
m2(X2 × X3) · m1(X1 × X2)

m
↓{2}
1 (X2)

=
0.5 · 0.6

0.6
= 0.5.

Since m2({b}) = 0, from case [b] of Definition 2 we will get yet another focal
element for m1 ◃ m2, namely

A = X1 × {b} × X3,

for which
A↓{1,2} = X1 × {b} and A↓{3} = X3.
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Table 1: Composed basic assignments.

A (m1 ◃ m2)(A) (m2 ◃ m1)(A)
X1 × X2 × {c} 0.3 0.5
X1 × X2 × X3 0.3 0.5

X1 × {b} × X3 0.4 0

For this set we get

(m1 ◃ m2)(X1 × {b} × X3) = m1(X1 × {b}) = 0.4.

Notice that when computing a composition m2 ◃ m1, case [b] of Definition 2
does not assign a positive value to any subset A of X1 × X2 × X3, since if
m

↓{2}
2 (A↓{2}) > 0 then also m

↓{2}
1 (A↓{2}) > 0.

Both the composed basic assignments m1 ◃ m2 and m2 ◃ m1 are outlined in
Table 1 (recall once more that for all other A ⊆ X1 × X2 × X3 different from
those included in Table 1, both assignments equal 0). It is also evident from
the table that the operator ◃ is not commutative.

Let us present the most important properties of the operator of composition
for basic assignments, which were proved in [2].

Lemma 2. Let K,L ⊆ N . For arbitrary basic assignments m1,m2 defined on
XK and XL, respectively:

(i) m1 ◃ m2 is a basic assignment on XK∪L;

(ii) m1 ◃ m2 = m2 ◃ m1 ⇐⇒ m↓K1∩K2
1 = m↓K1∩K2

2 ;

(iii) (m1 ◃ m2)↓K1 = m1.

3 Relation of combinations and compositions

3.1 Disjoint domains

Theorem 1. Let K, L ⊆ N and m1,m2 be basic assignments defined on XK

and XL, respectively. If K ∩ L = ∅ then

m1 ◃ m2 = m2 ◃ m1 = m1 ⊕ m2.

Proof. For disjoint K, L and A ⊆ XK , B ⊆ XL one gets A ⊗ B = A × B and
m↓K∩L

2 ≡ 1. Therefore, for computation of m1 ◃ m2 (for any focal element
C ⊆ XK∪L of m1 ◃ m2) only case [a] of Definition 2 is employed, and therefore

(m1 ◃ m2)(C) = m1(C↓K) · m2(C↓L) =
∑

A=C↓K

∑
B=C↓L

m1(A)m2(B)

=
∑

A⊆XK

∑
B⊆XL:A⊗B=C

m1(A)m2(B) = (m1 ⊕ m2)(C),
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because, in this case, ∑
A⊆XK

∑
B⊆XL:A∩B=∅

m1(A)m2(B) = 0.

The fact that m1 ◃ m2 = m2 ◃ m1 follows immediately from property (ii) of
Lemma 2.

3.2 Identical domains

Theorem 2. If for arbitrary two basic assignments m1,m2 on XK each focal
element of m2 contains all the focal elements of m1, i.e.

m1(A) > 0,m2(B) > 0 =⇒ A ⊆ B,

then
m1 ◃ m2 = m1 ⊕ m2.

Proof. First, compute∑
A,B⊆XK :A⊗B=∅

m1(A)m2(B) =
∑

A,B⊆XK :A∩B=∅

m1(A)m2(B)

=
∑

A⊆XK

m1(A)
∑

B⊆XK :A∩B=∅

m2(B) = 0,

because, under the given assumptions, for each focal element A of m1∑
B⊆XK :A∩B=∅

m2(B) = 0.

Now, we can easily compute (m1 ⊕ m2)(C) for any focal element C of m1.

(m1 ⊕ m2)(C) =
∑

A⊆XK

m1(A)
∑

B⊆XK :A⊗B=C

m2(B) =
∑

A⊆XK :A=C

m1(A)

= m1(C).

In this way we obtained that (m1 ⊕ m2)(C) = m1(C) for all focal elements C
of m1. Therefore, since∑

C⊆XK

(m1 ⊕ m2)(C) =
∑

C⊆XK

m1(C) = 1,

it is clear that (m1 ⊕ m2)(C) = m1(C) for all C ⊆ XK , and therefore also

m1 ⊕ m2 = m1 = m1 ◃ m2.

As a special case of Theorem 2 one gets the following assertion.

Corollary 1. Let m1 be an arbitrary basic assignment on XK and let F denote
the set of its focal elements. If m2 is a simple basic assignment on XK focused
on B such that B ⊇ ∪A∈FA, then

m1 ◃ m2 = m1 ⊕ m2.
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3.3 General situation

Let us start studying general overlapping (but not identical) frames of discern-
ment by an example illustrating the fact that a sufficient condition describing
situations when combination and composition results in the same basic assign-
ments cannot be obtained as a generalization of results from the previous two
subsections.

Example 2. Consider two basic assignments m1 on X{1,2,3} and m2 on X{2,3,4}
(with X1 = {a, ā},X2 = {b, b̄},X3 = {c, c̄},X4 = {d, d̄}), each having only two
focal elements:

m1 : A1 = {abc}, A2 = {abc, āb̄c̄} m1(A1) = 1/4,m1(A2) = 3/4.
m2 : B1 = {bcd, b̄c̄d}, B2 = {bcd, bc̄d, b̄c̄d̄} m2(B1) = 1/3,m2(B2) = 2/3.

The reader can immediately see that each focal element of m
↓{2,3}
2 contains all

the focal elements of m
↓{2,3}
1 ; i.e. A

↓{2,3}
1 = {bc} and A

↓{2,3}
2 = {bc, b̄c̄} are

subsets of both B
↓{2,3}
1 = {bc, b̄c̄} and B

↓{2,3}
2 = {bc, bc̄, b̄c̄}.

Realizing that

A1 ⊗ B1 = {abcd},
A1 ⊗ B2 = {abcd},
A2 ⊗ B1 = {abcd, āb̄c̄d},
A2 ⊗ B2 = {abcd, āb̄c̄d̄},

it is clear that ∑
A⊆X{1,2,3}

∑
B⊆X{2,3,4}:A⊗B=∅

m1(A)m2(B) = 0,

and therefore

(m1 ⊕ m2)({abcd}) =
∑

A⊆X{1,2,3}

∑
B⊆X{2,3,4}:A⊗B={abcd}

m1(A)m2(B)

= m1(A1)m2(B1) + m1(A1)m2(B2) = 1/4.

When computing m1 ◃ m2 one has to realize that even though

{abcd} = {abcd}↓{1,2,3} ⊗ {abcd}↓{2,3,4},

m
↓{2,3}
2 ({bc}) = 0 and therefore neither case [a] nor [b] of Definition 2 is appli-

cable for computing (m1 ◃ m2)({abcd}), and therefore it equals 0 according to
case [c]. So we obtained that in this example m1 ⊕ m2 ̸= m1 ◃ m2.

Theorem 3. Let m1 on XK and m2 on XL be such basic assignments that
each focal element A of m1 and each focal element B of m2 projects to a unique
set in XK∩L. Then

m1 ◃ m2 = m1 ⊕ m2.

Proof. First, let us note that the assumption that all focal elements of both m1

and m2 project to a unique set implies, that m↓K∩L
2 (A↓K∩L) = 1 for any focal

element A of m1.
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Now, consider any C ⊆ XK∪L for which C = C↓K ⊗ C↓L. For this C

(m1 ⊕ m2)(C) =

∑
A⊆XK

∑
B⊆XL:A⊗B=C

m1(A)m2(B)

1 −
∑

A⊆XK

∑
B⊆XL:A⊗B=∅

m1(A)m2(B)

≥
∑

A⊆XK

∑
B⊆XL:A⊗B=C

m1(A)m2(B) ≥ m1(C↓K) · m2(C↓L).

Simultaneously, if m1(C↓K) > 0,

(m1 ◃ m2)(C) =
m1(C↓K) · m2(C↓L)

m↓K∩L
2 (C↓K∩L)

= m1(C↓K) · m2(C↓L).

Since if m1(C↓K) = 0 then also

(m1 ◃ m2)(C) = 0 = m1(C↓K) · m2(C↓L),

one can see that for all C ⊆ XK∪L for which C = C↓K ⊗ C↓L

(m1 ⊕ m2)(C) ≥ m1(C↓K) · m2(C↓L) = (m1 ◃ m2)(C).

Regarding Definition 2, according to which (m1◃m2)(C) = 0 for C ̸= C↓K⊗C↓L,
we see that

(m1 ⊕ m2)(C) ≥ (m1 ◃ m2)(C)

holds true for all C ⊆ XK∪L, from which, because both m1 ⊕ m2 and m1 ◃ m2

are normalized basic assignments, we get that m1 ⊕ m2 = m1 ◃ m2.

Example 3. Let X1, X2 and X3 be three binary variables with values in X1 =
{a, a},X2 = {b, b}, X3 = {c, c} and m1 and m2 be two basic assignments on
X1×X3 and X2×X3 respectively, both of them having only two focal elements:

m1 : A1 = {ac̄, āc̄}, A2 = {ac̄, āc} m1(A1) = 1/2,m1(A2) = 1/2.
m2 : B1 = {bc̄, b̄c̄}, B2 = {bc̄, b̄c} m2(B1) = 1/2,m2(B2) = 1/2.

(5)

One can immediately see that both A1⊗B2 and A2⊗B1 are empty and therefore
m1 ⊕ m2 has only two focal elements, namely A1 ⊗ B1 = X1 × X2 × {c̄} and
A2 ⊗ B2 = {abc̄, āb̄c}. For these focal elements we have

(m1 ⊕ m2)(X1×X2×{c̄}) =
m1(A1)m2(B1)

1 − (m1(A1)m2(B2) + m1(A2)m2(B1))
= 1/2,

(m1 ⊕ m2)({abc̄, āb̄c}) =
m1(A2)m2(B2)

1 − (m1(A1)m2(B2) + m1(A2)m2(B1))
= 1/2

and simultaneously

(m1 ◃ m2)(X1×X2×{c̄}) = 1/2,

(m1 ◃ m2)({abc̄, āb̄c}) = 1/2.

Thus we got that for the basic assignments defined in expressions (5)
m1 ⊕ m2 = m1 ◃ m2. Nevertheless, it does not mean that for any couple of
basic assignments m1,m2 defined on X1 ×X2, X2 ×X3, respectively, with the
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respective focal elements A1, A2 and B1, B2, the coincidence must hold. This
happened because we chose special values of the considered basic assignments.
If we change the values of m1 and m2 e.g. in the following way:

m′
1(A1) = 1/3 m′

1(A2) = 2/3,
m′

2(B1) = 1/3 m′
2(B2) = 2/3,

we will get, analogously to (6),

(m′
1 ⊕ m′

2)(X1×X2×{c̄}) = 1/5,

(m1 ⊕ m2)({abc̄, āb̄c}) = 4/5,

and

(m1 ◃ m2)(X1×X2×{c̄}) = 1/3,

(m1 ◃ m2)({abc̄, āb̄c}) = 2/3.

Special property holds for Bayesian basic assignments.

Theorem 4. Let K, L ⊆ N and m1,m2 be Bayesian basic assignments defined
on XK and XL, respectively. Then

m1 ◃ m2 = m1 ⊕ m2

if m↓K∩L
2 corresponds to uniform probability distribution.

Proof. The assumption that m↓K∩L
2 , being Bayesian basic assignment, corre-

sponds to the uniform probability distribution implies that m↓K∩L
2 is positive

for any singleton from XK∩L. This shows that case [b] of Definition 2 is not
applicable to any C ⊆ XK∪L such that C↓K∩L is singleton.

Now consider an arbitrary singleton C ⊂ XK∪L. It is obvious that C =
C↓K ⊗ C↓L and therefore, according to case [a] of Definition 2,

(m1 ◃ m2)(C) =
m1(C↓K) · m2(C↓L)

β
, (6)

where β = m↓K∩L
2 (C↓K∩L) is, due to the assumption posed on m↓K∩L

2 , the same
for all singletons C ⊂ XK∪L. On the other hand, if C ⊂ XK∪L is not singleton
then either C↓K or C↓L cannot be singleton and therefore, if (m1 ◃ m2)(C) is
assigned by case [a] of Definition 2, the value of (m1 ◃ m2)(C) is 0. In case
that (m1 ◃ m2)(C) is assigned by case [b] of Definition 2, the resulting value is
also 0, because this case is applicable only when m↓K∩L

2 (C↓K∩L) = 0, which
may appear only when C↓K∩L is not singleton and therefore neither C↓K is
a singleton, which means that m1(C↓K) = 0. So, we showed that m1 ◃ m2 is
defined by (6) for singletons and for non-singletons it equals 0.

Let us denote

α =
∑

A⊆XK

∑
B⊆XL:A⊗B=∅

m1(A) · m2(B).

For the considered Bayesian assignments

m1(A) · m2(B)



110 R. JIROUŠEK, J. VEJNAROVÁ

can be positive only when both A ⊆ XK and B ⊆ XL are singletons. Therefore
for any singleton C ⊆ XK∪L

(m1 ⊕ m2)(C) =

∑
A⊆XK

∑
B⊆XL:A⊗B=C

m1(A) · m2(B)

1 − α

=
m1(C↓K) · m2(C↓L)

1 − α
, (7)

and for non-singletons C

(m1 ⊕ m2)(C) = 0 = (m1 ◃ m2)(C).

To prove the required equality

(m1 ⊕ m2)(C) = (m1 ◃ m2)(C)

also for singletons it is enough to compare equalities (7) and (6) and again
realize that both m1 ⊕ m2 and m1 ◃ m2 are normalized basic assignments and
therefore 1 − α = β.

4 Conclusions

In the paper we introduced the operator of composition for basic assignments
and compared it with the famous Dempster’s rule of combination. We showed
that though Dempster’s rule of combination and operator of composition were
designed for different purposes they coincide in special situations; m1 ⊕ m2 =
m1 ◃ m2

• when the combined basic assignments m1 and m2 are defined on disjoint
frames of discernment;

• when all the focal elements of m1 are contained in each focal element of
m2 and the basic assignments in question are defined on the same frame
of discernment;

• when all the focal elements of both m1 and m2 project to the same subset
of the overlapping frame of discernment.

Naturally, as shown in Example 3, the above described situations do not form
a complete list of conditions under which the studied two operators coincide.
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falon, eds.). Mat-fyz Press, Praha, pp. 243-252, 2007.



There are combinations and compositions in Dempster-Shafer theory of evidence 111
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Abstract

An essential graphs represents a class of Markov equivalent Bayesian
networks. It may contain both directed and undirected edges. The contri-
bution describes principles by which essential graphs can be enumerated
in a hierarchical way.

We first generalize the concept of a terminal nodes so that it is applica-
ble to graphs with directed and undirected edges. We define a symmetry
relation for essential graphs. The number of labelings of an essential
graph is easily obtained with the help of symmetries. We represent essen-
tial graphs as a special layered graphs admitting within-layer edges. Each
layering determines a unique minimal backbone pattern of the edges that
link neighboring layers. Within-layer edges build cliques of completely
connected components. Long-distance edges are selected by symmetry
properties. Possible applications to model learning and the assessment of
prior distributions for model structures are discussed.

1 Introduction

We investigate the model space of essential graphs. Knowledge about the space
of possible models is a prerequisite for introducing prior probabilities in model
learning. Knowledge about different subclasses of models can be of considerable
help for various search strategies in model learning. Our long-term goal is a
hierarchical subdivision of the class of models. In the future such a hierarchy
can be used to assess and analyse the probability of whole graphical structures
in model learning.

Essential graphs were characterised and their properties extensively analysed
by Andersson, Madigan, and Perlman [1]. Essential graphs are closely related
to Bayesian networks. Why are we working with essential graphs and not with
Bayesian networks? For counting and enumeration Bayesian networks are inap-
propriate. The structure of any conditional independence model is characterised
by a set of conditional independences. If this set is represented by a directed
acyclic graph, i.e., by a Baysian network, then the representation is not necessar-
ily unique. One and the same set of conditional independences may correspond
to different Bayesian networks. Thus Bayesian networks lead to multiple counts.

∗Supported by the Austrian Science Fund, I141, within the European Science Foundation
EUROCORES programme LogICCC.
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This property is well known and called Markov equivalence. The three Bayesian
networks (a), (b), and (c) in Figure 1 represent the conditional independence
of B and C given A. They are Markov equivalent. A vee-structure in panel
(e) is both, a Bayesian network and an essential graph. It encodes uniquely the
marginal independence of A and B.

B

A

C

A B C C B A

B

A

C

A

C

B

(a) (b) (c) (d) (e)

Figure 1: (a), (b), and (c) show three Markov equivalent Bayesian networks
and (d) their unique representation as an essential graph. (e) shows a unique
structure which is both a Bayesian network and an essential graph.

Typically essential graphs are hybrid and consists of both directed and undi-
rected edges. But there are also models in which all edges are undirected and
cases in which all edges are directed. Figure 2 shows another example of Markov
equivalent Bayesian networks, namely complete graphs. They are all represented
by the undirected essential graph (g).
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(a) (b) (c) (d) (e) (f) (g)

Figure 2: Complete directed acyclic graphs are Markov equivalent and repre-
sented by an essential graph with undirected edges only.

Directed acyclic graphs have often been treated in the literature on graph
theory. The hybrid essential graphs have a rather special structure that has
only been studied in the literature on graphical models. For the enumeration
of some classes of conditional independence models there exist formulas and/or
algorithms [8, 5, 6, 7, 9, 10]. Some of our own results were reported at previous
workshops.

A number of related questions arise in the field of constraint programming.
The search space of matrix optimisation problems may be unnecessarily large
because permutations of rows and columns have the same solutions and thus
build an equivalence class. Before applying constraint programming the symme-
tries are broken by lexicographically ordering the matrix. Several results from
the literature on constraint programming are relevant to the present problem
[4] .

To my knowledge for the enumeration of essential graphs no satisfactory
solutions exists. The goal of the present contribution is not just to develop an
enumeration algorithm but to enumerate essential graphs according to impor-
tant structural properties.

We consider only graphs with one component. Results for graphs with two
or more components may be obtained by combining several one-component
analyses. The paper is mainly concerned with the enumeration of unlabeled
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structures. We will see below that the enumeration of the labelings of a given
essential graph is easy. Finding the unlabeled structures is the main problem.

2 Generalized terminal nodes

In a directed graph a terminal node is a vertex without children. We generalize
the concept to essential graphs. In an essential graph a vertex is a generalized
terminal if its undirected links can be replaced by directed ones so that there
exists a Markov equivalent graph in which the vertex is an ordinary terminal.

Definition 1 (Generalized terminal) Let G = (V,E) be an essential graph
with vertex set V and edges E, and let M(G) = {DAG1, . . . ,DAGt} be the set
of its Markov equivalent DAGs. Xi ∈ V is a generalized terminal vertex if there
exists a DAG ∈M(G) in which Xi is an (ordinary) terminal.

In Figure 1 the verteces B and C are ordinary terminals in (a) and generalized
terminals in (d). The graph in (a) is Markov equivalent to the graph in (d).
Therefore B and C are generalized terminals in (d). In panel (g) of Figure 2 the
verteces A, B, and C are generalized terminals as for each of them there exist
a Markov equivalent directed graph in which it is an ordinary terminal. In a
complete graph all verteces are generalized terminals. Likewise, all the verteces
in an edgeless graph are generalized terminals.

2.1 Layering

We use the generalized terminal verteces to represent an essential graph as a
layered graph. The last layer consists of the terminals of the given graph. We
remove the terminals and determine the next layer by the terminals of the
remaining subgraph. We continue iteratively till the remaining graph is empty.
The layers introduce a partial order on the verteces.

The number of layers and the according number of verteces within each of
the layers is called the layering of the graph. It is written λ = (λ1, λ2, . . . , λm),
where m denotes the number of layers and λi the number of verteces in layer i.
Each layering is a subdivision the sequence of n elements (see Table 1).

An easy and efficient way to generate the subdivisions is to work with a
binary encoding of the elements in each subset. The full set of elements corre-
sponds to the bit representation of 2n − 1, where n is the number of verteces.
Throughout we number the verteces from 0 instead of 1.

The number of subdivisions with m subsets is obtained by the binomial
coefficients

(
n
m

)
. The total number of different subdivisions is

n∑
m=0

(
n

m

)
= 2n−1 (1)

A layering is not admissible if each of its first two layers contains one element
only. In this case the first element would be a generalized terminal node, and
this contradicts the definition of layers. Layers of the type λ = (1, 1, . . . , λm) are
non-admissible. The number of layerings that are excluded by this constraint is
2n−1−2. We thus obtain the following result.



Structuring essential graphs 115

Binary encoding Subdivision Number of layers
1 31 {0, 1, 2, 3, 4} 1
2 15, 16 {0, 1, 2, 3}, {4} 2
3 7, 24 {0, 1, 2}, {3, 4} 2
4 7, 8, 16 {0, 1, 2}, {3}, {4} 3
5 3, 28 {0, 1}, {2, 3, 4} 2
6 3, 12, 16 {0, 1}, {2, 3}, {4} 3
7 3, 4, 24 {0, 1}, {2}, {3, 4} 3
8 3, 4, 8, 16 {0, 1}, {2}, {3}, {4} 4
9 1, 30 {0}, {1, 2, 3, 4} 2
10 1, 14, 16 {0}, {1, 2, 3}, {4} 3
11 1, 6, 24 {0}, {1, 2}, {3, 4} 3
12 1, 6, 8, 16 {0}, {1, 2}, {3}, {4} 4
13 1, 2, 28 {0}, {1}, {2, 3, 4} 3
14 1, 2, 12, 16 {0}, {1}, {2, 3}, {4} 4
15 1, 2, 4, 24 {0}, {1}, {2}, {3, 4} 4
16 1, 2, 4, 8, 16 {0}, {1}, {2}, {3}, {4} 5

Table 1: The 12 admissible layering for n = 5 (row 1 to 12) and the four
non-admissible structures (row 13 to 16)

Theorem 1 (Number of layerings) The number of layerings of an essential
graph with n nodes is

ℓ = 3 · 2n−3 . (2)

3 Symmetry

Using the layering of an essential graph we introduce the following definition of
symmetric verteces.

Definition 2 (Symmetry) Two verteces of an essential graph are symmetric

1. if they both are in the same layer and have the same number of neighbors
in this layer, and

2. if all their neighbors are pairwise symmetric.

Sets of mutually symmetric verteces build symmetry classes, σ = (σ1, σ2, . . . , σq),
where σ1, σ2, . . . , σq denote the cardinalities of the classes. The classes of sym-
metric verteces are used to determine the number of possible labelings of a given
essential graph.

Theorem 2 (Number of labelings of an essential graph) The number of
labelings of an essential graph with q symmetry classes with cardinalities σ1, . . . , σq

is
L =

n!
σ1! σ2! · · ·σq!

. (3)

If there are no symmetries, then there are n! different labelings. If σ1 of them
are indistinguishable, then there are σ1! permutations that count only as one
pattern so that there are only n!

σ1!
distinguishable labelings etc. for the remaining

symmetry classes.
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0 1 2 3 4 5 6 7
0
1 28
2 27 14
3 9 26 25
4 8 24 23 13
5 7 22 21 12 11
6 2 6 5 20 19 18
7 1 4 3 17 16 15 10

Table 2: Ranks of the cells of an adjacency matrix with layering λ = (1, 2, 3, 2)

4 Representatives

A set of Markov equivalent Bayesian networks may be characterised by select-
ing just one representative. It represents its equivalance class. We define the
representative by the order of the verteces. The order between the layers is
fixed. The order within the layers needs is free. The adjacency matrix (with its
0/1 entries) may be conceived as one big binary number. We select the repre-
sentative by the maximum of this binary number. All n! permutations would
be needed to find the maximum order by brute force methods. The layers re-
duce the computations to within-layer permutations. But we will improve the
procedure much further by exploiting the layering and the symmetries. The
advantage of the use of such structural properties is that they will enable us to
enumerate interesting subclasses of models.

We assign a rank rij to each cell in the adjacency matrix, 1 ≤ rij ≤ n(n −
1)/2, and take the sum of 2rij values as our criterion,

C =
n−1∑
i=1

i−1∑
j=0

2rij . (4)

The integer C encodes the binary number that corresponds to the adjacency
matrix. Table 2 shows a matrix for the layering λ = (1, 2, 3, 2).

Which cell of the adjacency matrix obtains which rank is our choice. We
assign the highest ranks to the cells that correspond to the edges between two
neighboring layers. These edges determine the layering. If all other edges are
removed from the graph the layering does not change. Moreover, there is a
minimum assignment of edges that defines the layering. All edges in this sub-
structure connect layers with distance d = 1. Edges at the beginning of the
layers obtain the highest ranks.

The second series of ranks is assigned to within-layer edges. They build a
band along the diagonal of the adjacency matrix and have the layer distance
d = 0. Finally, we assign ranks to cells with distances d = 2, 3 etc. up to
the largest distance between the layers. The cell in the lower left corner has
always rank 1. The powers of 2 criterion can always be expressed by a specific
lexicographical ordering.
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5 Backbone

To investigate the unlabeled structures we introduce the concept of a backbone.

Definition 3 (Backbone) Let G be an essential graph with the layer structure
λ. A subgraph of G that is induced by the set of those edges that connect verteces
in two adjacent layers, is called a backbone of G.

Figure 3 shows the twenty backbones for n = 5. All edges in the backbone are
directed edges, with one exception: edges between the first and the second layer
may be directed or undirected. Panel (a) of Figure 4 shows an example. For
n ≥ 8 the backbone may consist of several components.

5.0.1 Minimal backbone

Each layering induces a minimal backbone. The minimal backbone is used in
an algorithm that generates all essential graphs with a given layer structure.
In the adjacency matrix the edges connecting two layers build a rectangular
submatrix, Lu × Lv, where Lv is the parent and Lu, u > v, the child layer. We
call such a submatrix a tableau and denote it by Tuv. For d > 0 each tableau
corresponds to a bipartite graph.

Two successive layers impose a minimum pattern of 1s in the tableau or
edges in the graph, respectively. Each vertex in a row, vi, must be a generalised
terminal. It must get at least one link from the preceding layer. Likewise, each
vertex in a column must have at least one link to the next layer. Otherwise
it would be unconnected and be a generalised terminal belonging to the next
layer. We have seen that the first two layers are special. We have the following
properties.

Properties 1 (Minimal backbone) A minimal backbone is characterised by
the following lexicographical order:

1. In the case of non-initial layers:

(a) If Tuv, u = 3, . . . ,m, v = u − 1, is quadratic (λu = λv), then the
minimum assignment has 1s in the main diagonal and 0s in all other
entries.

(b) If Tuv is non-quadratic (λu ̸= λv), then the minimum assignment has
1s in the main diagonal and, in addition, λv−λu (λu−λv) 1s in the
first row (in the first column).

2. In the case of initial layers: If Tuv, u = 2, . . . , m, v = 1, then for each 1
there is a second 1 in the same row or the same column and the tableau is
the lexicographically weakest among all tableaux with this property.

Here are three examples of minimum non-initial backbone tableaux:

 1 0 0
0 1 0
0 0 1

 1 1 1 0 0
0 0 0 1 0
0 0 0 0 1




1 0 0
1 0 0
1 0 0
0 1 0
0 0 1
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Figure 3: Backbones for n = 5; {b, c, d, e}, {g, h, i, j}, {k, l}, and {q, r, s} have
the same layering; e, j, l, and s are their minimal backbones

The rows and columns are lexicographically ordered (top ≥ down, left ≥ right).
Because of the vee/wedge condition the minimum assignment for T2,1 is different.
Each 1 in the matrix must have a second 1 in the same row or in the same column
and the assignment must be a lexicographical minimum. Here three examples
of minimum initial backbone tableaux:

 1 1 0
1 0 1
0 1 0

 1 1 1 0 0
1 0 0 1 0
0 1 0 0 1




1 1 0
1 0 1
1 0 0
0 1 0
0 0 1


Again, the rows and columns are lexicographically ordered. In addition in the
first layer each vertex must be the origin of two or more diverging edges, or it
must be the origin of an edge that converges with other edges in the second
layer. Each vertex must be part of a vee or a wedge. Otherwise it would be a
generalised terminal and not bee in first layer.

5.1 Backbone criteria

All possible backbones are obtained by replacing the 0s in the tableaux by 1s.
The minimal backbones are a good starting point. It would not be correct,
though, to fill in 1s for 0s in all possible combinations. We have to test each
possible tableau by the following backbone criteria:

Properties 2 (Backbone) An adjacency matrix represents a backbone struc-
ture iff all its tableaux with d = 1 have the following properties:

1. All column and row sums are > 0.

2. The column and row sums are weakly decreasing top ≥ down and left ≥
right.

3. If two or more rows have equal sums, then they are weakly lexicographically
ordered top down.

4. In the first layer each node is a member of a vee or a wedge, i.e., λ =
(1, 1, . . .) layerings are non-admissible.
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These criteria are used to generate all possible backbones. Table 3 shows
counts up to n = 12 verteces. We emphasise that the counts are much smaller
than the counts for all possible models. For model learning it seems possible to
search for the best fitting backbone(s) or minimal backbone(s). A hierarchical
search method mays often be reasonable because “direct causes” usually are
more interesting than “long distance causes” or undirected within-layer connec-
tions.

n Backbones n Backbones
4 6 9 4.694
5 20 10 23.577
6 69 11 133.626
7 256 12 868.034
8 1.042

Table 3: Number of backbone structures for essential graphs with n verteces.

5.2 Within-layer edges

We next consider the edges connecting verteces within a layer. In the adjacency
matrix the within-layer edges are located in a band of triangles along the main
diagonal. These edges are also constrained by the layer structure.

Theorem 3 (Within-layer edges) Within each layer all edges belong to com-
pletely connected components and are undirected.

If there would be a vee-structure of the type X → Y ← Z, then the vertex Y
would be a generalized terminal and belong to the next layer. Correspondingly,
if there would be a wedge-structure of the type X ← Y → Z, then X and Z
would be generalized terminals and belong to the next layer. Only if X, Y and
Z are completely interconnected, are they generalized terminals and belong to
the same layer. This holds of course also for more than three verteces. Thus,
the within-layer verteces must have no links at all (in this case each isolated
vertex is an extreme form of a complete component) or they must belong to a
completety connected component. As a consequence, all edges within one layer
are undirected.

The components build a partition of the verteces in a layer. The number of
partitions of k is denoted by p(k). It may be calculated by an algorithm given,
e.g., in [2]. In a compute program it is more efficient to store the numbers (see
Table 4) in an array. We combine the number of layerings and the number of
partitions within each layer to obtain the number of within-layer structures Nw.

Theorem 4 (Number of within-layer structures) The number of within-
layer structures in all layerings is

Nw =
n−1∑
k=0

(
n

k

)
p(k) . (5)

In addition, we combine the enumeration of the backbones with the formula of
within-layer structures to obtain the counts for n = 5 shown in Table 5. These
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k p(k) k p(k) k p(k) k p(k)
1 1 6 11 11 56 16 231
2 2 7 15 12 77 17 297
3 3 8 22 13 101 18 385
4 5 9 30 14 135 19 490
5 7 10 42 15 176 20 627

Table 4: Number of partitions up to n = 20. Taken from Andrews [2, Table
14.1]

Partition Nbr of Nbr of within- Total
Backbones layer patterns

1 {0, 1, 2, 3, 4} - 1 1
2 {0, 1, 2, 3}, {4} 1 5× 1 4
3 {0, 1, 2}, {3, 4} 4 3× 2 16
4 {0, 1, 2}, {3}, {4} 1 3× 1× 1 8
5 {0, 1}, {2, 3, 4} 4 2× 3 14
6 {0, 1}, {2, 3}, {4} 2 2× 2× 1 18
7 {0, 1}, {2}, {3, 4} 1 2× 1× 2 14
8 {0, 1}, {2}, {3}, {4} 1 2× 1× 1× 1 12
9 {0}, {1, 2, 3, 4} 1 1× 5 4
10 {0}, {1, 2, 3}, {4} 1 1× 3× 1 6
11 {0}, {1, 2}, {3, 4} 3 1× 2× 2 12
12 {0}, {1, 2}, {3}, {4} 2 1× 2× 1× 1 10

119

Table 5: Number of one-component structures, n = 5, with parents or children
in the previous or next layer (d = 1) and with links within the same layer
(d = 0). Row 1 corresponds to the complete graph.

counts contain all models with d = 1 (backbones) and d = 0 (within-layer
components).

5.3 Long distance edges

We procede to edges which connect verteces in non-adjacent layers, i.e., edges
with layer distance d > 1. All these edges are directed. Lexicographical order is
used to break the symmetries (as defined in definition 2) in long distance edges.

If a graph has m layers, we considere tableaux with parents in layer Lk and
their children in Lk+d, d = 2, . . . ,m−2. In the adjacency matrix these tableaux
build a band of rectangles parallel to the main diagonal with distance d.

Maximization seems to require simultaneous lex ordering of rows and columns.
This is not true. We consider tableaux with symmetric parents and symmetric
children only.

We test the following long-distance criteria:

Properties 3 (Long-distance) Long-distance symmetries are broken by lex
ordering.
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Figure 4: (a) Backbone with symmetry classes {A,B, C, D}, {E, F}, and
{G,H}. (b) Example of admissible arcs from layer 1 to layer 3.

1. Find the symmetries in the adjacency matrix above the current row i (but
including the backbone, the within-layer edges, and already inserted long-
distance edges),

2. If there are two (or more) symmetric verteces in the input layer of vertex
vi (row i), say vj and vk (two symmetric columns), then aij ≥ aik.

Finding the symmetries for each row is computationally expensive.
There is a special class of models for which these criteria hold. All tableaux

which have the form of a Young tableau fulfill these requirements. Here the first
child gets inputs from the first p parents, the second child gets input from the
first q parents, where q ≤ p, and so on. The first elements of a symmetry class
may always be set to 1.

We have written a C program that combines the steps described in the
previous sections. The program enumerates the essential graphs for a given
number of verteces.

6 Discussion

The structure of graphical models is extracted from (case I) experts or from (case
II) statistical data. The two alternatives reflect two extreme attitudes toward
the introduction of prior information. In the first case an expert assesses the
qualitative structure of the model. The data are only used to estimate the
numerical probabilities. This imposes a heavy load upon the prior knowledge
of the expert. In the second alternative “no” prior knowledge is invoked. This
is done by giving each possible structure the same plausibility.

Using a uniform distribution over the set of Bayesian networks is problematic
because Markov equivalent models lead to multiple counts. Bayesian networks
with many equivalent models obtain higher probabilities so that the distribution
is in fact not uniform. Multiple counts lead to incoherence.

Case I and case II are extreme endpoints on a continuum. We usually have
some knowledge about the structure of the model. We often think that the
variables we investigate belong to one component. We may start our analysis by
testing this assumption. We next may investigate the layering of the model. The
backbones are important as we often have rather strong intuitions about direct
influences. We note that edges linking the first two layers a special. They must
satisfy the vee/wedge condition. In the wedge condition they contain undirected



122 G. D. KLEITER

edges. In a stepwise procedure it is reasonable to start at the “beginning” of the
backbone and add layers one by one. Darwiche [3, p. 456ff.] discusses similar
steps fitting tree structures.

Adding undirected edges is the next step. Finally, long distance influences
may be the last step in the analysis. Such a stepwise method leads to a hierachi-
cal analysis. Both, the prior distribution and the learning of model structures
is guided by top-down procedures, starting with direct “causes” and proceding
to more indirect long distance dependencies.
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Abstract

Investigated are Boolean-valued possibilistic distributions taking their
values in the power-set of all sets of positive integers. However, some of
these possibility degrees may be known only fragmentally in the sense that
for the characteristic sequence (identifier) of the set-value in question not
all members of this sequence are known. A simple possibilistic entropy
function is defined and completions of fragments of possibility degrees
with respect to the classical (optimistic or global, in a sense) principle of
maximal entropy as well as with respect to some weakened (local or pes-
simistic, in a sense) versions of this principle are introduced and analyzed.

1 Introduction and Motivation

The notions of possibilistic distribution and possibilistic measure were conceived
by L. A. Zadeh in [13] rather as an alternative description of the notions from
the theory of fuzzy sets in terms syntactically more similar to those used in mea-
sure theory in general and in probability theory in particular. Consequently, also
the shift from real-valued fuzzy sets to their non-numerical and, in particular,
lattice-valued modifications, has been taken as an inspiration for the investi-
gation of lattice-valued possibilistic distributions and measures, i.e., mappings
ascribing to elementary events and their sets values from a complete lattice, so
quantifying the degree of possibility ascribed to this element or set. The reader
should consult [5], the excellent monograph [2], or some other relevant source
when also the reasons leading to the choice of complete lattice as the structure
over uncertainty (possibility) degrees are analyzed in more detail [3].

In this paper we will investigate, which of the properties possessed by lattice-
valued possibilistic distributions and measures remain (or do not remain) to be
valid, if the conditions imposed on the structure of values of possibility de-
grees are weakened (e.g., in [9] we analyzed the case when this structure defines
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just a lattice, i.e., not necessary a complete one). Namely, in what follows, we
analyze Boolean-valued possibilistic distributions and measures such that pos-
sibility degrees are quantified by sets of positive integers. Hence, possibilistic
distributions will be defined by mappings π which take a nonempty space Ω
into the power-set P(N ) over the set N = {1, 2, . . .} of positive integers and
such that

∪
ω∈Ω π(ω) = N = {1, 2, . . .} holds. However, our situation will be

put into serious troubles by the assumption that the values π(ω) are not, in
general, completely known or identifiable. Replacing each A ⊂ N by its iden-
tifier (characteristic function) χ(A) : N → {0, 1}, we have to admit that for
some ω ∈ Ω and some i ∈ N the values χ(π(ω)) (i) are not known and must be
replaced by some abstract auxiliary symbol λ. Hence, instead of Boolean-valued
(⟨P(N ),⊆⟩-valued, more precisely) mapping π : Ω → {0, 1}∞ we have at hand
just a fragment of π defined by a mapping π∗ : Ω → {0, 1, λ}∞.

Inspired by the classical Shannon entropy function (cf. [6], e.g.), and replac-
ing the integration with respect to probability measure by Sugeno integral, we
arrive at a very simple possibilistic entropy function and we prove easily that
the completion of sequences from {0, 1, λ}∞ by replacing all the occurrences of
λ by 1 meets the principle of maximum possibilistic entropy function imposed
on the mappings from {0, 1, λ}∞ to {0, 1}∞. Applying to these mappings some
“more pessimistic” or “safety first” demands, we propose and analyze mappings
{0, 1, λ}∞ → {0, 1}∞ such that occurrences of λ are replaced by 1 without
touching the occurrences of 0 and 1 in the original {0, 1, λ}∞-sequence only if
the set of all occurrences of λ meets some restrictions, e.g., the set of such oc-
currences in “small enough”, they are localized “close to each other”, the set of
all occurrences of λ can be covered by a “small” or “easy to define” subset of
N = {1, 2, . . .}, etc., cf. below for more detail.

The paper is written on an almost self-explanatory level, just some rather
elementary preliminaries on partial orderings, lattices, Boolean algebras and
some other structures are assumed; the reader may consult [1, 4] or [11] (or
some more recent textbook or monograph) for these sakes.

2 Lattice-Valued Entropy Functions and the
Principle of Maximum Uncertainty

Let us propose, given a mapping πT : Ω → {0, 1, λ}∞, a method how to embed
this mapping into {0, 1}∞, in other terms, how to replace all the occurrences of
λ in {πT (ω) : ω ∈ Ω} by 0 or 1 in a way which could be taken as optimal ac-
cording to a reasonable criterion. As such a criterion we apply a lattice-valued
modification of the principle of maximum entropy (in the case of probability
measures) or the principle of maximum uncertainty (in the case of other nu-
merical quantifications of uncertainty). Cf. [6] as an excellent survey of works
dealing with various models of uncertainty quantification and processing.

Let ≤0 be the partial ordering on {0, 1}∞ defined in such a way that for
⟨x1, x2, . . .⟩, ⟨y1, y2, . . .⟩ ∈ {0, 1}∞, ⟨x1, x2, . . .⟩ ≤0 ⟨y1, y2, . . .⟩ holds iff xi ≤
yi holds for each i ∈ N and 0 < 1 holds on {0, 1}. The binary relation ≤0

obviously meets the conditions imposed on partial ordering and ⟨{0, 1}∞,≤0

⟩ defines a complete lattice on {0, 1}∞. The explicit formulas for supremum
(
∨0) and infimum (

∧0) operations induced by ≤0 on {0, 1}∞ are worth being
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introduced explicitly. Writing x = ⟨(x)1, (x)2, . . .⟩ for x ∈ {0, 1}∞, we obtain,
for each ∅ ̸= B ⊂ {0, 1}∞, that

∨0B =
0∨

x∈B

x =

⟨ ∨
x∈B

(x)i

⟩∞

i=1

, (2.1)

∧0B =
0∧

x∈B

x =

⟨ ∧
x∈B

(x)i

⟩∞

i=1

, (2.2)

where ∨ and ∧ denotes the supremum and infimum operation on {0, 1}, induced
by the relation 0 < 1.

A similar formalized structure over the space {0, 1, λ}∞ of infinite ternary
sequences may be conceived as follows. Let ≤ be the linear ordering on {0, 1, λ},
completely defined by the relation 0 < λ < 1. Partial ordering ≤T on {0, 1, λ}∞
is defined so that, for each x = ⟨x1, x2, . . .⟩, y = ⟨y1, y2, . . .⟩ ∈ {0, 1, λ}∞, x ≤T y
holds iff xi ≤ yi is valid for each i ∈ N = {1, 2, . . .}. The pair ⟨{0, 1, λ}∞,≤T ⟩
obviously defines a complete lattice over {0, 1⟨}∞, hence, supremum

∨T and
infimum

∧T operations are defined for each ∅ ⊂ {0, 1λ}∞ and their explicit
definitions are identical with (2.1) and (2.2), just keeping in mind that

∨
x∈B(x)i

and
∧

x∈B(x)i are defined over the set {0, 1, λ}, not only over {0, 1} as it is the
case in (2.1) and (2.2).

When seeking for a lattice-valued modification of an entropy or uncertainty
function applicable to possibilistic distributions π : Ω → {0, 1}∞ we take inspi-
ration from the classical Shannon entropy function H. Given a finite or countable
space Ω = {ω1, ω2, . . .} and a probability distribution p on Ω, i.e., p : Ω → [0, 1]
is such that Σ∞

i=1p(ωi) = 1, then Shannon entropy H of p is defined by

H(p) = −
∞∑

i=1

pi log2(pi) =
∞∑

i=1

pi log2(1/pi) =
∑
ω∈Ω

p(ω) log2(1/p(ω)). (2.3)

Hence, H(p) is defined as the expected value of the decreasing function log2(1/p(ω))
of p(ω). Replacing this function by another nonincreasing function of p(ω),
namely by the function 1−p(ω), we arrive at the function

∑
ω∈Ω p(ω)P (Ω−{ω}),

where P is the probability measure on P(Ω) induced by p (cf. [10] and [12] for
more detail). In order to shift our model from probability to possibility the-
ory let us replace P (Ω − {ω}) by Π(Ω − {ω}) =

∨
ω0∈Ω,ω0 ̸=ω π(ω0),

∑
ω∈Ω by∨0

ω∈Ω, and product by infimum ∧0 in the complete lattice ⟨{0, 1}∞,≤0⟩, so that
we arrive at the Sugeno integral (cf. [2], [8]) ascribing to ⟨{0, 1}∞,≤0⟩-valued
possibilistic distribution π on Ω the entropy or uncertainty value

I(π) =
0∨

ω∈Ω

[π(ω) ∧0 Π(Ω − {ω})]. (2.4)

This quantification of uncertainty is not too fine or flexible when I(π) = 1∞

is the case. Indeed, if π(ω1) = π(ω2) = 1∞ for ω1, ω2 ∈ Ω, ω1 ̸= ω2, then for
each ω ∈ Ω either ω1 or ω2 is in Ω − {ω}, so that Π(Ω − {ω}) = 1∞ and

I(π) =
0∨

ω∈Ω

[π(ω) ∧0 Π(Ω − {ω}) =
0∨

ω∈Ω

π(ω) = 1∞ (2.5)
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holds (a refinement of this lattice-valued entropy function can be found in [7]).
Nevertheless, let us apply I(π) as our first attempt to apply the maximum
entropy principle when completing the missing items in the πT : Ω → {0, 1, λ}∞
mappings.

Lemma 2.1 Let π1, π2 : Ω → {0, 1}∞ be two mappings, let π1(ω) ≤0 π2(ω) hold
for each ω ∈ Ω. If π1 defines a ⟨{0, 1}∞,≤0⟩-valued possibilistic distribution on
Ω, the same is the case for π2 and the relation I(π1) ≤0 I(π2) holds.

Proof: If
∨∞

ω∈Ω π1(ω) = 1∞ and π1(ω) ≤0 π2(ω) for each ω ∈ Ω holds, then∨0
ω∈Ω π2(ω) = 1∞ follows, so that π2 defines a ⟨{0, 1}∞,≤0⟩-valued possibilistic

distribution on Ω. For each A ⊂ Ω, Π1(A) =
∨0

ω∈A π1(ω) ≤
∨0

ω∈A π2(ω) =
Π2(A) holds, in particular, Π1(Ω − {ω}) ≤0 Π2(Ω − {ω}) holds for each ω ∈ Ω,
so that the inequality

I(π1) =
0∨

ω∈Ω

[π1(ω)∧0Π1(Ω−{ω})] ≤0

0∨
ω∈Ω

[π2(ω)∧0Π2(Ω−{ω})] = I(π2) (2.6)

follows and the assertion is proved. �

Let x ∈ {0, 1, λ}∞ be an infinite ternary sequence possibly containing some
occurrence(s) of λ, let x+ ∈ {0, 1} be defined by replacing all λ’s in x by 1.
Obviously, for each y ∈ {0, 1}∞ such that (y)i = (x)i supposing that (x)i ∈
{0, 1} holds, the inequality y ≤0 x+ follows. Hence, given a ⟨{0, 1, λ}∞,≤T ⟩-
valued possibilistic distribution π on Ω, and setting π0(ω) = (π(ω))+ for each
ω ∈ Ω, we obtain easily that I(π∗) ≤0 I(π+) holds for each ⟨{0, 1}∞,≤0⟩-valued
possibilistic distribution π∗ on Ω such that (π∗(ω))i = (π(ω))i for each ω ∈ Ω
and each i ∈ N = {1, 2, . . .}, for which π(ω))i ̸= λ.

3 Local and Global Principle of Maximum
Uncertainty

Lemma 2.1 offers the most simple way how to embed sequences from {0, 1, λ}∞
into {0, 1}∞ according to the maximum entropy or uncertainty principle – to
replace each sequence x ∈ {0, 1, λ} by the binary sequence x+. Hence, all the
values 0 and 1 in x are taken as sure and reliable. Let us introduce, in this
section a generalized version of this approach.

Let S be a system of subsets of N = {1, 2, . . .}, let x = ⟨x1, x2, . . .⟩ ∈
{0, 1, λ}∞, let F (x) = {i ∈ N : xi = λ}. Then φ(S)(x) is the binary sequence
from {0, 1}∞ defined in this way: if there exists S ∈ S such that F (x) ⊂ S
holds, then φ(S)(x) = x+, otherwise φ(S)(x) = 1∞. Let us emphasize that the
set F (x) must be covered by one set S ∈ S in order to apply the transformation
φ(S)(x) = x+.

Let us prove that the sequence φ(S)(x) is defined uniquely, even if there
may be two or more sets in S covering the set F (x). Indeed, if S0 = {S0 ∈ S :
F (x) ⊂ S0}, then F (x) ⊂

∩
S0 holds. Hence, xi = 0 or 1 for every S0 ∈ S0 and

every i ∈ S0 −
∩

S0, so that (φ(S)(x))i = xi, if i ∈ S −
∩

S0(φ(S)(x))i = 1, if
i ∈

∩
S0 holds, no matter which S ∈ S, F (x) ⊂ S is applied. Consequently, if
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there are sets S1, S2 ∈ S, S1 ⊂ S2, S1 ̸= S2, then φ(S −{S1})(x) = φ(S)(x) for
each x ∈ {0, 1, λ}∞.

An interpretation behind the mapping φ(S) : {0, 1, λ}∞ → {0, 1}∞ may
read as follows. Investigating a sequence π(ω) = ⟨(π(ω))i⟩∞i=1⟩ with some miss-
ing components, we can separate two cases. Either we know, because of some
preliminary knowledge concerning the source producing the data in question,
that all indices i ∈ N for which (π(ω))i is not known are of such kind that
they do not influence correctness of the values (π(ω))j for indices out of F (x),
i.e., for indices for which (π(ω))j is 0 or 1. Consequently, when approximating
the missing values under the principle of maximum uncertainty, we may limit
ourselves just to the missing values keeping the known (i.e., 0 − 1 values) in-
touched. It is just the case when the set of indices with missing values is covered
by some set from S. On the other side, for some indices not coverable by a set
from S the failure to identity the value (π(ω))i may announce a possible er-
ror when identifying the values (π(ω))j for some other j ∈ N , even when we
obtained, somehow, that (π(ω))j is 0 or 1. Hence, all the processed sequence
π(ω) ∈ {0, 1, λ}∞ is doubtful and does not contain any sure information about
the original binary sequence. Consequently, all the sequences from {0, 1}∞ must
be re-considered when approximating the sequence from {0, 1, λ}∞, hence, it is
only the sequence 1∞ = ⟨1, 1, . . .⟩ ∈ {0, 1}∞ which maximizes the entropy I(π)
for π ranging over {0, 1}∞. So, the application of the mapping φ(S) when pro-
jecting {0, 1, λ}∞ into {0, 1}∞ may be taken as a one step more pessimistic
approach when compared with the simple principle of maximum uncertainty
consisting in the substitution of x+ for each x ∈ {0, 1, λ}∞.

Let us introduce some examples when the idea beyond the mapping φ(S)
may become perhaps more intuitive.

(i) Let S = ∅. Then, for each x ∈ {0, 1, λ}∞ and no matter which the set
F (x) = {i ∈ N : (x)i = λ} may be, F (x) cannot be covered by a set from
S simply because there are no sets S (it is the case also when F (x) = ∅).
Hence, (φ(S))(x) = 1∞ for every x ∈ {0, 1, λ}∞ and I((φ(S))π) = 1∞

(let us recall that I denotes the lattice-valued possibilistic entropy function
defined by (2.4)).

(ii) Let S = {∅}. Then F (x) ⊂ S ∈ S is the case iff F (x) = ∅, hence, iff
x ∈ {0, 1}∞ holds. So, (φ(S))(x) = x, if x ∈ {0, 1}∞, (φ(S))(x) =
1∞ otherwise. Consequently, if Ω contains at least two elements and if
both the sequences π(ω1), π(ω2) contain at least one occurrence of λ, then
I((φ(S))π) = 1∞.

(iii) Let S = {N},N = {1, 2 . . .}. Then, for each x = {0, 1, λ}∞, F (x) ⊂
N ∈ S holds, so that (φ(S))(x) = x+, i.e., all occurrences of λ in x
are replaced by 1, leaving the 0- and 1-values untouched. This is the
most simple maximization of the entropy function I as briefly re-called in
Section 2.

(iv) Let S = {A}, ∅ ̸= A ⊂ N , A ̸= N . Then (φ(S))(x) = x+, if each i such
that (x)i = λ belongs to A, (φ(S))(x) = 1∞ otherwise. Hence, only the
values with dimensions in A may be approximated by the local application
of the maximum uncertainty principle. If some value (x)i with i outside
A is missing, all the sequence x ∈ {0, 1, λ}∞ is doubtful and 1∞ is its only
sure upper bound.
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(v) Let R ∈ N , let S = {A ⊂ N : ∥A∥ ≤ R}, ∥A∥ stands for the cardinality of
A. Then only the sequences x ∈ {0, 1, λ}∞ where the number of unknown
values does not exceed R can be approximated locally, i.e., by x+, setting
(φ(S))(x) = 1∞ otherwise. Let us note explicitly that our model of ap-
proximation of x does not admit a repeated application of the operation
φ(S) to various R-tuples of indices from N .

(vi) Let S = Pf (N ) = {A ⊂ N : ∥A∥ < ∞}. Then only the sequences x ∈
{0, 1, λ}∞ with a finite number of occurrences of λ can be approximated
locally, i.e., (φ(S))(x) = x+. Let us note that the case S = Pf (N ) differs
from (iii), which is equivalent to S = P(N ).
In what follows, the mapping φ(S) : {0, 1, λ}∞ → {0, 1}∞ will be called
the S-embedding of {0, 1, λ}∞ into {0, 1}∞.

4 Some Results on S-Embeddings

Given S ⊂ P(N ) and x = {0, 1, λ}∞, denote by F (x) ⊂ {0, 1}∞ the following
set of binary sequences. If there exists S ∈ S such that F (x) ⊂ S holds, then

F (x) = {y ∈ {0, 1}∞ : (y)i = (x)i for each i ∈ N such that (x)i ̸= λ}, (4.1)

G(x) = {0, 1}∞ otherwise, i.e., if F (x) cannot be covered by some S ∈ S. When
transforming x into (φ(S))(x) we observe easily that, for each i ∈ N , either
((φ(S)(x))i = (x)i, or ((φ(S))(x))i = 1. Hence, for each S ⊂ P(N ), each x ∈
{0, 1, λ}∞, and each y ∈ G(x) the inequality y ≤T (φ(S))(x) holds, the equality
being the case iff x ∈ {0, 1}∞ holds. Moreover, for the same S and x, if (x)i = λ,
then ((φ(S)(x))i = 1 holds, so that x+ ≤0 (φ(S))(x) follows, here x+ results
from x when replacing all occurrences of λ in x by 1. However, as shown above
(Section 3, (iii)), the binary sequence x+ can be also defined by (φ({N}))(x),
so that we arrive at the conclusion that (φ({N}))(x) ≤0 (φ(S))(x) holds for
each S ⊂ P(N ) and each x ∈ {0, 1, λ}∞. The possibilistic entropy function I,
defined by (2.4), is defined only for binary sequences, so that we cannot directly
define I(πT ) for {0, 1, λ}∞-valued possibilistic distribution πT and compare it
with the entropy value

I((φ(S))(π)) = I({(φ(S))(π(ω)) : ω ∈ Ω}). (4.2)

So, we will compare the values I((φ(S))(π)) and I((φ({N}))(π)).

Theorem 4.1 Let S ⊂ P(N ), let π be a {0, 1, λ}∞-valued possibilistic distri-
bution on a nonempty set Ω, let I be the possibilistic entropy function defined
by (2.4). Then the inequality

I((φ({N}))(π)) ≤0 I((φ(S))(π)) (4.3)

holds.

Proof: Both the systems (φ({N}))(π) = {(φ({N}))(π(ω)) : ω ∈ Ω} and (φ(S))
(π) = {(φ(S))(π(ω)) : ω ∈ Ω} define {0, 1}∞-valued possibilistic distributions
on Ω and the relation (φ({N}))(π(ω)) ≤0 (φ(S))(π(ω)) holds for each ω ∈ Ω.
Hence, denoting (φ({N}))(π) by π1 : (φ(S))(π) by π2, and applying Lemma 2.1,
we complete the proof of the assertion. �



Completions of fragments of lattice-valued possibilistic distributions. . . 129

Let S1,S2 ⊂ P(N ) be systems of subsets N . We say that S2 is covered by
S1(S2 ≪ S1, in symbols), if each set S2 ∈ S2 is covered by some S1 ∈ S1, i.e.,
if there exists, for each S2 ∈ S2, a set S1 ∈ S1 such that S2 ⊂ S1 holds. E.g.,
if S1 = {N}, then S2 ≪ S1 holds for each S2 ⊂ P(N ), on the other side, if
S1 = {∅}, then S2 ≪ S1 holds iff S2 = S1 or S2 = ∅. Theorem 4.1 can be
generalized as follows.

Theorem 4.2 Let S1,S2 be systems of subsets of N such that S2 is covered by
S1, let πT be a {0, 1, λ}∞-valued possibilistic distribution on a nonempty set Ω,
let I be the possibilistic entropy function defined by (2.4). Then the inequality

I((φ(S1))(π)) ≤0 I((φ(S2))(π)) (4.4)

holds.

Proof: As in the proof of Theorem 4.1, we have to prove that the inequality
(φ(S1))(π(ω)) ≤0 (φ(S2))(π(ω)) holds for each ω ∈ Ω0. As a matter of fact, the
inequality (φ(S1))(x) ≤0 (φ(S2))(x) holds for each x ∈ {0, 1, λ}∞.

Indeed, let x = ⟨(x)1, (x)2, . . .⟩, so that (x)i ∈ {0, 1, λ} for each i ∈ N .
For each such i, if F (x) = {i ∈ N : (x)i = λ} ⊂ S2 and i ∈ S2 holds for
some S2 ∈ S2, then S2 ⊂ S1 and i ∈ S1 holds for some S1 ∈ S1, so that
((φ(S2))(x))i = ((φ(S1))(x))i (= (x)i, if (x)i ̸= λ), or = 1, if (x)i = λ is the
case.

If F (x) cannot be covered by some S1 ∈ S1, then F (x) cannot be covered
by no matter which S2 ∈ S2, so that (φ(S1))(x) = (φ(S2))(x) = 1∞, hence,
((φ(S1))(x))i = ((φ(S2))(x))i = 1 for each i ∈ N trivially follows. The case
that i ∈ S2, F (x) ⊂ S2, holds for some S2 ∈ S2, but for no S1 ∈ S1 the relation
i ∈ S1, F (x) ⊂ S1 is valid, is excluded by the assumption that S2 ≪ S1 holds.

The only case for an index i ∈ N which remains to be analyzed reads that
there is S1 ∈ S1 such that F (x) ⊂ S1 and i ∈ S1 holds, but there is no S2 ∈ S2

with the property that F (x) ⊂ S2 and i ∈ S2 holds together. In this case,
however, (φ(S2))(x) = 1∞, hence, ((φ(S2))(x))i = 1, so that the inequality
((φ(S1))(x))i ≤ ((φ(S2))(x))i holds again. To conclude, the last inequality
holds for each i ∈ N , so that the inequality (φ(S1))(π(ω)) ≤0 (φ(S2))(π(ω))
holds for each ω ∈ Ω, hence, the assertion (4.4) follows. �

When introducing the relation S2 ≪ S1, we oriented the inequalities ≪
in the way keeping the consistence with the increasing value of the entropy
I((φ(S))(π)). In what follows, we will need also the inverse relation ≪R defined,
for each S1,S2 ⊂ P(N ), by the relation S2 ≪R S1 iff S1 ≪ S2 is the case. Both
the relations ≪ and ≪R obviously define partial ordering on P(N ). So, for each
S1 ⊂ P(N ) and for S2 = {N} the relation S1 ≪R S2 is valid.

Definition 4.1 A sequence {Sn}∞n=1 of subsets of P(N ) tends to cover a set
A ⊂ N ({Sn}∞n=1 →c A, in symbols), if Sn ≪R Sn+1 holds for each n = 1, 2, . . .,
and if there exists, for each finite B ⊂ A,B ̸= A, an index n0 ∈ N and a set
Sn0 ∈ Sn0 such that A ⊂ Sn0 , B ̸= Sn0 holds.

Obviously, if A is a finite subset of N , then {Sn}∞n=1 →c A is the case iff
there exists n0 ∈ N and Sn0 ∈ Sn0 such that A ⊂ Sn0 holds. On the other side,
if A is infinite, say, if A = N , then N itself need not be a member of any Sn.
E.g., if Sn = {{1, 2, . . . , n}}∞n=1 ⊂ P(N ), then {Sn}∞n=1 →c N holds.
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A sequence {xi}∞i=1, x
i ∈ {0, 1}∞ for each i ∈ N , tends to x0 ∈ {0, 1}∞,

{xi}∞i=1 → x0, in symbols, if there exists, for each K ∈ N , an index nK ∈ N
such that, for each n ≥ nK and each j ≤ K, the relation (xn)j = (x0)j holds.
Hence, for each K ∈ N , the initial segments of the length K for xj and x0 are
identical for j large enough.

Lemma 4.1 Let x ∈ {0, 1, λ}∞ be a ternary sequence, let the set F (x) = {i ∈
N : (x)i = λ} be finite, let {Sn}∞n=1 be a sequence of subsets of P(N ) which tends
to cover the set F (x). Then the sequence {(φ(Sn))(x)}∞n=1 of binary sequences
tends to x+ in the sense that (φ(Sn))(x) = x+ for each n ≥ n0 for some
n0 ∈ N .

Proof: If F (x) is finite, there exists n0 ∈ N and Sn0 ∈ Sn0 such that F (x) ⊂ Sn0

holds. Hence, according to the definition of binary sequence (φ(Sn0))(x), we
obtain that ((φ(Sn0))(x))i = (x)i ∈ {0, 1}, if i ∈ N − Sn0 holds. For i ∈ Sn0 ,
we obtain that ((φ(Sn0))(x))i = (x)i, if (x)i ̸= λ, and ((φ(Sn0))(x))i = 1, if
(x)i = λ. As may be easily observed, (φ(Sn0))(x) = x+ follows (let us recall
that x+ results from x when replacing all occurrences of λ in x by 1). As
Sn ≪ Sn+1 holds, in each Sn with n ≥ n0 there exists a set Sn covering F (x),
so that (φ(Sn))(x) = x+ holds for each n ≥ n0. Consequently, (φ(Sn))(x) tends
to x+ in the sense described in Lemma 4.1. �

Theorem 4.3 Let x = ⟨(x)1, (x)2, . . .⟩ ∈ {0, 1, λ}∞, let n ∈ N , let x[n] ∈
{0, 1, λ}∞ be defined in this way: (x[n])i = (x)i, if i ≤ n, (x[n])i = 1, if i > n
holds. Let the set F (x) be infinite, let a sequence {Sn}∞n=1 of subsets of P(N )
tend to cover the set F (x). Then there exists a sequence ⟨k(1), k(2), . . .⟩ of pos-
itive integers such that the sequence {(φ(Sk(n)))(x[n])}∞n=1 of binary sequences
tends to x+.

Proof: Obviously, the sequence {x[n]}∞n=1 tends to x for n → ∞, and for each
n ∈ N the relations F (x[n]) = F (x)∩{1, 2, . . . , n} and F (x) =

∪∞
n=1 F (x[n]) are

valid. As S(x) is infinite and each F (x[n]) is finite, i.e., each F (x[n]) is a proper
subset of F (x), there exists, for each n ∈ N , an index k(n) ∈ N and a set Sk(n) ∈
Sk(n) such that F (x[n]) ⊂ Sk(n) holds. The conditions imposed on {Sj}∞j=1 yield
that Sk(n) ⊂ Sk(n)+1 ∈ Sk(n)+1 holds for some Sk(n)+1 ⊂ N . So, for each n ∈ N
there exists k(n) ∈ N such that, for each j ≥ k(n), there exists Sj ∈ Sj with the
property F (x[n]) ⊂ Sj being valid. According to the way in which the sequence
(φ(Sj))(x[n]), j ≥ k(n), is defined, we obtain that ((φ(Sj))(x[n]))l = (x+)e for
each l ≤ n. So, the binary sequences (φ)Sk(n)))(x[n]) tend to x+ for n → ∞.

According to what we have just proved, if ⟨k(1), k(2), . . .⟩ is a sequence of
positive integers meeting the conditions of the assertion of Theorem 4.3, each
sequence ⟨m(1),m(2), . . .⟩ of positive integers such that k(n) ≤ m(n) holds for
each n ∈ N , also meets the conditions of the assertion and, for each n, s ∈ N , the
relation ((φ(Sk(n)))(x[n]))s = ((φ(Sm(n)))(x[n]))s is valid (for s > n this identity
holds trivially, so that in this case (x[n])s = 1 and this value is untouched by
no matter which S-projection from {0, 1, λ}∞ into {0, 1}∞). �

5 Conclusions

Having preferred the idea to present the introduced results together with their
more or less detailed proofs, and having been obliged to keep the constraints
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imposed on the extent of the contributions necessary for proceedings of scientific
meetings like this one, the only solution which remains is to select some from the
achieved results, leaving aside the other, perhaps also promising and interesting
ones.

What should be introduced and analyzed in more detail, in a future work,
is to replace the Boolean-like ordering ≤T on |0, 1, λ|∞ (denoted by ≤0 on
{0, 1}∞) by the lexicographical ordering ≤T on {0, 1, λ}∞. Namely, for each
x, y ∈ {0, 1, λ}∞ we define x ≤L y, if x = y, or if (x)i0 < (y)i0 holds for
i0 = min{k ∈ N : (x)k ̸= (y)k}. The relation ≤L defines a linear ordering on
{0, 1, λ}∞, ⟨{0, 1, λ}∞,≤L⟩ is a complete lattice, and, for each x, y ∈ {0, 1, λ}∞,
if x ≤T y is the case, then x ≤L y holds as well. Let us define lexicographical
entropy function IL by (2.4), just with the partial ordering ≤T and induced
operations

∨T and
∧

T replaced by ≤L,
∨L

, and
∧

L . Most results proved in
this paper and dealing with the principle of maximum entropy value I remain
to hold also for IL when replacing ≤T by ≤L during our considerations over the
values from {0, 1, λ}∞.

Another way of improving the ideas and results presented in this work con-
sists in enriching the structure of “uncertain” values, possibly taken by the
members (x)i of sequences from {0, 1, λ}∞, by more values. E.g., we may con-
sider a set 0 < λ1 < λ2 < . . . < λK < 1 of real numbers and replace the space
{0, 1, λ}∞ by the space {0, λ1, λ2, . . . , λK , 1}∞. Also this way of further research
seems to be interesting and promising.

Let us hope that we will be able to develop, in more detail, at least some of
these ideas in a future paper oriented towards the relevant field of research.
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Václav Kratochv́ıl

Institute of Information Theory and Automation

Academy of Sciences of the Czech Republic

velorex@utia.cz

Abstract

Structure of each Compositional model can be visualized by a tool
called persegram. Every persegram over a finite non-empty set of variables
N induces an independence model over N , which is a list of conditional
independence statements over N . The equivalence problem is how to char-
acterize (in graphical terms) whether all independence statements in the
model induced by persegram P are in the model induced by a second
persegram P ′ and vice versa. In the previous paper [5] indirect character-
ization of equivalence was done. We introduced three different operations
on persegrams remaining independence model which combined together
are able to generate the (whole) class of equivalent persegrams. That
characterization is indirect in the following sense: Two persegrams P, P ′

are equivalent if there exists a sequence of persegrams from P to P ′ such
that only so called IE-operations are performed to get next persegram in
the sequence.

In this paper we give the motivation and introduction for direct char-
acterization of equivalence. We have found some invariants among equiva-
lent persegrams that have to be remained. In spite of that, the final simple
direct characterization is not given. Instead we give several properties of
equivalent persegrams that could be helpful.

1 Introduction

The ability to represent and process multidimensional probability distributions
is a necessary condition for the application of probabilistic methods in Artificial
Intelligence. Among the most popular approaches are the methods based on
Graphical Markov Models, e.g., Bayesian Networks. The Compositional mod-
els are an alternative approach to Graphical Markov Models. These models
are generated by a sequence (generating sequence) of low-dimensional distri-
butions, which, composed together, create a distribution - the so called Com-
positional model. Moreover, while a model is composed together, a system of
(un)conditional independencies is simultaneously introduced by the structure of
the generating sequence.

The structure can be visualized by a tool called persegram and one can
read induced independencies directly using this tool. That is why we can say
that every persegram over a finite non-empty set of variables N induces an
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independence model over N - a list of conditional independence statements over
N . The equivalence problem is how to characterize (in graphical terms) whether
all independence statements in the model induced by persegram P are also in
the independence model induced by a second persegram P ′ and vice versa.

2 Compositional Models

A Bayesian network may be defined as a multidimensional distribution fac-
torizing with respect to an acyclic directed graph. Alternatively, it may be
defined by its graph and an appropriate system of low-dimensional (oligodimen-
sional) conditional distributions. Contrary, Compositional models are defined
as a multidimensional distribution assembled from a sequence of oligodimen-
sional unconditional distributions, with the help of operators of composition.
The main advantage of both approaches lies in the fact that oligodimensional
distributions could be easily stored in a computer memory. However, comput-
ing with a multidimensional distribution that is split into many pieces may be
exceptionally complicated. The advantage of Compositional models in com-
parison with Bayesian networks consists in the fact that compositional models
explicitly express some marginals, whose computation in a Bayesian network
may be demanding. Compositional model is assembled ,in contrast to Bayesian
network, from unconditional distributions.

2.1 Notation and Basic Properties

Throughout the paper the symbol N will denote a non-empty set of finite-valued
variables. From the next chapter on, variables will be represented by markers
of a persegram. All probability distributions of this variables will be denoted
by Greek letters (usually π, κ); thus for K ⊂ N , we consider a distribution
(a probability measure over K) π(K) which is defined for variables K. When
several distributions will be considered, we shall distinguish them by indices.
For a probability distribution π(K) and U ⊂ K we will consider a marginal
distribution π(U).

The following conventions will be used throughout the paper. Given sets
K, L ⊂ N the juxtaposition KL will denote their union K ∪ L. The following
symbols will be reserved for special subsets of N : K,R, S. The symbol U, V,W,Z
will be used for general subsets of N . The symbol |U | will be used to denote the
number of elements of a finite set U , that is, its cardinality. u, v, w, z denotes
variables as well as singletons {x}, . . .

Independence and dependence statements over N correspond to special dis-
joint triples over N . Thy sumbol ⟨U, V |Z⟩ denotes a triplet of pirwise disjoint
subsets U, V, Z of N . This notations anticipates the intended meaning: the set
of variables U is conditionally independent or dependent of the set of variables
V given the set of variables Z. This is why the third set Z is separated by
a straight line: it has a special meaning of the conditioning set. The symbol
T (N) will denote the class of all disjoint triplets over N :

T (N) = {⟨U, V |Z⟩;U, V, Z ⊆ N U ∩ V = V ∩ Z = Z ∩ U = ∅}

To describe how to compose low-dimensional distributions to get a distribu-
tion of a higher dimension we use the following operator of composition.
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Definition 2.1. For arbitrary two distributions π(K) and κ(L) their composi-
tion is given by the formula

π(K)◃ κ(L) =

{
π(K)κ(L)
κ(K∩L) if π↓K∩L ≪ κ↓K∩L,

undefined otherwise,

where the symbol π(M) ≪ κ(M) denotes that π(M) is dominated by κ(M),
which means (in the considered finite setting)

∀x ∈ ×j∈MXj ; (κ(x) = 0 =⇒ π(x) = 0).

The result of the composition (if defined) is a new distribution. We can
iteratively repeat the process of composition to obtain a multidimensional dis-
tribution - a model approximating the original distribution with corresponding
marginals. That is why these multidimensional distributions (and the whole
theory as well) are called Compositional models. To describe such a model
it is sufficient to introduce an ordered system of low-dimensional distributions
π1, π2, . . . , πn. If all compositions are defined, we call this ordered system a
generating sequence. To get a distribution represented by this sequence one has
to apply the operators from left to right:

π1 ◃ π2 ◃ π3 ◃ . . .◃ πn−1 ◃ πn = (. . . ((π1 ◃ π2)◃ π3)◃ . . .◃ πn−1)◃ πn.

From now on, we consider generating sequence π1(K1), π2(K2), . . . , πn(Kn)
which defines a distribution

π1(K1)◃ π2(K2)◃ . . .◃ πn(Kn).

Therefore, whenever distribution πi is used, we assume it is defined for vari-
ables Ki. In addition, each set Ki can be divided into two disjoint parts. We
denote them Ri and Si with the following sense:

Ri = Ki\(K1 ∪ . . . ∪ Ki−1), Si = Ki ∩ (K1 ∪ . . . ∪ Ki−1)

.
Ri denotes variables from Ki with the first appeared with respect to the

sequence (meaning from left to right). Si denotes the already used.

2.2 Graphical concepts

It is well-known that one can read conditional independence relations of a
Bayesian network from its graph. A similar technique is used in compositional
models. An appropriate tool for this is a persegram. Persegram is used to
visualize the structure of a compositional model and is defined bellow.

Definition 2.2. Persegram P of a generating sequence is a table in which rows
correspond to variables (in an arbitrary order) and columns to low-dimensional
distributions; ordering of the columns corresponds to the generating sequence
ordering. A position in the table is marked if the respective distribution is defined
for the corresponding variable. Markers for the first occurrence of each variable
(i.e., the leftmost markers in rows) are squares (we call them box-markers) and
for other occurrences there are bullets.
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Persegram P is a table of markers. Since the markers in the i-th column
highlight variables for which generating sequence is defined, we denote markers
in i-th column as Ki. Box-markers in i-th column of P are denoted like Ri

and bullets like Si. Ki = Ri ∪ Si. This notation is purposely in accordance
with notation of variable sets in generating sequences to simplify readability
and lucidity of the text.

Persegrams are usually denoted by P and if it is not specified otherwise P
corresponds to the generating sequence π1(K1), . . . , πn(Kn) where K1 ∪ . . . ∪
Kn = N . We say that P is defined over N . (i.e. P over N has n columns with
markers K1, . . . , Kn where K1 ∪ . . . ∪ Kn = N .)

To simplify the notation we will use the following symbol: Let P be a perseg-
ram over N . We introduce a function ][P : N → N, which for every variable
u ∈ N returns the index of set Ki with the first appearance of u in the perseg-
ram P. Due to the previously established notation can be said that K]u[P is a
column Ki where u ∈ Ri. In other words: ]u[P= i : u ∈ Ri.

Definition 2.3. Let P be a persegram over N and ≼P a binary relation. For
arbitrary u, v ∈ N u ≼P v if ]u[P≤]v[P . Moreover we introduce the relation ≺P :
u ≺P v ⇔ u ≼P v AND v �P u.

The following convention will be used throughout the paper: Given variables
u, v, w ∈ N and P over N , the term u, v ≺P w denotes that u ≺P w and v ≺P w.
The symbol P may be omitted, if the content is clear.

2.3 Conditional independence

Conditional independence statements over N induced by the structure of Com-
positional model can be read from its persegram. Such independence is indicated
by the absence of a trail connecting or avoiding relevant markers. It is defined
below.

Definition 2.4. Consider a persegram over N and a subset Z ⊂ N . A sequence
of markers m0, . . . , mt is called a Z-avoiding trail that connects m0 and mt if
it meets the following 4 conditions:

1. for each s = 1, . . . , t a couple (ms−1,ms) is in the same row (i.e., hori-
zontal connection) or in the same column (vertical connection);

2. each vertical connection must be adjacent to a box-marker (one of the
markers is a box-marker);

3. no horizontal connection corresponds to a variable from Z;

4. vertical and horizontal connections regularly alternate with the following
possible exception: two vertical connections may be in direct succession if
their common adjacent marker is a box-marker of a variable from Z;

If a Z-avoiding trail connects two-box markers corresponding to variables u and
v, we also say that these variables are connected by a Z-avoiding trail. Suppose
⟨U, V |Z⟩ ∈ T (N) is a disjoint triplet over N . One says that U and V are
conditionally dependent by Z, written U⊥̸⊥V |Z[P], if there exists a Z-avoiding
trail between variable u ∈ U and variable v ∈ V in P. In the opposite case one
says that U and V are conditionally independent by Z in P, written U⊥⊥V |Z[P].
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We also say that ⟨U, V |Z⟩ is represented in P. The induced independence model
I(P) and the induced dependence model D(P) are defined as follows:

IP = {⟨U, V |Z⟩ ∈ T (N);U⊥⊥V |Z[P]}

DP = {⟨U, V |Z⟩ ∈ T (N); U⊥̸⊥V |Z[P]}

Example 2.5. Consider persegram from Figures 1 and 2.

π1 π2 π3 π4 π5

z

y

x

w

v

u

Figure 1: P : u⊥̸⊥z|∅, u⊥̸⊥z|v

π1 π2 π3 π4 π5

z

y

x

w

v

u

Figure 2: P : u⊥̸⊥x|z

In Figure 1 a ∅-avoiding trail is depicted. Therefore u⊥̸⊥z|∅. Moreover, one
can replace ∅ by any subset of {v, w, x, y} which is avoiding as well. In Figure 2
is depicted another trail connecting u and x this time. Therefore u⊥̸⊥x|z. On
the contrary to Figure 1 one can not replace z by any other variable except of
v. Otherwise the condition 3. from the Definition 2.4 will be corrupted. (i.e.
u⊥⊥x|y[P] for example)

From the previous Definition 2.4 one can almost immediately get an inter-
esting fact about variables appeared for the first time in the last column.

Lemma 2.6. Consider a persegram P with n columns K1, . . . , Kn and distinct
variables u, v ∈ K1 ∪ . . .∪Kn such that u ̸∈ Kn and v ∈ Rn. Then u⊥⊥v|Sn[P].

Proof. Since v belongs to the last column of P only and u do not, every trail to
v has to contain a horizontal connection to n-th column corresponding to some
variable from Sn. By condition 3. of the Definition 2.4: No horizontal connec-
tion can correspond to variable from Sn. Then a Sn-avoiding trail between u
and v can not exist.

The following theorem shows an important parallel between independence
read from compositional model and from its persegram. This theorem is given
without proof, one can find it in [1].

Theorem 2.7. Consider a generating sequence π1(K1), . . . , πn(Kn), its corre-
sponding persegram P, and three disjoint subset U, V, Z ⊂ K1 ∪ . . . ∪ Kn such
that U ̸= ∅ ≠ V . Then:

U⊥⊥V |Z[P] ⇒ U⊥⊥V |Z[π1 ◃ . . .◃ πn].

Notice that in definition 2.4 there is no condition concerning the order of
rows in persegrams. This is not surprising because there is no rows ordering in
definition 2.2 either.
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To simplify proofs done by induction on the number of columns we introduce
the concept of the subpersegram induced by subset of variables U . Unlike the
subgraph which contains exactly those variables that induce it, subpersegram
induced by a set U may be defined for some superset of U .

Definition 2.8. Let P be a persegram over N . U ⊆ N . A subpersegram
P[U ] induced by U is the minimal left part of P containing all box-markers
corresponding to U .

Example 2.9. Let P be the persegram represented in Example 2.5. Then the
corresponding induced subpersegram P[z] is in Figure 3 and induced subperseg-
ram P[w] is in Figure 4.

π1 π2 π3 π4 π5

z

y

x

w

v

u

Figure 3: P ≡ P[z]

π1 π2 π3 π4 π5

z

y

x

w

v

u

Figure 4: P[w]

Lemma 2.10. Let P be a persegram over N , and u⊥̸⊥v|Z[P]. Then all Z-
avoiding trails connecting u with v are in subpersegram P[u ∪ v ∪ Z] too.

Proof. Suppose that u⊥̸⊥v|Z[P] and that there is a trail with a connection in P
but not in P[u∪ v∪Z]. Let m is the first marker on the trail from u to v which
belongs to such a column. Because this marker is the first one in such a column,
a horizontal connection was used and therefore m is a bullet. Now one has
to continue with a vertical connection(down) to box-marker. This box-marker
does not correspond to any variable from Z (this column is not in P[u∪ v∪Z]).
Therefore one has to continue with horizontal connection (to the right, this is a
box-marker - there is nothing on left in the same row) to a bullet. Then down
to a box-marker which does not correspond to any variable from Z etc. From
such a trail is no return. Therefore such a trail can not exist.

This lemma basically means, that if we are interested in relation u⊥⊥v|Z[P]
we may focus on the subpersegram P[u ∪ v ∪ Z] only. This observation is
summarized in the following corollary.

Corollary 2.11. Let P be a persegram over N and u, v ∈ N, Z ⊂ N \ {u, v}.
Then u⊥⊥v|Z[P[u ∪ v ∪ Z]] ⇔ u⊥⊥v|Z[P].

The following specific notation for certain composite dependence statements
will be useful. Given a persegram P over N , distinct variables u, v ∈ N and
disjoint set U ⊆ N \ {u, v} the symbol u⊥̸⊥v| + U [P] will be interpreted as the
condition

∀W such that U ⊆ W ⊆ N \ {u, v} one has u⊥̸⊥v|W [P].



Equivalence problem in compositional models 139

In words, u and v are (conditionally) dependent in P given any superset of
U . If U is empty we write ∗ instead of +U . In particular, the following two
symbols will be sometimes used

u⊥̸⊥v| ∗ [P] ≡ ∀W such that W ⊆ N \ {u, v} u⊥̸⊥v|W [P].

for distinct nodes u, v ∈ N , and

u⊥̸⊥v| + w[P] ≡ ∀W such that {w} ⊆ W ⊆ N \ {u, v} one has u⊥̸⊥v|W [P].

for distinct nodes u, v, w ∈ N . We give a certain graphical characterization of
composite dependence statements of this kind below.

3 Equivalence problem

By the equivalence problem we understand the problem how to recognize whether
two given persegrams P1,P2 over N induce the same independence model (IP1 =
IP2). It is of special importance to have an easy rule to recognize that two
persegrams are equivalent in this sense and an easy way to convert P1 into P2

in terms of some elementary operations on persegrams. Another very important
aspect is the ability to generate all persegrams which are equivalent to a given
persegram.

Definition 3.1. Persegrams P1,P2 (over the same variable set N) are called
independence equivalent, if they induce the same independence model IP1 =
IP2 .

Remark 3.2. One may easily see that the above mentioned definition could
be formulated with the term of dependence model. Persegrams P1,P2 (over the
same variable set N) are independence equivalent, iff DP1 = DP2 . This alter-
native is used in most proofs primarily.

Like in Bayesian networks, it may happen that different persegrams induce
the same independence model.

Example 3.3. 1. The following example is simple: N = {u, v} and the fol-
lowing two persegrams P1,P2:

P1:

π1 π2

u

v

P2:

π1 π2

u

v

IP1 = IP2 = {⟨u, v|∅⟩} in this case.

2. On the other hand, the persegrams which have the same variable sets in
columns in different order do not have to be equivalent. Let N = {u, v, w}
and consider the following persegrams:

u⊥⊥v|∅[P1] but u⊥̸⊥v|∅[P2]. On the contrary, u⊥̸⊥v|w[P1] and u⊥̸⊥v|w[P2].
The order of the columns in persegram is important.
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P1:

π1 π2 π3

u

v

w

P2:

π1 π2 π3

u

v

w

3.1 Direct characterization

The solution of equivalence problem can be done in several ways. Some kind of
indirect characterization of equivalence follows was done in the paper [5] where
four special operations on persegrams were introduced. These operations are
called IE operations (Independence equivalent) and they preserve independence
statements induced by a persegram. These operations give us a tool to equiva-
lence recognition: If two persegrams can be transformed from one to the other by
a sequence of IE operations, then the persegrams are independence equivalent.
Anyway, this characterization is indirect in the sense that, if two persegrams
over same set of variables are given, then searching of such a sequence can be
time demanding or even impossible. However, indirect characterization offers a
method to generate a class of equivalent persegrams.

We are more interested in some type of direct characterization which allows
us to decide on equivalence ”immediately”. This characterization should be
based on some independence equivalence invariants.

Definition 3.4. Let P be a persegram over N and u, v ∈ N be two distinct
variables. u, v are connected in P (u ↔ v[P]) if there is a column in P con-
taining markers of both variables and where at least one of them is a box-marker.
Otherwise u, v are disconnected (u = v).

The following convention will be used thorough the paper: Given variables
u, v, w ∈ N and P over N , the term u, v ↔ w denotes that u ↔ w and v ↔ w.

For the purpose of the following text one should realize the obvious paral-
lel between relation u ↔ v and columns order and content. This parallel is
summarized in the following remark.

Remark 3.5. Let u, v are two different variables in P and u ≼P v. Then
u ↔ v[P] ⇔ u ∈ K]v[.

Lemma 3.6. Let P be a persegram over N and u, v ∈ N are distinct variables,
u ≼P v. Then

u⊥⊥v|S]v[[P] ⇔ u = v[P]

Proof. ⇒ Suppose u⊥⊥v|S]v[[P] and u ↔ v[P]. Since u ≼ v then by Remark 3.5
u ∈ S]v[. This however contradicts with the fact that sets involved in
independence statements are not disjoint.

⇐ Suppose u = v and u⊥̸⊥v|S]v[[P]. Since u ≼ v, and S]v[ ≺ v then by
Lemma 2.6 u⊥⊥v|S]v[[P[v]]. By corollary 2.11 u⊥⊥v|S]v[[P], which con-
tradicts with assumptions.
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Anyway, please realize that because of using an induced subpersegram P[v]
in the proof, the equation u ≼ v; u = v ⇔ u⊥⊥v| + S]v[[P] generally does not
hold.

With the help of the previous lemma one can prove the following important
assertion.

Lemma 3.7. Let P be a persegram over N and u, v ∈ N are distinct variables.
Then

u ↔ v[P] ⇔ u⊥̸⊥v| ∗ [P].

Proof. ⇒ Let u ↔ v and u⊥⊥v|w where w ∈ N \{u, v}. Because u ↔ v then the
trail u ∅ v consists of one vertical and perhaps one horizontal connection
and avoid any w ∈ N \ {u, v}. It contradicts the fact a⊥⊥v|w.

⇐ Suppose u⊥̸⊥v|∗ and u = v; one can assume without loss of generality that
u ≺ v. Then u⊥⊥v|S]v[ according to the lemma 3.6.

The previous two lemmata shows an interesting invariant of independence
equivalence. Two persegrams, if equivalent, have the same set of connections.

Definition 3.8. Let P be a persegram over N . A connection set E(P) is a set of
all pairs ⟨u, v⟩ : u, v ∈ N , where u ↔ v[P]. E(P) = {⟨u, v⟩ : u, v ∈ N, u ↔ v[P]}

Corollary 3.9. Let P,P ′ are persegrams over N . If IP = IP′ then E(P) = E(P ′).

Example 3.10. In the Example 3.3 four different persegrams are shown. The
first two are equivalent, the second two are not. Let us show this example again
with knowledge of the previous lemma.

1. Let P1,P2 are the following simple persegrams over N = {u, v}: One can

P1:

π1 π2

u

v

P2:

π1 π2

u

v

easily see that E(P1) = E(P2) = ∅. The claim IP1 = IP2 = {⟨u, v|∅⟩} is
known from the Example 3.3.

2. On the other hand, consider the following persegrams over N = {u, v, w}.
Connections between variables are highlighted by arrows.

P1:

π1 π2 π3

u

v

w

P2:

π1 π2 π3

u

v

w

Thanks to Example 3.3 one knows that IP1 ̸= IP2 . Since E(P1) =
{⟨u,w⟩, ⟨v, w⟩} but E(P2) = E(P1) ∪ {⟨u, v⟩}, non-equivalence is obvious
now.
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3. Anyway, there exist persegrams P1,P2 where E(P1) = E(P2) but IP1 ̸=
IP2 .

P1:

π1 π2 π3

u

v

w

P2:

π1 π2 π3

u

v

w

E(P1) = {⟨u,w⟩, ⟨v, w⟩} = E(P2). However IP1 ̸= IP2 since u⊥̸⊥v|w[P1]
and u⊥⊥v|w[P2].

It follows from the previous example, that the previous invariant is not strong
enough to ensure the equivalence. It is necessary to try to find an another
invariant.

When one consider a relation ≼P , then every persegram satisfy some partial
variables ordering. For example, u ≺ v ≺ w in persegram P1 but u ≼ w ≺ v in
persegram P2 in the third part of the previous Example 3.10. Is it possible that
the order of the variables will be some kind of invariant? It will be definitely
not in that simple way. It can be easily seen in the first part of the previous
Example 3.10, where u ≺ v in P1 but v ≺ u in P2.

Two equivalent persegrams may have different ordering of variables. If,
however, we are interested in the ordering of several specially connected variables
only, then we obtain an another invariant of independence equivalence. It is
based on Ordering conditions defined bellow.

Definition 3.11. Let P be a persegram over N . An Ordering condition is a
triplet of variables u, v, w ∈ N where u, v ≺ w; u, v ↔ w; and u = v in P. Such
an ordering condition is denoted by [u, v] ≺ w[P].

An example of an ordering condition can be found it the second and third
part of the Example 3.10 in P1. [u, v] ≺ w[P1] in that case. Persegrams P2 from
both those parts of that Example do not contain any ordering condition.

Lemma 3.12. Let P be a persegram over N , u, v, w ∈ N distinct nodes. Then

[u, v] ≺ w ⇔ u⊥̸⊥v| + w[P].

Proof. Suppose [u, v] ≺ w[P]. By Remark 3.5 u, v ∈ Sn. Then Let W ⊂
N \ {u, v} such that w ∈ W . As one can see on the Figure 5 W -avoiding trail
composed from u, w, v connects u, v for every W . Hence, u⊥̸⊥v|W [P] for every
W (denoted by u⊥̸⊥v| + w[P]). To prove sufficiency suppose by contradiction
that u ≻ w ∨ v ≻ w. (Since u = v, one does not have to consider equalities in
u ≽ w, v ≽ w ) Suppose u ≺ v, then by remark 3.5 w ∈ S]v[. Since u = v the
lemma 3.6 leads to contradiction.

The above mentioned invariant can be easily concluded into the following
implication.

Corollary 3.13. Let P,P ′ be two persegrams over N . If IP = IP′ then E(P) = E(P ′)
and they induce the same set of ordering conditions.
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w

v

u

Figure 5: u⊥̸⊥v| + w

The question is: Does this implication hold also in the opposite direction?
I.e. If two persegrams P,P ′ over the same set N induce the same ordering
conditions and E(P) = E(P ′), are P,P ′ independence equivalent? The answer
for this question is still unknown. Despite the fact that all experiments confirm
this theory, the formal proof has not been finished yet.

4 Conclusion

In this paper we gave a short introduction into equivalence problem. This
problem includes several sub-problems where one of them is how to simply
recognize whether two given persegrams are equivalent. One can say, how to
recognize equivalence ”on the first sight”. The solution to this problem is a direct
characterization involving some invariants sufficient for equivalence decision.

Two invariants we introduced: Connections set and Ordering conditions.
Are these invariants sufficient to decide whether two given persegrams are equiv-
alent? This question remains open.
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Abstract

Diagnostic problem consists in finding a value of a diagnostic variable η
on the basis of concrete values of some symptom variables ξ1, ξ2, · · · ξn.
The link between diagnosis and symptoms is supposed not to be a strict
functional dependence, but there is certain uncertainty involved. One of
the theoretical approaches to this decision making under uncertainty is
based on the so called marginal problem. The ”knowledge base” for an
inference engine (i.e. algorithm ) that performs this decision making is
formed by a set of marginals. Given certain conditions, the paper suggests
an heuristic algorithm for selecting marginals for which inference engines
achieve the best decision making.

1 Introduction

The layout of the paper is the following one: Basic notions are introduced in
Section 1, then goes the description of the algorithm in Section 2, experimental
results in Section 3 and concluding remarks and recommendations in Section 4.
[2ex]

1.1 Basic Setting

Let us suppose (Ω,X , P ) is a probabilistic space on which random variables
η, ξ1, ξ2, · · · ξn are defined. Diagnostic variable η takes its values in a finite set
of diagnoses {dj} = R(η). ( Symbol R(ϑ) applied on a variable ϑ will denote its
range (or codomain) in the sequel.) It is assumed the aim of the decision making
is finding the most probable value of the η. All other variables, taking their
values from finite sets denoted as R(ξ1), R(ξ2) · · ·, R(ξn) are called symptom
variables since their known values represent symptoms from which the unknown
final diagnosis is inferred during decision making. (Sometimes, denotation Ξ
will be used for set of all symptom variables.) Then, the set of all possible
combinations of values of variables η, ξ1, ξ2, · · · ξn (i.e. their sample space),
denoted as R(η, ξ1, ξ2, · · · ξn), is a cartesian product of respective codomains:

R (η, ξ1, ξ2, · · · ξn) = R(η) × R(ξ1) × R(ξ2) · · ·R(ξn)
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The mutual ”behaviour” of η, ξ1, ξ2, · · · ξn is described completely by the joint
distribution Pηξ1ξ2...ξn induced from P and defined on R(η, ξ1, ξ2, · · · ξn) .

Suppose we are given the distribution Pηξ1,ξ2···ξn and a subset a = {ξi1 , ξi2 , · · · ξik
}

of the set {ξ1, ξ2, · · · ξn} of all symptom variables. (Subset a is called aperture
to stress it is a kind of filtering window through which we can see values of
some symptom variables only during the decision making.) Then, the diagnos-
tic problem can be formulated in the following way:
Diagnostic problem Find the diagnosis da(si1 , si2 · · · sik

) that is the most
probable ( according to the Pηξ1,ξ2···ξn ) on the set

{ω ∈ Ω | ξi1(ω) = si1 & ξi2(ω) = si2 & · · · ξik
(ω) = sik

} (1)

for a given (i.e. observed) arbitrary combination (si1 , si2 · · · sik
) of values of

symptom variables from the set a.

From theoretical point of view, the optimal diagnosis da(si1 , si2 · · · sik
) is

given as

da(si1 , si2 · · · sik
) = argmax

d∈R(η)

Pη |ξi1ξi2 ...ξik
(d|si1 , si2 · · · sik

) (2)

Unfortunately, in the ”real world”, we are never given the theoretical distribu-
tion Pηξ1ξ2···ξn in full and directly. To compensate for this, we expect to have
some indirect information about Pηξ1ξ2···ξn that will be called knowledge base
and denoted by K. It is done by postulating a set of conditions that we believe
the theoretical Pηξ1ξ2···ξn fulfills. Using the concept of marginal problem, see
[1], knowledge base K is given as a set of ”small-dimensional” distributions (
i.e. number of variables in the distribution is small. E.g. not exceeding 10. ),
postulated as theoretical marginal distributions of the Pηξ1,ξ2...ξn . Instead of the
unknown Pηξ1ξ2···ξn , we try to construct its suitable approximation P̂ηξ1ξ2···ξn

that could play its role in the diagnostic problem. Here, the small-dimensional
distributions are either explicitly given or calculated from statistical data file
T . This file T can be considered as realizations of the theoretical distribu-
tion Pηξ1ξ2···ξn . (Marginals that are derived from T can can be understood as
marginals of the empirical distribution PT

ηξ1ξ2···ξn
given by T ). There is an as-

sumption that T is big enough so that marginals PT
ηξi1ξi2 ...ξik

of PT
ηξ1ξ2···ξn

can
replace marginals Pηξi1ξi2 ...ξik

of the theoretical distribution Pηξ1ξ2···ξn . Instead
of ”small-dimensional distributions in K”, the one word term ”oligodistribu-
tions” will be used in the sequel. This reflects the fact that they have usually
a few of variables si1 , si2 · · · sik

and their respective sample spaces like R(ξl)
consist of a few values only. (If the variables or sample spaces were not limited,
though finite, there would be complexity problems with algorithms.) The sec-
ond reason why the term oligodistributions is preferred to term marginals lies
in the fact that small-dimensional distributions that are given by an expert as
input need not be consistent and then, there does not exist any joint distribution
whose marginals they might be. The third reason for the term oligodistributions
is that we suppose it contains always diagnostic variable η though it is not men-
tioned explicitely in its carrier. (Carrier is the set of symptom variables in the
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oligodistribution and it is denoted by underlining. E.g. if oi = Pηξi1ξi2 ...ξik
,

then oi = {ξi1ξi2 . . . ξik
})

Decision making is based on information of two types. It is general knowl-
edge about the problem area and specific evidence describing concrete pa-
tient(person). Knowledge is given by a set of oligodistributions (marginals),
evidence is given by a vector of values that are taken by symptom variables
from aperture a ⊆ Ξ for the patient ri.

There are two concepts that are indispensable for construction of the algo-
rithm SM which are, however, not the topic of the paper. Namely, it is the
notion of decision-making algorithm Ai ( i.e. inference machine that solves the
diagnostic problem) and, second, we need a testing scheme that evaluates the
effectiveness of different Ai when they predict the diagnosis from symptoms for
objects(persons) where the actual diagnosis is known. For the purpose of this
paper, these two concepts can be modeled as two mappings, denoted as Ai and
M , without going into details.

Ai : 2Ξ × Z (Ξ) ×RΞ −→ Rη

(a, Z, rs) 7−→ di ∈ Rη

where Z = {oi1 , oi2 , ·oik
} ∈ Z (Ξ) is the knowledge base of the algorithm Ai, a is

aperture and rs is a concrete person from file T i.e. the realization rs generated
by Pηξ1ξ2···ξn can be seen as a vector from RηΞ

rs = (η(ωs), ξ1(ωs), ξ2(ωs) · ξn(ωs)), where ωs ∈ Ω.
Examples of different algorithms Ai and the way they integrate the knowledge
from Z can be found in [2].

To make the notation more compact, the symbolic mappings πs(.) can be
used that, when applied to an object that is a vector (or set), returns the s-th
component of the argument. E.g. π1(ri) = η(ωi). Then, we may describe the
testing scheme as a mapping M

M : {Ai}i×, 2Ξ × Z (Ξ) × {Tl}l −→ I
(Ai, a, Z, T ) 7−→ |{rj ∈ T |Ai(a, Z, rj) ̸= π1(rj)}|

that for each inference algorithm Ai, equipped with a knowledge base Z, whose
evidence information is restricted by an aperture a and that is applied to all
persons ri from the file T , returns the number of incorrect decisions (misclas-
sifications) given by the condition Ai(a, Z, rj) ̸= π1(rj). The mapping M (i.e.
the testing scheme) can be easily coded and it is a part of program infrastruc-
ture ( similarly as inference algorithms Ai or subroutine Comb) when SM is
implemented. Using this formalism, we may proceed to the description of the
SM algorithm.
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2 Algorithm

2.1 Selecting Marginals

The Selecting Marginals algorithm (SM in the sequel) may be decomposed
into two separate subtasks.
First, feasible marginals are selected.
Second, from the set of feasible marginals, the optimal knowledge base (i.e. set
of the ”best ” marginals) is chosen.
In case of success, third step is added. It calculates the quality of decision
making of inference algorithm Ai with the recommended knowledge base.

Inputs of SM:

1. T is a statistical data file

2. a is the aperture (i.e.symptom variables unveiled for decision)

3. l is the requested size of the created knowledge base K

4. c constant measures the ”quality” of input marginals

5. Ai is the inference algorithm used for the third step

Outputs of SM:

1. variable error reflects the final state of SM (i.e.error = 0 stands for
success)

2. K is the optimal knowledge base

3. mc is number of misclassifications for K, Ai and T .

The basic structure of algorithm SM can be the following one:

main SelectingMarginals(T, a, l, c, Ai, error, K, mc )
call Feasiblemarginals(a, c, T, SetFM, error)
if error = 1 then

print ”No marginals ! Reconsider c, T !”
exit SelectingMarginals

endif
call OptimalKnowledgeBase(l, SetFM,K)
call FinalResults(a,K, Ai, T,mc)
print ”Knowledge base K contains l marginals ”
print ”With Ai, K yields ms misclassifications !”

end SelectingMarginals;

Subroutines SelectingMarginals and OptimalKnowledgeBase will be de-
scribed later, FinalResults may look like this :

sub FinalResults(a,K, Ai, T, mc)
mc = M(Ai, a,K, T )

end FinalResults;



148 O. KŘÍŽ

2.2 Feasible Marginals

The basic idea of FeasibleMarginals algorithm (FM in the sequel) is to find
(and keep for further usage) only such marginals oi that have an acceptable
ratio data vs. space. This condition can be expressed in the form

|T |/|oi| > c (3)

Data represented by |T | is the number of records in the file T and the symbol
|oi| stands for the number of atoms of the sample space of all variables described
by the marginal oi. Let us remind that each oligodistribution oi contains, by
definition, always the diagnostic variable η, though it is not mentioned explicitly
in its carrier oi. Hence,

|oi| = |η| ·
∏

ξj∈oi

| ξj |

Let us stress that, this way, condition on feasibility of oj(≡ Pηoj ≡ Pηξj1ξj2 ···ξjk
)

is easily evaluated without necessity to consider individual values Pηξj1ξj2 ···ξjk

Namely, one could be stricter and require the file T to be representative enough
to have some records (patients) for all atoms that are not ”generic zeroes”.
(”Generic zeroes” in oi are atomic events that can never occur as their proba-
bility is, by definition, zero. E.g. maternity for men.) In such a case, all |oi|
values in oi had to be calculated from the file T and, at maximum, |oi| tests of
form

Pηξj1ξj2 ···ξjk
)(di, si1 , si2 , · · · sik

) > c2

had to be performed. This would raise the computational complexity.
In the function Cond , described below, the former (i.e. simpler) condition (3)
is used.
FeasibleMarginals algorithm constructs a set SetFM of all oligodistributions
fulfilling the condition (3) and not dominated by other oligodistributions oj with
greater carrier oj and also fulfilling the condition (3)

FM = {oi | Cond(oi) et
∨

oj : |oj |>|oi|
non Cond(oj) (4)

In certain sense, SetFM is a Pareto set with respect to the symptom variables in
the carrier oi . The reason why we try for marginals with the greatest possible
carrier is that they have greater discernment power than the smaller ones,.
All types of marginals that can be generated from |a| variables constitute a
lattice that has 2|a| elements. A direct but cumbersome way to generate feasible
marginals types would be to construct all carriers oi ⊆ a, throw out all carriers
not fulfilling the condition (3) and then to throw out all carriers that can be
dominated.
A more refined way was selected instead. Algorithms are described in a symbolic
language that can be easily re-coded in a general purpose language (like VBasic
or Fortran).
First, subroutine prune finds out whether diagnostic variable η has not too
many possible values with respect to the cardinality of the file T . Then SM
would finish with no marginals selected. Next, all ξi from a are tested for
|T | > |η| · |ξi| · c. The failure of the test results in eliminating the respective
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ξi from a. (In fact, acceptable ξi are put in the anew set and original a is
replaced by anew on leaving subroutine prune. If anew = ∅, then SM finishes
without any selected marginal. The purpose of the function average is to set
an ”average” level in the lattice, that will be used as a starting point for further
processing. Symbol maxcard is a variable that denotes maximal cardinality of
symptom variables ξj that are in a.

maxcard = argmax
ξi∈a

|ξi| (5)

A histogram hist is constructed that describes for each i ∈< 2,maxcard >
number of variables ξj ∈ a that have cardinality i. The function average must
return at least the value 2, as otherwise the program should have stopped be-
fore, due to the tests in the previous prune subroutine. Let us suppose we have

a subroutine Comb(n,k) that generates all
(

n
k

)
combinations of numbers

{1, 2, · · ·n} and returns this set. (Comb(n,k) is not described in the sequel.)

The Set0 is filled with all
(

|a|
average

)
average-tuples created from variables

contained in the set a.

To make the description of the algorithm more compact, some auxillary map-
pings ma, coding ξi from different a to integers, are introduced:

∨
a⊆Ξ

ma : a −→< 1, |a| > such that
∨

ξiξj∈a

if i < j then ma(ξi) < ma(ξj)

Then, m−1
a denotes inversion of ma and if the mappings ma(), m−1

a () are ap-
plied on a class of sets, it is supposed that they are applied on the elements of
the sets, so that e.g. for a = {ξ15, ξ1, ξ21}, and average = 2

Comb ( 3, 2) = {{1, 2}, {1, 3}, {2, 3}}
m−1

a (Comb ( 3, 2)) = {{ξ1, ξ15}, {ξ1, ξ21}, {ξ15, ξ21}}.

This way, Set0 can be expressed like

Set0 = m−1
a (Comb(|a|, average)) (6)

All members oj of Set0 (i.e. carriers of potential marginals) are tested via
Cond. If the condition holds, all its immediate supersets are put in the SetU.
If the testing condition does not hold, all the immediate subsets are put in the
SetL. After the testing, the oj is removed from Set0 so that Set0 = ∅ at the
end of the cycle. If the SetU is empty, SetL will be tested in its turn. If the
SetU is not empty and contains some carriers of potential oligostributions, the
whole procedure is repeated with the only exception. In case of not meeting
the condition, nothing is put in the SetL. If SetL is empty, FM has finished
and SetFM contains Pareto set of carriers of feasible marginals. If the set SetL
contains some carriers, then Set0 = SetL; SetL = ∅ and the whole procedure is
repeated with the exception that if the condition Cond is met, no filling of SetU
follows, but respective oj is added to SetFM. In case of not meeting conditions
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in Cond, all subsets of the respective oj are added to SetL and oj is removed
from Set0. If SetL is empty, the algorithm FM finishes and SetFM contains all
greatest mutually non dominanat carriers of potential marginals.

main FeasibleMarginals (a, c, T, SetFM, error)
call prune(a,error); if error = 1 then go to end endif
k = average(a,error) if error = 1 then go to end endif
Set0 = m−1

a (Comb(|a|, k))
SetL = ∅; SetU = ∅; SetFM = ∅; U = true; L = false

start:
for oj ∈ Set0

if Cond(oj) then
if U then

if a = oj then SetFM = {oj}; error=0; go to end endif
call increase(a, oj , SetU); go to middle

endif
if L then

SetFM = SetFM ∪ {oj}; go to middle
endif

else
if L then

call decrease(oj , SetL)
endif

endif
middle:

next oj

if SetU ̸= ∅ then Set0 = SetU ; SetU = ∅; go to start endif
if SetL ̸= ∅ then

Set0 = SetL; Set0 = ∅;U = false; L = true; go to start
else

if SetFM = ∅ then error = 1 else error = 0 endif
endif

end:
end FeasibleMarginals;
function average(a, error)

for i ∈< 1, 10 > {hist(i) = 0}
for ξi ∈ a

hist(|ξi|) = hist(|ξi|) + 1;maxcard = max(maxcard, |ξi|)
next ξi|

for i ∈ < 1, maxcard >
if ihist(i) ∗ |η| ∗ c > |T | then

average = i − 1
hist(|ξi|) = hist(|ξi|) + 1;maxcard = max(maxcard, |ξi|)

endif
next i
if average = 0 then

print ”Too many diagnoses !”; Error = 1; exit average
endif

end average;
sub decrease(o, SetL)
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for j ∈ o
if Cond(o\j) then

SetL = SetL ∪ {o\j}
endif

next j
end decrease;
sub increase(a, o, SetU)

for j ∈ a\o
if Cond(o ∪ {j}) then

SetU = SetU ∪ {o ∪ {j}}
endif

next j
end increase;
function Cond(o)

space = |η|
for ξj ∈ o {space = space ∗ |ξj |} next ξj

if |T |/space > c then Cond = true else Cond = false endif
end Cond;
sub prune(a, error)

error = 0; anew = ∅
if |η| ∗ c > |T | then
print ”Too many diagnoses !”; error = 1; exit prune endif

for ξj ∈ a
if |ξj | ∗ |η| ∗ c ≤ |T | then anew = anew ∪ {ξj} endif

next ξj

if anew = ∅ then print ”Too few data !”; error = 1 else a = anew endif
end prune;

2.3 Optimal Knowledge Base

Second part of the algorithm SM selects the ”optimal” knowledge base K from
the set SetFM that was prepared in the first part via subroutine Feasible-
Marginals.
This optimization is in the form of the subroutine OptimalKnowledgeBase
and it fills the set K with l oligodistributions for which the inference machines
Ai decide with minimal number of misclassifications.
Basic idea of OKB consists in selecting oligodistributions with minimal number
of misclassification. But, as the |K| is usually greater than 1, we calculate cer-
tain ”correlation” ρ(., .) for all pairs of oligodistribution whose carriers are in
SetFM. ∨

oi,oj :oi,oj∈SetFM

ρ(oi, oj) = M(a,A4, {oi, oj}, T ) (7)

Almost any inference algorithm Ai can be used for this calculation of M for a
pair of oligodistributions, but we used A4 from [3], as it is already in the pro-
gram infrastructure.
Using this correlation ρ, we may construct the knowledge base K in an iterative
way till the requested size l of K is achieved. Namely, we add a new oligodis-
tribution o|K|+1 to the so far generated K if it is the most ”orthogonal” to all
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oligodistributions already present in K. This is expressed by minimality of sum
of correlations.

o|K|+1 = argmin
os ̸∈ K : os ∈SetFM

∑
ow∈K

ρ(os, ow) (8)

sub OptimalKnowledgeBase ((l, SetFM,K)
K = ∅
if l = 1 then

min = |T |; arg = 0
for r = 1, |SetFM |

if M (a, Ai, {or}, T ) < min then
min = M (a,Ai, {or}, T ); arg = r

endif
next r

K ={oarg}
else

SetP = Comb(|SetFM |, 2)
for r = 1, l
pair = πr(SetP )

if r = 1 then
min = |T |; arg = 0

for s = 1,

(
|SetFM |

2

)
ms = M(a,A4{π1(pair), π2(pair)}, T )
if ms < min then min = ms; arg = s elseif

next s
pair = πarg(SetP )
K = {π1(pair), π2(pair)}

elseif r = 2 then
else

summin = |T |; arg = 0
for u = 1, |SetFM |
if ou ∈ K then
else

sum = 0
for t = 1, |K|

sum = sum + M(a,Ai, {ou, πt(K)}, T )
next t
if sum < summin then summin = sum; arg = u endif

endif
next u
K = K ∪ {oarg}

endif
next r

endif
end OptimalKnowledgeBase
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3 Experimental results

SM algorithm was tested on the data from the field of rheumatology (prof.Rejholec,
IV. Internal Clinic, I. Faculty of Medicine, Charles University, Czech republic,
1980). The data file T consists of 1089 patients and diagnosis variable η takes 4
different diagnoses. The file contains besides η, other 34 symptom variables ξi.
To give better insight in this diagnostic problem, let us mention semantical
meaning of some symptom variables. E.g. ξ1 is sex, ξ2 are age groups. ξ3

stands for maternity maternity, ξ27 diabetes . . .. In this example, aperture a
consists of eight symptom variables a = {ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8}. Requested
size l of final K was chosen to be 21. Subroutine FeasibleMarginals was skipped
and we decided to generate all oligodistributions with four symptom variables

that are in the aperture. Hence, SetFM was filled with
(

8
4

)
i.e. 70 oligodis-

tributions as can be seen in the listing.

1/ 8 over 4: 1 2 3 4
2/ 8 over 4: 1 2 3 5
3/ 8 over 4: 1 2 4 5
.................
68/ 8 over 4: 3 6 7 8
69/ 8 over 4: 4 6 7 8
70/ 8 over 4: 5 6 7 8

There were
(

70
2

)
i.e. 2415 pairs of oligodistributions created from those 70

oligodistributions. The listing contains the pairs after sorting. E.g the second
best pair has scored 204 misclassifications (out of 1089 cases), it consists from
o33 and o38. Oligoditribution o33, when taken alone, yields 364 misclassifcations
and o38. achieves 637.

1 196 14 38 368 637
2 204 33 38 364 637
3 211 4 33 605 364
4 211 8 33 598 364
5 211 14 21 368 599
6 212 12 38 405 637
7 212 4 14 605 368
8 212 14 59 368 616
...............................

2413 562 59 61 616 619
2414 575 57 59 620 616
2415 581 18 59 628 616

Finally, subroutine OptimalKnowledgeBase has selected the following 21
oligodistributions (out from the original 70): o14, o38, o33, o30, · · · o63, o9. Second
column is cumulative ρ correlation, fourth column is this sum of misclassifica-
tions divided by size of K in the l-th iterative step. The carrier o14 consists of
ξ2, ξ4, ξ5, ξ6

1/ 196 14 196 | 2 4 5 6
2/ 196 38 98 | 1 3 4 8
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3/ 450 33 150 | 2 5 6 7
4/ 698 30 174 | 2 4 6 7
5/ 984 3 196 | 1 2 4 5
6/ 1288 26 214 | 1 2 6 7
7/ 1531 15 218 | 3 4 5 6
8/ 1801 24 225 | 2 4 5 7
9/ 2073 12 230 | 2 3 5 6

10/ 2385 50 238 | 2 4 6 8
11/ 2664 17 242 | 1 2 4 7
12/ 2906 53 242 | 2 5 6 8
13/ 3194 32 245 | 1 5 6 7
14/ 3482 7 248 | 1 2 4 6
15/ 3830 5 255 | 2 3 4 5
16/ 4089 67 255 | 2 6 7 8
17/ 4385 10 257 | 1 2 5 6
18/ 4672 4 259 | 1 3 4 5
19/ 5011 28 263 | 2 3 6 7
20/ 5316 63 265 | 2 5 7 8
21/ 5592 9 266 | 2 3 4 6

4 Conclusion

1. The idea not to apply passively just the marginals suggested by experts,
but to look actively for the most appropriate knowledge base seems to be
fruitful, as it is able to cut down misclassifications by up to 20 %. It is
clear that requirement of statistical file T is nothing extraordinary as even
with prescribed marginals one can hardly believe they could be obtained
otherwise than from data.

2. The SM is challenging both from the point of view of program infras-
tructure as well as from time and space limits. These limits should be
estimated for typical real situations. So far, it seems to be tolerable for
SM to run several hours and precalculate the structure of database for
different apertures a corresponding to batteries of tests.

3. More experiments should be organized, but it seems to be obvious that
marginals constructed from variables ξi with larger ranges R(ξi) are pre-
ferred by SM. Therefore, the role of constant c should be investigated
in more detail. E.g. what are the acceptable ranges for c and what is
the shape of functional dependence of misclassifications on c? Is it quasi
linear?

4. It seems that successful inference algorithms Ai from [2] behave similarly
with the same knowledge base. Then, improving its composition via SM
is beneficial independently of Ai selected for routine prediction.

5. The number of marginals in the knowledge base may be a problem for
some Ai. On the other hand, an increase in the parameter l decreases
misclassifications. Is there an optimal limit for l ?
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Abstract

Belief functions are generalized to formulas in  Lukasiewicz logic. It is
shown that they generalize probabilities on formulas (so-called states) and
that they are completely monotone mappings with respect to the lattice
operations.

1 Introduction

Belief measures are certain non-additive real-valued set functions introduced by
Dempster and Shafer [10, 12]. Roughly speaking, models based on belief mea-
sures are used in situations in which the precise probabilistic model consisting
of one probability measure is not available due to the lack of information about
the conditions or results of some random experiment. From the mathematical
point of view, belief measures are completely monotone set functions in the
sense of Choquet [11], who studied complete monotonicity of capacities in the
systematic way.

The aim of this paper is to introduce belief functions in the framework of
 Lukasiewicz logic. This is accomplished by an extension procedure that assigns
a functional to some belief measure via Choquet integral. In this general set-
ting the key issue is to clarify the meaning of total monotonicity, which can be
expressed on an arbitrary Abelian semigroup according to Choquet. The con-
cept of belief function proposed in this paper includes many-valued analogues
of probabilities on formulas, the so-called states. States were introduced by
Mundici [9] in order to model the notion of “average truth-value” of formulas.
It was proved in [5] and [6] that the mathematical properties of states indeed fits
this idea, namely, every state is the Lebesgue integral of (an equivalence class
of) a formula w.r.t. a Borel probability measure on possible worlds. Since this
result is of an independent interest and motivates the forthcoming definition of
a belief function, a new proof is given in Section 3.

∗The work of the author was supported by the grant GA ČR 201/09/1891 and by the grant
No.1M0572 of the Ministry of Education, Youth and Sports of the Czech Republic.
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The paper is structured as follows. Section 2 contains necessary definitions
and results concerning  Lukasiewicz infinite-valued propositional logic and its
associated Lindenbaum algebra Lk of (equivalence classes of) formulas over k
propositional variables. Section 3 is devoted to states. In particular, it will be
shown that the geometrical structure of formulas in Lk makes possible to derive
the integral representation of states (Theorem 1). In Section 4 we investigate
belief functions on formulas in Lk and show a number of generalizations of
results known for classical belief measures on events (Theorem 3 and 4).

2 Preliminary Notions

The aim of this section is to provide a survey of  Lukasiewicz infinite-valued
propositional logic [1, Chapter 4] and its associated Lindenbaum algebra. For-
mulas φ,ψ, . . . are constructed from propositional variables A1, . . . , Ak by ap-
plying the standard rules known in Boolean logic. The connectives are negation,
disjunction and conjunction, which are denoted by ¬, ⊕ and ⊙, respectively.
This is already a complete set of connectives so that, for instance, the implica-
tion φ → ψ can be defined as ¬φ ⊕ ψ. The set of all formulas in propositional
variables A1, . . . , Ak is denoted by Form(A1, . . . , Ak).

Semantics for connectives of  Lukasiewicz logic is defined by operations in
algebras called MV-algebras [1]. The algebra of truth degrees of  Lukasiewicz
logic is the standard MV-algebra, which is the unit interval [0, 1] endowed with
the operations ¬,⊕,⊙ defined as follows:

¬a =1 − a

a⊕ b = min {a+ b, 1}
a⊙ b = max {a+ b− 1, 0}

A valuation is a mapping V : Form(A1, . . . Ak) → [0, 1] such that V (¬φ) =
1 − V (φ), V (φ ⊕ ψ) = V (φ) ⊕ V (ψ) and V (φ ⊙ ψ) = V (φ) ⊙ V (ψ). Formulas
φ,ψ ∈ Form(A1, . . . , Ak) are called equivalent when V (φ) = V (ψ), for every
valuation V . The equivalence class of φ is denoted [φ]. The set of all such
equivalence classes is an MV-algebra Lk with the operations ¬[φ] = [¬φ],
[φ] ⊕ [ψ] = [φ⊕ ψ] and [φ] ⊙ [ψ] = [φ⊙ ψ], for every φ,ψ ∈ Form(A1, . . . , Ak).

Since every valuation V is uniquely determined by its restriction to the
propositional variables V 7→ V (A1, . . . , Ak) ∈ [0, 1]k, every “possible world” V
is matched with a unique point xV from the k-dimensional unit cube [0, 1]k

and vice versa. Let Vx be the valuation corresponding to x ∈ [0, 1]k. Put
[φ](x) = Vx(φ), for every x ∈ [0, 1]k. Hence the equivalence class [φ] of every
φ ∈ Form(A1, . . . Ak) can be viewed as a function [0, 1]k → [0, 1] and Lk is the
algebra of all such functions endowed with the pointwise operations ¬,⊕,⊙.

McNaughton theorem ([2]). (Lk,⊕,⊙,¬) is precisely the algebra of all func-
tions [0, 1]k → [0, 1] that are continuous and piecewise linear, where each linear
piece has integer coefficients.

Let f ∨ g = ¬(¬f ⊕ g) ⊕ g, f ∧ g = ¬(¬f ∨ ¬g). These operations are in fact
the pointwise supremum and infimum of functions in Lk, respectively, and they
make Lk into a distributive lattice.
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A filter in Lk is a subset F of Lk such that (i) 1 ∈ F ; (ii) if f ∈ F and f ≤ g
with g ∈ Lk, then g ∈ F ; (iii) if f, g ∈ F , then f ⊙ g ∈ F . In this article we
consider only filters F with F ̸= Lk. A maximal filter is a filter F such that no
filter in Lk strictly contains F .

Theory of Schauder hats and bases in Lk, which was developed for the purely
geometrical proof of McNaughton theorem [1, Section 9.1], is briefly repeated in
this paragraph. The basic familiarity with polyhedral geometry and topology is
assumed, see [3, 4], for instance. A polyhedral complex (in [0, 1]k) is a finite set
of polyhedra R such that: (i) each polyhedron of R is included in [0, 1]k, all its
vertices have rational coordinates; (ii) if P ∈ R and Q is a face of P , then Q ∈ R;
(iii) if P,Q ∈ R, then P ∩Q is a face of both P and Q. The set

∪
P∈R P is called

a support of R. When all the polyhedra of a polyhedral complex S are simplices,
then S is said to be a simplicial complex. Alternatively, a simplicial complex S

with the support S is called a triangulation of S. The denominator den(q) of a
point q ∈ [0, 1]k with rational coordinates ( r1

s1
, . . . , rk

sk
), where ri ≥ 0, si > 0 are

the uniquely determined relatively prime integers, is the least common multiple
of s1, . . . , sk. Passing to homogeneous coordinates in Rk, put

q̃ =
(

den(q)
s1

r1, . . . ,
den(q)

sk
rk,den(q)

)
and note that q̃ ∈ Zk+1. A k-simplex with vertices v0, . . . , vk is unimodular if
{ṽ0, . . . , ṽk} is a basis of the free Abelian group Zk+1. An n-simplex with n < k
is unimodular when it is a face of some unimodular k-simplex. We say that
a triangulation Σ is unimodular if each simplex of Σ is unimodular. When R

is a polyhedral complex, V(R) denotes the set of all the vertices of R. Let Σ
be a unimodular triangulation with a support S ⊆ [0, 1]k. For each x ∈ V(Σ),
the Schauder hat (at x over Σ) is the uniquely determined continuous piecewise
linear function hx : S → [0, 1] which attains the value 1

den(x) at x, vanishes at
each vertex from V(Σ) \ {x}, and is a linear function on each simplex of Σ. The
basis HΣ (over Σ) is the set {hx | x ∈ V(Σ)}.

3 States

States on MV-algebras are many-valued analogues of probabilities on Boolean
algebras. The disjointness of functions in Lk is captured by the relation f ⊙g =
0, for f, g ∈ Lk. This condition also implies f ⊕ g = f + g.

Definition 1. A state s on Lk is a mapping s : Lk → [0, 1] such that s(1) = 1
and s(f ⊕ g) = s(f) + s(g), for every f, g ∈ Lk with f ⊙ g = 0.

States on any (semisimple) MV-algebra were completely characterized in [5] and
independently in [6] as integrals.

Theorem 1. If s is a state on Lk, then there exists a uniquely determined Borel
probability measure µ on [0, 1]k such that s(f) =

∫
f dµ, for each f ∈ Lk.

In the rest of this section we give an alternative, a purely geometrical proof
of Theorem 1. By M1 we denote the convex set of all Borel probability measures
on [0, 1]k, which is a compact metric space in w∗-topology. For every sequence
(µn) in M1,

µn
w∗

−−→ µ iff ∫ fdµn −→ ∫ fdµ,
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for every continuous function f : [0, 1]k → R. Let s be a state on Lk. In
the sequel T denotes the collection of all unimodular triangulations of [0, 1]n.
Theorem 1 will be established in three steps.

Claim 1. For every Σ ∈ T, the set of Borel probability measures

MΣ = {µ | s(hx) = ∫ hxdµ, for each hx ∈ HΣ}

is nonempty and w∗-closed.

Proof. Let δx denotes the Dirac measure concentrated at a point x ∈ [0, 1]n.
Put

δ =
∑

x∈V(Σ)

den(x)s(hx)δx,

and observe that den(x)s(hx) = s(den(x)hx) ∈ [0, 1] for each x ∈ V(Σ). The
sum

∑
x∈V(Σ) den(x)hx is constantly equal to 1 since it is equal to 1 at every

vertex of V(Σ) and every Schauder hat is linear over each simplex of Σ. This
gives

∑
x∈V(Σ)

den(x)s(hx) =
∑

x∈V(Σ)

s(den(x)hx) = s

 ∑
x∈V(Σ)

den(x)hx

 = s(1) = 1.

Hence δ is a convex combination of Borel probability measures and therefore
itself a Borel probability measure. We will show that δ ∈ MΣ. For each vertex
x′ ∈ V(Σ), we get∫

hx′ dδ =
∑

x∈V(Σ)

∫
den(x)s(hx)hx′ dδx =

∑
x∈V(Σ)

den(x)s(hx)hx′(x)

= den(x′)s(hx′)hx′(x′) = den(x′)s(hx′)
1

den(x′)
= s(hx′).

(1)

In order to show that MΣ is w∗-closed, consider a sequence (µn) in MΣ

with µn
w∗

−−→ µ, for some µ ∈ M1. It follows that for each hx ∈ HΣ we obtain
s(hx) =

∫
hx dµn −→

∫
hx dµ. Hence s(hx) =

∫
hx dµ and µ ∈ MΣ.

Claim 2. The collection of subsets (MΣ)Σ∈T of M1 has the finite intersection
property.

Proof. Let T′ ⊆ T be nonempty and finite. We will show that
∩

Σ∈T′ MΣ ̸= ∅.
First, we will show that every pair of bases HΣ1 ,HΣ2 , where Σ1,Σ2 ∈ T′, has
a joint refinement (that is, there exists a basis H such that both HΣ1 and HΣ2

are included in the MV-algebra generated by H). This is proved directly as
follows. The triangulations Σ1,Σ2 have a joint subdivison (that is, there exists
a triangulation of [0, 1]k with the property that each of its simplices is included
in some simplex of HΣ1 or HΣ2) by taking all the intersections of simplices of
HΣ1 and HΣ2 , and eventually triangulating the resulting polyhedral complex.
This triangulation can be in turn subdivided to a unimodular triangulation
Σ∗ ∈ T [7, Claim 2]. The joint refinement of the bases HΣ1 , HΣ2 is then the
basis HΣ∗ . The same argument straightforwardly applies to the finite set of
bases {HΣ | Σ ∈ T′}. Let HΣ′ be the basis refining each basis HΣ, Σ ∈ T′.
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Precisely, if Σ ∈ T′, then for each hy ∈ HΣ there exist uniquely determined
nonnegative integers αx, where x ∈ V(Σ′), such that hy =

∑
x∈V(Σ′) αxhx. Put

δ =
∑

x∈V(Σ′) den(x)s(hx)δx. It follows that∫
hy dδ =

∑
x∈V(Σ′)

αx

∫
hx dδ =

∑
x∈V(Σ′)

αxs(hx),

where the last equality results from the calculation completely analogous to (1).
Since

∑
x∈V(Σ′) αxhx ≤ 1, we obtain

∑
x∈V(Σ′) αxs(hx) = s

(∑
x∈V(Σ′) αxhx

)
=

s(hy), and thus δ ∈
∩

Σ∈T′ MΣ.

Claim 3. The intersection
∩

Σ∈TMΣ contains a single element µ which satisfies
s(f) =

∫
f dµ, for every f ∈ Lk.

Proof. As M1 is w∗-compact and (MΣ)Σ∈T is a collection of w∗-closed subsets
having the finite intersection property, the intersection

∩
Σ∈TMΣ is nonempty.

Every probability measure µ ∈
∩

Σ∈TMΣ represents the state s. Indeed, given
a McNaughton function f ∈ Lk, find Σ∗ ∈ T and the basis HΣ∗ such that f =∑

x∈V(Σ∗) αxhx, for uniquely determined nonnegative integers αx [1, Theorem
9.1.5]. It results that

s(f) = s

 ∑
x∈V(Σ∗)

αxhx

 =
∑

x∈V(Σ∗)

αxs(hx) =
∑

x∈V(Σ∗)

αx

∫
hx dµ

=
∫ ∑

x∈V(Σ∗)

αxhx dµ =
∫
f dµ.

It remains to show that
∩

Σ∈TMΣ is a singleton. By the way of contradiction,
assume that there are Borel probability measures µ, ν ∈

∩
Σ∈TMΣ such that

µ ̸= ν. The Borel subsets of [0, 1]n are generated by the collection of all open
(in the subspace Euclidean topology of [0, 1]n) (hyper)rectangles with rational
vertices: indeed, every open subset of [0, 1]n can be written as a countable union
of such rectangles. As a consequence, [8, Theorem 3.3] yields that there exists
an open rectangle R ⊆ [0, 1]n with rational vertices and µ(R) ̸= ν(R).

Let R be the polyhedral complex consisting of all the faces of the closure
R of R. Taking an arbitrary point r ∈ R with rational coordinates, consider
the stellar subdivision R′ of R (see [4, p.15]). The polyhedral complex R′ can
be triangulated without introducing any new vertices [4, Proposition 2.9]. In
turn, the resulting simplicial complex can be subdivided into a unimodular
triangulation Σ of R with a possible introduction of new vertices (see [7, Claim
2], for example).

For each v ∈ V(Σ) ∩ R, let hv be the Schauder hat at v over Σ, and define
a function fv : [0, 1]n → [0, 1] by

fv(x) =

{
hv(x), x ∈ R,

0, otherwise.

When f =
⊕

v∈V(Σ)∩R

fv, then it follows directly from unimodularity of Σ and

the definition of fv that f ∈ Lk. In particular, note that f(x) vanishes iff
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x ∈ [0, 1]n \R and thus

sup
m∈N

m⊕
i=1

f = χR, (2)

where χR is the characteristic function of R. For every m ∈ N, the function⊕m
i=1 f is an n-variable McNaughton function, and (2) together with Lebesgue’s

dominated convergence theorem leads to the equality

µ(R) = sup
m∈N

∫ m⊕
i=1

f dµ = sup
m∈N

∫ m⊕
i=1

fdν = ν(R),

which is the contradiction.

The state space of Lk is a compact convex set. It can be completely described
by its extreme boundary (Krein-Milman theorem), which is formed by the states
sx : f ∈ Lk 7→ f(x), for every x ∈ [0, 1]k. In addition, the set of all such states
can be bijectively mapped onto the set of all maximal filters in Lk [9, Theorem
2.5] by the mapping sx 7→ Fx = {f ∈ Lk | sx(f) = 1}.

Theorem 2 ([9]). The set S(Lk) of all states on Lk is a compact convex subset
of the product space [0, 1]Lk . The set of all extreme points of S(Lk) equals
{sx | x ∈ [0, 1]k}, which is a closed subset of S(Lk) whose elements are in
one-to-one correspondence with maximal filters in Lk.

4 Belief Functions

Belief measures introduced in Dempster-Shafer theory [10, 12] are particular
completely (totally) monotone mappings in the sense of Choquet [11]. The
complete monotonicity of a real function can be defined on an arbitrary Abelian
semigroup. Let (G, ∗) be an Abelian semigroup and β be a mapping G → R.
Put ∆∗

aβ(x) = β(x) − β(x ∗ a), for every x, a ∈ G.

Definition 2. A mapping β : G→ R is completely monotone if

∆∗
an
· · ·∆∗

a1
β(x) ≥ 0 (3)

for every n ≥ 1 and every x, a1, . . . , an ∈ G.

A completely monotone, normalized and nonnegative real function on a family
of sets equipped with ∩ is known as a belief measure (function) [12].

Definition 3 (Belief measure). Let (G, ∗) = (A,∩), where A is a family of
subsets of some nonempty set X closed w.r.t. finite intersections such that
∅, X ∈ A. A completely monotone function β : A → [0, 1] with β(X) = 1, β(∅) =
0 is called a belief measure.

In case that A is even an algebra of sets, the condition (3) can be equivalently
expressed for belief measures as follows:

β

(
n∪

i=1

Ai

)
≥

∑
I⊆{1,...n}

I ̸=∅

(−1)|I|+1β

(∩
i∈I

Ai

)
,
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for every A1, . . . , An ∈ A. In this case the nonnegativity of the first two suc-
cessive differences in (3) implies that β is a monotone and a supermodular set
function, respectively, where the latter property means that

β(A1 ∪A2) + β(A1 ∩A2) ≥ β(A1) + β(A2),

for every A1, A2 ∈ A. In particular, note that every finitely additive probability
measure on A is a belief measure due to the inclusion-exclusion principle.

A plain generalization of the classical notion of a belief measure from Defi-
nition 3 towards the MV-algebra of McNaughton functions Lk leads to consid-
ering the Abelian semigroup (Lk,⊙) together with the differences defined by
the operator ∆⊙. This approach, however, does not seem to give the “right”
concept of a belief function on Lk since not every state is completely monotone
w.r.t. ∆⊙. In fact it is possible to find a state s and McNaughton functions
f, g1, g2 ∈ Lk such that ∆⊙

g2
∆⊙

g1
s(f) < 0. The lack of complete monotonicity is

caused by the absence of distributivity of ⊙ over ⊕ (and vice versa), which is
in a clear contrast to the properties of the lattice operations ∨ and ∧ on Lk.
Yet the requirement of complete monotonicity for states is rather natural due
to the linearity of every state (cf. Theorem 1) and consistency with the classi-
cal definition of belief measure, which covers finitely additive probabilities. An
alternative definition of belief function on Lk is proposed in the next paragraph
and it is shown how this concept relates to complete monotonicity w.r.t. the
Abelian semigroup (Lk,∧) together with the operator ∆∧.

In the sequel we consider belief measures on the family C of all closed subsets
of [0, 1]k. In particular, a belief measure β on C is outer regular (w.r.t. C) if
β(A) = inf {β(B) | B ∈ C and B ⊇ A}, for every A ∈ C.

Definition 4 (Belief function). Let β be an outer regular belief measure on C.
A belief function β̂ on Lk is given by

β̂(f) =
∫ 1

0

β(f−1([t, 1])) dt, f ∈ Lk. (4)

Thus saying that “β̂ is a belief function on Lk” is equivalent to the existence
of an outer regular belief measure β on C so that β̂ and β are related by the
formula (4). The functional f 7→

∫ 1

0
β(f−1([t, 1])) dt is also called the Choquet

integral of f w.r.t. β [13]. Every pre-image f−1([t, 1]) is a closed set in [0, 1]k

and β(f−1([t, 1])) is thus well-defined. Since the function t 7→ β(f−1([t, 1])) is
bounded and non-increasing on [0, 1] for a fixed β and f ∈ Lk, the integral on
the right-hand side of (4) exists as the Riemann integral. Definition 4 bears a
resemblance to the approach of Goubault-Larrecq in [14], where, on the other
hand, belief measures are defined on the lattice of open subsets of a certain topo-
logical space. The preference of closed sets over opens is immaterial from the
viewpoint of Choquet integration (4) and it will be justified only in the follow-
ing. In a nutshell, closed subsets of [0, 1]k correspond one-to-one to particular
basic belief functions.

States are special belief functions according to Definition 4. Indeed, if an
outer regular belief measure β satisfies

β(A ∪B) + β(A ∩B) = β(A) + β(B), for every A,B ∈ C,
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then β determines a unique regular Borel measure [11, V.26.6], and, conse-
quently, the corresponding β̂ is a state on Lk by Theorem 1 since the Choquet
integral w.r.t. a measure is just the Lebesgue integral. Moreover, Choquet
proved in [11, VII.52] that the integral in (4) preserves complete monotonicity
of β when the lattice operations on the domain of β̂ are employed. Precisely,
the following statement holds true.

Theorem 3 ([11]). Every belief function β̂ is completely monotone w.r.t. the
Abelian semigroup (Lk,∧).

Any belief function β̂ thus satisfies the following properties that are jointly
equivalent to its complete monotonicity:

(i) β̂ is monotone,
(ii) for every f1, . . . , fn ∈ Lk with n ≥ 2:

β̂

(
n∨

i=1

fi

)
≥

∑
I⊆{1,...n}

I ̸=∅

(−1)|I|+1β̂

(∧
i∈I

fi

)
. (5)

Further properties of belief functions on Lk are direct consequences of the well-
known properties of Choquet integral (see [13]).

Proposition 1. Let β̂ be a belief function on Lk. Then for every f, g ∈ Lk:
(i) β̂(0) = 0, β̂(1) = 1
(ii) if f ≤ g, then β̂(f) ≤ β̂(g)
(iii) if f ⊙ g = 0, then β̂(f ⊕ g) ≥ β̂(f) + β̂(g)
(iv) β̂(f) + β̂(¬f) ≤ 1
(v) β̂ is a state iff β satisfies β(A ∪B) + β(A ∩B) = β(A) + β(B), for every

A,B ∈ C
(vi) if f⊙g = 0 and there is no pair x, y ∈ [0, 1]k with f(x) < g(x), f(y) > g(y),

then β̂(f ⊕ g) = β̂(f) + β̂(g)

Basic examples of belief functions are minima of McNaughton functions over
closed subsets of [0, 1]k.

Example 1. Let C ∈ C be nonempty and

bC(f) = min {f(x) | x ∈ C}, f ∈ Lk.

Then bC is a belief function since one can write bC = β̂C , where

βC(A) =

{
1, C ⊆ A,

0, otherwise,
A ∈ C,

is an outer regular belief measure on C.

Theorem 4. The set B(Lk) of all belief functions on Lk is a compact con-
vex subset of the product space [0, 1]Lk . The set of extreme points extB(Lk) of
B(Lk) is closed, equals {bC | C ∈ C, C ̸= ∅}, and it is in one-to-one correspon-
dence with filters in Lk.
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Proof. It is known that the set B(C) of all outer regular belief measures on C is
a compact convex subset of the product space [0, 1]C and that the set of extreme
points of B(C) is closed and equals {βC | C ∈ C, C ̸= ∅} (see [11, VII.50]). The
mapping β 7→ β̂ is an affine and a continuous mapping of B(C) onto B(Lk)
since Choquet integration is continuous for a fixed integrand. Moreover, it is
also injective, which can be deduced from another result of Choquet [11, p. 266].
The one-to-one correspondence between {bC | C ∈ C, C ̸= ∅} and the filters in
Lk follows from [1, Section 3.4]: given bC , put

FC = {f ∈ Lk | f(x) = 1, for every x ∈ C}. (6)

Vice versa, if F is a filter in Lk, let

KF =
∩

f∈F

f−1(1). (7)

Compactness of [0, 1]k and closedness of each f−1(1) gives that the closed set
KF is nonempty. The two mappings from (6)-(7) are mutually inverse since [1,
Theorem 3.4.3(ii)] shows that C = KFC

, for every C ∈ C.

By Krein-Milman theorem, every belief function on Lk is thus in the closure of
some convex hull formed by belief functions bC . In particular, the usual integral
reformulation of Krein-Milman theorem together with Theorem 4 admits to
prove another integral representation of β̂. The uniqueness part of the next
theorem can be deduced from the similar result [11, VII.50.1] for B(C) by using
the fact that β 7→ β̂ is an affine homeomorphism.

Theorem 5. If β̂ is a belief function on Lk, then there exists a unique regular
Borel probability measure µ on extB(Lk) such that

β(f) =
∫

ext B(Lk)

bC(f) dµ, f ∈ Lk.

4.1 Remarks

Every belief function of the form bC for some C ∈ C preserves finite minima:

bC(f ∧ g) = bC(f) ∧ bC(g), f, g ∈ Lk.

In general, every minimum-preserving function b : Lk → [0, 1] with b(0) =
1, b(1) = 1 is a belief function. These functions are termed necessity mea-
sures (functions) and they were recently investigated on formulas of n-valued
 Lukasiewicz logic in [15].

Belief measures can be interpreted as certain lower probabilities. The cor-
responding upper probabilities are called plausibility measures in Dempster -
Shafer theory. If A is an algebra of sets and β : A → [0, 1] is a belief measure,
then the plausibility measure π is defined by π(A) = 1−β(AC), for every A ∈ A.
Properties of plausibility measures are “dual” to those of belief measures so that
the general theory can be developed for any of them. Plausibility functions on
Lk are defined analogously: if b is a belief function on Lk, then the function
p(f) = 1− b(¬f), f ∈ Lk, is called a plausibility function. Observe that it is the
involutivity of  Lukasiewicz negation that makes b and p dual to each other:

b(f) = b(¬¬f) = 1 − p(¬f), f ∈ Lk.
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4.2 Open problems

The important open question is whether complete monotonicity of a real map-
ping on Lk is sufficient for its representation by the Choquet integral w.r.t. some
belief measure on C. Precisely, if b : Lk → [0, 1] is such that b(0) = 0, b(1) = 1
and b is completely monotone w.r.t. (Lk,∧), is it true that there exists an outer
regular belief measure β on C satisfying β̂ = b?

Another question of interest is whether a belief function b on Lk is a “lower
probability”, that is, whether the equality

b(f) = inf {s(f) | s state with s ≥ b}, f ∈ Lk,

holds true or not.
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Abstract

An extension of the concept of fuzzy measure is introduced in an anal-
ogous way that coherent prevision is an extension of the finitely additive
probability. To this purpose we deal with two new concepts: the fuzzy
prevision of random numbers, as an extension to random numbers of the
fuzzy measure, and the Archimedean g-operation as an extension to the
set of real numbers of the Archimedean t-conorm. Moreover the concept
of decomposable fuzzy prevision is introduced and an extension of the
Weber [23] classification theorem is shown. Finally some applications to
Social Sciences are sketched.

1 Introduction

The concept of finitely additive probability has been extended in [7] to the co-
herent prevision. While a finitely additive probability is a function defined in a
set of events, a coherent prevision is defined in a set of random numbers. The
events are particular random numbers with codomain contained in {0, 1}.

The advantage of such an extension consists in the possibility to replace
the union of events with the sum of random numbers. Then the theory of the
finitely additive probability is framed in the more general environment of the
vector space of random numbers. In this way also a very useful geometrical
interpretation is obtained, based on hyperplanes, convex sets and join spaces
(see, e.g., [4], [7], [14], [15], [16], [17], [18], [19], [20], [21]).

A generalization of finitely additive probability is given by the fuzzy measure.
The concept of fuzzy measure has been widely dealt with, among the others,
by [1], [2], [17], [18], [22], [23]. As for the finitely additive probability, the co-
domain of a fuzzy measure is the real interval [0, 1], but the additivity is replaced
by the weaker condition of monotonicity.

Decomposable fuzzy measures with respect to t-conorms are considered in
several book and papers, (see, e.g.,[1], [2], [10], [12], [17], [18], [22], [23]). These
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will be recalled in the next Sec. and are a palatable compromise between the too
much general concept of fuzzy measure and the very particular one of finitely
additive probability. The additivity is replaced by the weaker property of addi-
tivity w. r. to a t-conorm.

Our present aim is to introduce the concept of fuzzy prevision as an extension
of the concept of fuzzy measure, in an analogous way that coherent prevision
is an extension of the finitely additive probability in [7]. Moreover we present
the concept of decomposable fuzzy prevision that may be the happy medium
between a coherent prevision and a fuzzy prevision.

To this purpose we introduce the new concept of Archimedean g-operation as
an extension to the set of real numbers of the Archimedean t-conorm considered
by many authors (see, e.g., [10], [17], [18], [22], [23]).

Moreover we introduce the concept of decomposable fuzzy prevision and we
propose an extension of the Weber classification theorem [23] to fuzzy previ-
sion. Properties of fuzzy previsions and Archimedean g-operations and their
applications to Social Sciences are investigated.

2 Decomposable Fuzzy Measures

2.1 Fuzzy Measures

Let U be a set and F a family of subsets of U containing {∅, U}.
Definition 1. Let us define finitely monotonic fuzzy measure on F every

real function, m : F → R, such that:

FM1 m(∅) = 0; m(U) = 1;

FM2 ∀A, B ∈ F , A ⊆ B ⇒ m(A) ≤ m(B).

If F is an algebra and FM2 is replaced by the stronger condition:

FM2P ∀A,B ∈ F , A ∩ B = ∅ ⇒ m(A ∪ B) = m(A) + m(B).

then m reduces to a finitely additive probability [7], [8].

A finitely monotonic fuzzy measure m is said to be a fuzzy measure [22] if:

FM3 for every monotonic sequence {An}n∈N of elements of F ,

lim
n

An = A ∈ F ⇒ lim
n

m(An) = m(A).

If U is finite or, more generally, F is finite, then a finitely monotonic fuzzy
measure on F is also a fuzzy measure [1], [2], [10], [18], [22], [23].

2.2 Archimedean t-conorms

Let us recall some definitions (see, e.g., [10], [12], [23]).
Definition 2. A binary operation ⊥ on the real unit interval [0, 1] is called

a t-conorm if it is:

• increasing in each argument;

• associative;
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• commutative;

• with 0 as neutral element.

A t-conorm ⊥ is said to be Archimedean if it is continuous and x⊥x > x,
∀x ∈ (0, 1). An Archimedean t-conorm is called strict if it is strictly increasing
in the open square (0, 1)2.

The following representation theorem holds:
Theorem 1. [12] A binary operation ⊥ on [0, 1] is an Archimedean t-

conorm if and only if there exists a strictly increasing and continuous function
g : [0, 1] → [0, +∞], with g(0) = 0, such that

x⊥y = g(−1)(g(x) + g(y)).

Function g(−1) denotes the pseudo-inverse of g, i.e.:

g(−1)(x) = g−1(min(x, g(1))).

Moreover:

• ⊥ is strict if and only if g(1) = +∞;

• the function g, called an additive generator of ⊥, is unique up to a positive
constant factor.

2.3 Decomposable fuzzy measures

Let us recall some fundamental definitions and theorems [23].
Definition 3. Let U be a set and F an algebra of subsets of U . A fuzzy

measure m on F is said to be decomposable w. r. to a t-conorm ⊥, or ⊥-
decomposable, if:

A ∩ B = ∅ ⇒ m(A ∪ B) = m(A)⊥m(B).

The following classification theorem holds:
Theorem 2. [23] (see also [17], [18]). If the operation ⊥ in [0, 1] is a strict

Archimedean t-conorm, then:

S g ◦ m : F → [0,+∞] is an infinite additive measure, whenever m is a ⊥-
decomposable one.

If ⊥ is a nonstrict Archimedean t-conorm, then g ◦ m is finite and one of the
following cases occurs:

NSA g ◦ m : F → [0, +∞] is a finite additive measure;

NSP g ◦ m is a finite set function which is only pseudo additive, i.e.,
if {An}n∈{1,2,...,s} is a family of pairwise disjoint elements of F , then:

(g ◦ m)(∪s
n=1An) < g(1) ⇒ (g ◦ m)(∪s

n=1An) =
s∑

n=1

(g ◦ m)(An);

(g ◦ m)(∪s
n=1An) = g(1) ⇒ (g ◦ m)(∪s

n=1An) ≤
s∑

n=1

(g ◦ m)(An).
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3 Coherent Previsions

It is worth recalling some basic concepts related with random numbers and
coherent prevision (see, e.g., [7], [3], [5], [6], [9], [14], [15], [16], [19]) as an
extension to random numbers of the coherent subjective probability (see, e.g.,
[7], [8]), in order to have same useful points of reference to introduce the concept
of fuzzy prevision.

Every event E can be identified with its characteristic function (see, e.g.,[7],
[13]) χE : {E,Ec} → {0, 1}, such that χE(E) = 1, χE(Ec) = 0, where 0 and 1
are the truth values of E.

More in general, a random number is a function φ : Π → R, where Π is
a partition of the certain event. Then the events can be seen as the random
numbers with range contained in {0, 1}, and the fuzzy events can be defined as
random numbers with range contained in [0, 1] (see, e.g., [13]).

The importance of the coherent prevision and its extensions to Decision
Making is emphasized in many books (see, e. g., [7], [11]) and papers (see, e.
g., [14], [15], [16], [19]).

Definition 4. [7] (see, also, [15], [16], [19]). Let S be a non empty set of
random numbers. We define prevision on S a function P : S → R such that:

P1 ∀a, b ∈ R, ∀X ∈ S, a ≤ X ≤ b ⇒ a ≤ P (X) ≤ b (mean property);

P2 ∀X,Y ∈ S, X + Y ∈ S ⇒ P (X + Y ) = P (X) + P (Y ) (additivity).

We say that the prevision P is coherent if there exists an extension of P
to the vector space V (S) generated by S, i.e., the set of linear combinations of
elements of S with coefficients on R.

Remark 1. A prevision P on S reduces to a finitely additive probability
on S if every element X of S assumes only values belonging to the set {0, 1}.
Moreover, if every element X of S assumes only values belonging to the real
interval [0, 1], P can be seen as a probability of fuzzy events.

Some important consequences of the previous definition are shown in the
following theorems (see, e.g., [7], [14], [15], [16], [19]).

Theorem 4. If P is a coherent prevision on S, we have:

MO (monotonicity) ∀X,Y ∈ S, X ≤ Y ⇒ P (X) ≤ P (Y );

EX (linearity) there is only an extension P ∗ of P to V (S) and for every
n ∈ N,X1, X2, ..., Xn ∈ S, c1, c2, ..., cn ∈ R, we have:

P ∗(c1X1 + c2X2 + ...+ cnXn) = c1P (X1)+ c2P (X2)+ ...+ cnP (Xn). (1)

Theorem 5. If P is a coherent prevision on S then for every n ∈ N, X1, X2, ...,
Xn ∈ S, c, c1, c2, ..., cn ∈ R we have:

P3 c1X1 + c2X2 + ... + cnXn ≤ c ⇒ c1P (X1) + c2P (X2) + ... + cnP (Xn) ≤ c;

P4 c1X1 + c2X2 + ... + cnXn ≥ c ⇒ c1P (X1) + c2P (X2) + ... + cnP (Xn) ≥ c;

P5 c1X1 + c2X2 + ... + cnXn = c ⇒ c1P (X1) + c2P (X2) + ... + cnP (Xn) = c.

Theorem 6. Let S be a non empty set of random numbers and let P be a
function defined on S and with values on R. If, for every n ∈ N, X1, X2, ..., Xn ∈
S, c, c1, c2, ..., cn ∈ R, P3 or P4 holds, then P ∗ : V (S) → R given by (1) is a
prevision on V (S) and so P is a coherent prevision on S.
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4 Fuzzy Previsions

4.1 Fuzzy previsions as extension of fuzzy measures

The concept of prevision of random numbers can be extended from many dif-
ferent points of view. We consider two cases:

RNE Random Numbers Extension. Random numbers are replaced by random
fuzzy numbers and fuzzy prevision is defined on a set of random fuzzy
numbers with analogous properties as in definition 4. This way is pursued
in some papers of ours (see, e.g., [14], [15], [16], [19]).

FME Fuzzy Measure Extension. The domain of a fuzzy measure is a set of
events. We introduce a real function having as domain a set S of random
numbers, such that its restriction to a set of events (i.e., random numbers
with range contained in {0, 1}) is a fuzzy measure. We pursue here this
way.

Then we introduce the following definition.
Definition 5. Let S be a family of random numbers. We define fuzzy

prevision, of type FME, on S, any function P : S → R such that:

FP1 ∀a, b ∈ R, ∀X ∈ S, a ≤ X ≤ b ⇒ a ≤ P (X) ≤ b; (mean property)

FP2 ∀X, Y ∈ S, X ≤ Y ⇒ P (X) ≤ P (Y ). (monotonicity)

4.2 An extension of the concept of Archimedean t-conorm

We introduce the following definition of additive generator on R, as a general-
ization of the concept of additive generator of an Archimedean t-conorm.

Definition 6. We define additive generator on R every function g defined
in a closed interval [ag, bg] of [−∞, +∞], with codomain [−∞, +∞], and such
that:

AG1 the closed interval [ag, bg] of [−∞, +∞], called the base interval, contains
[0, 1];

AG2 g(0) = 0;

AG3 g is strictly increasing and continuous.

Definition 7. Let g be an additive generator on R with base interval
[ag, bg]. We define pseudoinverse of g the function g(−1), defined in [−∞, +∞],
with codomain the base interval [ag, bg] of g, and such that:

• g(−1)(y) = g−1(y) if y ∈ [g(ag), g(bg)];

• g(−1)(y) = ag if y ≤ g(ag);

• g(−1)(y) = bg if y ≥ g(bg).

Definition 8. Let g be an additive generator on R with base interval [ag, bg].
We define Archimedean operation generated by g, we call it the g-operation, the
operation ⊕ defined as follows:

∀x, y ∈ [ag, bg] : {g(x), g(y)} ̸= {−∞, +∞},
x ⊕ y = g(−1)(g(x) + g(y)). (2)
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We say that the g-operation ⊕ is:

• strict, if [g(ag), g(bg)] = [−∞,+∞];

• nonstrict, if [g(ag), g(bg)] is a bounded interval of R;

• semistrict, otherwise.

From (2) the following theorem follows:
Theorem 7. The g-operation ⊕ given by (2) is:

• increasing in each argument;

• associative;

• commutative;

• with 0 as neutral element.

Moreover ⊕ is defined in [ag, bg]2 if it is nonstrict or semistrict; while it is
defined in [ag, bg]2 − {(ag, bg), (bg, ag)}, if it is strict.

In particular, if [ag, bg] = [0, 1], then ⊕ reduces to an Archimedean t-conorm.

4.3 Decomposable fuzzy previsions

Let us introduce a definition for decomposable fuzzy prevision as a generalization
of decomposable fuzzy measure. To this aim the ambient algebra of events is
replaced by the ambient vector space.

Let S be a vector space of random numbers, g an additive generator on R
with base interval [ag, bg], and ⊕ the correspondent g-operation. Moreover, let
P be a fuzzy prevision on S with range P (S) contained in [ag, bg].

Definition 9. We say that P is a ⊕-decomposable fuzzy prevision on S if

∀X, Y ∈ S : {g(P (X)), g(P (Y ))} ≠ {−∞, +∞},
P (X + Y ) = P (X) ⊕ P (Y ). (3)

We shall prove two theorems, that provide for an extension of the Weber
classification theorem [23] to the decomposable fuzzy previsions.

Theorem 8. (Additivity theorem for strict g-operations). If ⊕ is a strict
g-operation and one of the following cases occur:

C1 P (S) ⊆ [ag, bg);

C2 P (S) ⊆ (ag, bg].

then g ◦ P is additive, that is:

∀X,Y ∈ S, (g ◦ P )(X + Y ) = (g ◦ P )(X) + (g ◦ P ). (4)

Proof. From (2), (3) we have:

∀X, Y ∈ S, g(P (X + Y )) = g(P (X) ⊕ P (Y )) = g(g(−1)(g(P (X)) + g(P (Y ))).
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If C1 or C2 holds, then the sum g(P (X)) + g(P (Y )) is defined. Moreover,
since ⊕ is a strict g-operation, g(−1) coincides with the inverse of g. Then

g(P (X + Y )) = g(P (X)) + g(P (Y )).

Theorem 9. (Coherence theorem for nonstrict or semistrict g-operations).
If ⊕ is a nonstrict or semistrict g-operation, for every pair X, Y of random
numbers belonging to S, we have:

A1 if ag < P (X + Y ) < bg, then the additivity holds:

g(P (X + Y )) = g(P (X)) + g(P (Y )); (5)

A2 if P (X + Y ) = ag, then we have the superadditivity :

g(P (X + Y )) ≥ g(P (X)) + g(P (Y )); (6)

A3 if P (X + Y ) = bg, then we have the subadditivity :

g(P (X + Y )) ≤ g(P (X)) + g(P (Y )). (7)

Proof. From (2), (3), ∀X, Y ∈ S we have:

g(P (X + Y )) = g(P (X) ⊕ P (Y )) = g(g(−1)(g(P (X)) + g(P (Y ))). (8)

Let z = g(P (X)) + g(P (Y )). If z is not belonging to the open interval
(g(ag), g(bg)) then g(g(−1)(z) ∈ {(g(ag), g(bg)}. From (8) this implies that
g(P (X + Y )) ∈ {(g(ag), g(bg)}, and so P (X + Y ) ∈ {ag, bg}.

Then, in the case A1, z ∈ (g(ag), g(bg)), and then g(g(−1)(z) = z, that is:

g(P (X + Y )) = g(P (X)) + g(P (Y )).

The cases A2 and A3 are an immediate consequence of the definition 7.
Indeed, if P (X + Y ) = ag, then from (8) and definition 7 we have

g(P (X + Y )) = g(ag),

g(−1)(g(P (X)) + g(P (Y )) = ag,

and then
g(P (X)) + g(P (Y )) ≤ g(ag) = g(P (X + Y )).

In an analogous way (7) is proved.

5 Applications of Fuzzy Previsions to Social Sci-
ences

We consider the problem to build a Social and Cultural Center.
We assume there is a set A = {A1, A2, ..., Am} of alternative projects and

a set O = {O1, O2, ..., On} of objectives to be satisfied. It is reasonable to
represent every objective Oj with a random number Xj : Π → R, where Π is
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the set of all the possible pairwise disjoint events and the range of Xj is the set
of the possible gains or utilities.

A decision maker D associates to every pair (Ai, Oj) a real number Pij that
represents the prevision that D associates to Xj if the alternative Ai is realized.

It seems reasonable to assume the minimal requirement that every function:

Pi : Oj ∈ O → Pij

is a fuzzy prevision.
In particular, if every Pi is decomposable w. r. to g-operation ⊕, we can

assume that the global scores S(Ai) of the alternatives Ai are obtained by the
formula:

S(Ai) = Pi1 ⊕ Pi2 ⊕ ... ⊕ Pin. (9)

Of course, the choice of g-operation ⊕ depends on an in-depth study of the
decision making problem and on the opinion of the decision maker D.

If there are more decision makers, each of these may have a different g-
operation in order to aggregate the previsions of objectives.
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Abstract

A set of conditional probabilities is introduced by conditioning in the
probability measures from an exponential family. A closure of the set is
found, using previous results on the closure of another exponential family
in the variational distance. The conditioning in the exponential family of
all positive probabilities on a finite space is discussed and related to the
permutahedra.

1 Introduction
A conditional probability space consists of a measurable space (Ω,A), nonempty
set B ⊆ A and family P of probability measures (pm’s) P (·|B), B ∈ B, on
(Ω,A) that satisfy P (B|B) = 1 whenever B ∈ B, and

P (A|C) = P (A|B) · P (B|C) whenever A ∈ A, B, C ∈ B and A ⊆ B ⊆ C.

When viewed alternatively as a nonnegative function on A × B, the family P
is called the conditional probability (cp) on (Ω, A, B) [12, 13, 8, 9, 3]. In this
work, the set B is assumed to be finite.

Let µ be a finite nonzero measure on (Ω, A), f : Ω → Rd an A-measurable
function and fµ the image of µ under f , fµ(D) = µ(f−1(D)), D ⊆ Rd Borel.
The log-Laplace transform Λµ,f of fµ,

Λµ,f (ϑ) = ln
∫
Ω

e⟨ϑ,f⟩ dµ = ln
∫

Rd e⟨ϑ,x⟩ fµ(dx) , ϑ ∈ Rd ,

is a convex function, finite on its nonempty domain dom(Λµ,f ) [14]. The full
exponential family Eµ,f determined by µ and f consists of the pm’s Qµ,f,ϑ with
the µ-density e⟨ϑ,f⟩−Λµ,f (ϑ) and ϑ ∈ dom(Λµ,f ) [1, 2]. The family is endowed
here with the topology of the variational distance |P − Q| of pm’s P and Q.

This work proposes to study sets of cp’s that are analogous to the exponential
families. Let µ be a measure on (Ω,A) that is positive and finite on B, thus
0<µ(B)<+∞, B ∈ B, and µB be the restriction of µ to B, µB(A) = µ(A∩B),

This work was supported by Grant Agency of Academy of Sciences of the Czech Republic,
Grant IAA 100750603, and by Grant Agency of the Czech Republic, Grant 201/08/0539.
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A ∈ A. If ϑ belongs to dom(ΛµB ,f ) for every B ∈ B then the family QB
µ,f,ϑ of

pm’s defined by

QB
µ,f,ϑ(A|B) = QµB ,f,ϑ(A) , A ∈ A , B ∈ B ,

is a cp on (Ω, A, B) by Remark 2.1. The main object of interest here is the set

EB
µ,f =

{
QB

µ,f,ϑ : ϑ ∈
∩

B∈B dom(ΛµB ,f )
}

.

When B = {Ω} this set is effectively the same as Eµ,f . It contains a cp P if and
only if P (·|Ω) = Qµ,f,ϑ for some ϑ ∈ dom(Λµ,f ). Sets of cp’s are endowed with
the topology of the sum distance

∑
B∈B |P (·|B) − Q(·|B)| of cp’s P and Q.

Basic observations on the sets EB
µ,f are collected in Section 2. The main idea

is to transform a cp P to the product of P (·|B) over B ∈ B, denoted by ΠP .
The image ΠEB

µ,f of EB
µ,f is recognized to be a full exponential family, see

Lemma 2.3. This family is then reduced in two steps, see Lemma 2.4. A one-
to-one canonical parametrization of the set EB

µ,f is described in Remark 2.7.
Another parametrization follows from Lemma 2.9.

The closure of EB
µ,f is found in Theorem 3.3 applying the results of [6]. Under

some assumptions on µ and f it is homeomorphic to a convex set, see Corol-
lary 3.5.

Section 4 presents the special case of a finite Ω and the family Eµ,f of all
positive pm’s on Ω. Relations to the algebraic approach of [11] are discussed. If
B is the family of all nonempty subsets of Ω then the closure of EB

µ,f exhausts
all cp’s and can be parameterized by the points of a permutahedron of the
dimension |Ω| − 1, as found earlier in [10].

2 Basic observations
If a measure µ on (Ω, A) is positive and finite on B then the mapping

(A|B) 7→ µ(A∩B)
µ(B)

= µB(A)
µB(Ω )

, A ∈ A , B ∈ B ,

gives rise to a cp. For a necessary and sufficient condition on a cp to be generated
from a measure as above see [4, (6.3), p. 351].
Remark 2.1. The assumption that µ is finite on B is equivalent to the finiteness
of µ(

S

B) where
S

B =
∪

B∈B B, using that B is finite. If ν denotes the
restriction of µ to

S

B then dom(Λν,f ) is equal to the intersection of dom(ΛµB ,f )
over B ∈ B. For ϑ in this domain

Qν,f,ϑ(A∩B)

Qν,f,ϑ(B)
=

∫
A

e⟨ϑ,f⟩ dµB
/∫

Ω
e⟨ϑ,f⟩ dµB = QµB ,f,ϑ(A) , A ∈ A ,

thus QB
µ,f,ϑ is the cp on (Ω,A, B) generated from Qν,f,ϑ. Hence, the set EB

µ,f

can be constructed alternatively from Eν,f by conditioning to the sets B ∈ B.

Lemma 2.2. The mapping Π is a homeomorphism of the family of cp’s into
the family of product pm’s on (ΩB, AB).

Proof (sketch). The sum distance between cp’s P , Q majorizes the variational
distance between ΠP and ΠQ. The variational distance between two products
of pm’s majorizes the variational distance between any two marginal pm’s. �
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For a finite measure µ on (Ω, A), let µB be product of the restrictions µB

over B ∈ B. For a function f : Ω → Rd let fB map an element ωB = (ωB)B∈B

of ΩB to (f(ωB))B∈B, an element of (Rd)B. The function f is always assumed
to be A-measurable. Let Σ map (xB)B∈B ∈ (Rd)B to

∑
B∈B xB ∈ Rd.

Lemma 2.3. If µ is positive and finite on B then
(i) ΛµB,ΣfB

=
∑

B∈B ΛµB ,f

(ii) ΠQB
µ,f,ϑ = QµB,ΣfB,ϑ for ϑ ∈ dom(ΛµB,ΣfB

)
(iii) Π restricts to a homeomorphism between EB

µ,f and EµB,ΣfB
.

Proof. For ϑ ∈ Rd

ΛµB,ΣfB
(ϑ) = ln

∫
ΩB e⟨ϑ,ΣfB⟩ dµB = ln

∫
ΩB

∏
B∈Be⟨ϑ,f(ωB)⟩ µB(dωB)

using ⟨ϑ,ΣfB(ωB)⟩ =
∑

B∈B ⟨ϑ, f(ωB)⟩. Hence,

ΛµB,ΣfB
(ϑ) = ln

∏
B∈B

∫
Ω

e⟨ϑ,f(ω)⟩ µB(dω) =
∑

B∈B ΛµB ,f (ϑ)

which proves (i). It follows that dom(ΛµB,ΣfB
) is the intersection of dom(ΛµB ,f )

over B ∈ B. For ϑ in the domain the product pm ΠQB
µ,f,ϑ is absolutely contin-

uous w.r.t. µB and by (i) has the density∏
B∈B dQB

µ,f,ϑ(·|B)
/

dµB (ωB) =
∏

B∈B exp
[
⟨ϑ, f(ωB)⟩ − ΛµB ,f (ϑ)

]
= exp[⟨ϑ,ΣfB(ωB)⟩ − ΛµB,ΣfB

(ϑ)] = dQµB,ΣfB,ϑ

/
dµB (ωB) ,

thus (ii) holds. Then (iii) follows by Lemma 2.2. �

Lemma 2.4. If µ is positive and finite on B then
(i) ΛµB,ΣfB

= ΛfBµB,Σ = ΛΣfBµB,id

where id denotes the identity mapping on Rd, and for ϑ ∈ dom(ΛµB,ΣfB
)

(ii) fBQµB,ΣfB,ϑ = QfBµB,Σ,ϑ

(iii) ΣfBQµB,ΣfB,ϑ = ΣQfBµB,Σ,ϑ = QΣfBµB,id,ϑ.

A proof is standard and omitted.
The convex core cc(ν) of a finite Borel measure ν on Rd is intersection of the

convex Borel sets D ⊆ Rd with ν(Rd \ D) = 0 [5]. Let ri(ν) denote the relative
interior of cc(ν).

Lemma 2.5. If µ is finite on B then
(i) cc(fBµB) =

∏
B∈B cc(fµB)

(ii) cc(ΣfBµB) = Σcc(fBµB) =
∑

B∈B cc(fµB).

Proof. Since fBµB is the product of the measures fµB over B ∈ B the first
equality follows from [5, Lemma 7]. The Σ-image of a product measure is the
convolution of marginals. Hence, the second assertion is a consequence of [5,
Corollary 8]. �

Corollary 2.6. Lemma 2.5 remains valid when cc is replaced by ri .

For a convex set D ⊆ Rd let lin(D) denote the linear space generated by the
differences x − y with x, y ∈ D and πD the orthogonal projection onto lin(D).
In the case D = cc(ν) the abbreviations lin(ν) and πν are used.
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Remark 2.7. If a measure µ on (Ω,A) is nonzero and finite, and f : Ω → Rd

then ϑ ∈ dom(Λµ,f ) and πfµ(ϑ− θ) = 0 imply θ ∈ dom(Λµ,f ). The exponential
family Eµ,f is bijectively parameterized by πfµ(dom(Λµ,f )). If follows on account
of Lemma 2.3 that EB

µ,f is bijectively parameterized by πΣfBµB
(dom(ΛµB,ΣfB

)).
Here, the projection is onto lin(ΣfBµB) which is the sum of lin(fµB) over B ∈ B,
by Lemma 2.5 (ii).

Remark 2.8. The log-Laplace transform Λµ,f is differentiable at any ϑ from
the interior of its domain and ∇Λµ,f (ϑ) =

∫
Ω

f dQµ,f,ϑ [1, 2]. If the domain
is open then ∇Λµ,f gives rise to a diffeomorphism between the relatively open
sets πfµ(dom(Λµ,f )) and ri(fµ). Thus, the mapping P 7→

∫
Ω

f dP is defined for
every P ∈ Eµ,f , and it is a homeomorphism between Eµ,f and ri(fµ), see also
[6, Corollary 1].

Let Mf denote the composition of two mappings

P 7→ ΠP 7→
∫
ΩB ΣfB dΠP

defined at any cp P such that the integral exists. Rewriting the integral to∫
ΩB

∑
B∈B f(ωB) · Q

B∈B P (dωB |B)

the existence is equivalent to P (·|B)-integrability of f for B ∈ B, in which case

MfP =
∑

B∈B

∫
Ω

f(ω) P (dω|B) .

Lemma 2.9. If dom(ΛµB,ΣfB
) is open then Mf restricts to a homeomorphism

between EB
µ,f and ri(ΣfB µB) =

∑
B∈B ri(fµB).

Proof. The restriction is a composition of two homeomorphisms. The first one
comes from Lemma 2.3 (iii), between EB

µ,f and EµB,ΣfB
. The second one makes

homeomorphic EµB,ΣfB
and ri(ΣfB µB), by Remark 2.8. It remains to refer to

Corollary 2.6. �

Example 2.10. Let Ω = {0, 1}2, A be the algebra of all subsets of Ω and
B =

(
Ω
2

)
consist of all two-element subsets of Ω. Let µ be the counting measure

on Ω and f the embedding of Ω to R2. The family Eµ,f consists of all positive
product pm’s on Ω and the set EB

µ,f of the cp’s that are generated from these
pm’s, see Remark 2.1. Denoting by δx the Borel pm on R2 that is supported by
x ∈ R2, the fB-image of µB is the product

[δ(0,0)+δ(1,0)]×[δ(0,0)+δ(0,1)]×[δ(0,0)+δ(1,1)]×[δ(1,0)+δ(0,1)]×[δ(1,0)+δ(1,1)]×[δ(0,1)+δ(1,1)] .

Then, ΣfBµB is the convolution of the six measures. It is equal to the linear
combination of δx’s where x runs over the points of the configuration below and
the coefficients in the combination correspond to the labels of the points.
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The shaded hexagon is the convex core of ΣfBµB. Lemma 2.5 expresses the
hexagon as the sum of the edges and diagonals of the unit square. Further,

MfP =
∑

B∈B

∑
ω∈Ω f(ω) P (ω|B)

= (1, 0)[P (10|00, 10) + P (10|10, 01) + P (10|10, 11)]
+ (0, 1)[P (01|00, 01) + P (01|10, 01) + P (01|01, 11)]
+ (1, 1)[P (11|00, 11) + P (11|10, 11) + P (11|01, 11)]

where e.g. P (10|00, 10) is an abbreviation for P
(
{(1, 0)}|{(0, 0), (1, 0)}

)
. By

Lemma 2.9, the mapping Mf restricts to a homeomorphism between EB
µ,f and

the interior of the hexagon.

3 Closures of the families EB
µ,f

Given a convex set D in a Euclidean space, its nonempty convex subset F is a
face if each segment contained in D with an interior point in F is contained in F .

Lemma 3.1. If µ is finite on B and F is a face of cc(ΣfBµB) then
(i) FΣ = Σ−1(F ) ∩ cc(fBµB) is a face of cc(fBµB)
(ii) FΣ =

∏
B∈B FΣ,B where FΣ,B is a unique face of cc(fµB)

(iii) ΣFΣ = F .

Proof. The assertions follow from Lemma 2.5 and basic convex geometry. �

Let µB,F =
∏

B∈B µB,F where µB,F is the restriction of µ to B∩f−1(cl(FΣ,B)).

Lemma 3.2. If µ is finite on B and F is a face of cc(ΣfBµB) then µB,F is
nonzero and finite and ΣfBµB,F = (ΣfBµB)cl(F ).

Proof (sketch). Since F is a face, thus a nonempty set, every FΣ,B is a face of
cc(fµB) by Lemma 3.1. Therefore fµB(cl(FΣ,B)) = µB,F (Ω) is positive by [5,
Corolary 3]. Thus, µB,F is nonzero. Since µ is finite on B every fµB is finite,
and the finiteness of µB,F follows.

The equality is a consequence of fBµB,F = (fBµB)Σ−1(cl(F )). Since fBµB,F

is the restriction of fBµB to
∏

B∈B cl(FΣ,B) = cl(FΣ) the aim is to prove that
fBµB(Σ−1(cl(F )) \ cl(FΣ)) = 0, using that the two sets are in inclusion.

If FΣ = cc(fBµB) then cl(FΣ) has the complement of fBµB-measure zero
by [5, Lemma 1]. Otherwise, F is not equal to D = cc(ΣfBµB). Assume first
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that F is exposed, thus a nontrivial supporting hyperplane H to D exists such
that F = H ∩ D. Then, Σ−1(H) is a supporting hyperplane of cc(fBµB) and
Σ−1(H) ∩ cc(fBµB) = FΣ. By [6, Lemma 1], fBµB(Σ−1(H) \ cl(FΣ)) = 0 and
the equality holds. If F is not exposed then it can be approached by a chain
of exposed faces and the equation obtains from the corresponding equations in
the chain. Details are omitted. �

Where D and Ξ are nonempty convex subsets in a Euclidean space, the
concept of Ξ-accessible face of D was introduced in [6, Subsection 2.5]. The
definition is rather technical and not repeated here, using later only the simple
facts that D is always a Ξ-accessible face of D and every face is Rd-accessible.

For a face F of cc(ΣfBµB) the family QB,F
µ,f,ϑ of pm’s given by

QB,F
µ,f,ϑ(·|B) = QµB,F ,f,ϑ , B ∈ B ,

is a cp on (Ω,A, B) by Remark 2.1 where {B ∩ f−1(cl(FΣ,B)) : B ∈ B} plays
the role of B. In particular, if F equals the convex core then QB,F

µ,f,ϑ = QB
µ,f,ϑ.

Theorem 3.3. If µ is positive and finite on B then the closure of EB
µ,f is the

union of the families

EB,F
µ,f =

{
QB,F

µ,f,ϑ : ϑ ∈ cl(πF (dom(ΛµB,ΣfB
))) ∩ dom(ΛµB,F ,ΣfB

)
}

over the dom(ΛµB,ΣfB
)-accessible faces F of cc(ΣfBµB).

Proof. By assumption ν = ΣfBµB is nonzero and finite, thus [6, Theorem 2]
applies to the full standard exponential family Eν,id with Ξ = dom(Λν,id) and
implies

cl(Eν,id) =
∪ {

QνF ,id,ϑ : ϑ ∈ cl(πF (Ξ)) ∩ dom(ΛνF ,id)
}

where the union is over the Ξ-accessible faces F of cc(ν) and νF denotes the
restriction of ν to cl(F ). By Lemma 2.4 (i), ΛµB,ΣfB

equals Λν,id so that the
above union is over the same family of faces as in the assertion of the theorem.

Lemma 3.2 implies that νF is the ΣfB-image of the nonzero and finite prod-
uct measure µB,F . Hence, ΛνF ,id equals ΛµB,F ,ΣfB

by Lemma 2.4 (i). It follows
that in the above union ϑ ranges over the same parameter set as in the assertion
of the theorem. Since QνF ,id,ϑ is the ΣfB-image of QµB,F ,ΣfB,ϑ, it is possible
to conclude by Lemma 2.4 (iii) that

cl(EµB,ΣfB
) =

∪ {
QµB,F ,ΣfB,ϑ : ϑ ∈ cl(πF (dom(Ξ))) ∩ dom(ΛµB,F ,ΣfB

)
}

.

On account of Lemma 2.2, it suffices to prove that QµB,F ,ΣfB,ϑ equals ΠQB,F
µ,f,ϑ

but this follows from Lemma 2.3 (ii). �

Corollary 3.4. If ΛµB ,f is everywhere finite for all B ∈ B then

EB,F
µ,f =

{
QB,F

µ,f,ϑ : ϑ ∈ lin(F )
}

and cl(EB
µ,f ) =

∪
EB,F

µ,f

where the union is over all faces F of cc(ΣfBµB). The mapping Mf restricts
to a bijection between cl(EB

µ,f ) and
∑

B∈B cc(fµB).
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Proof. The assumption implies that dom(ΛµB,F ,ΣfB
) = Rd for all faces F and

that all faces are accessible. To prove the second assertion, Lemma 2.3 (iii) is
applied to µB,F in the role of µB. Then, Π restricts to a bijection between EB,F

µ,f

and EµB,F ,ΣfB
. By Remark 2.8, Mf maps EB,F

µ,f bijectively onto ri(ΣfBµB,F ).
This set equals ri(F ) by Lemma 3.2. It follows from Theorem 3.3 that Mf maps
cl(EB

µ,f ) bijectively onto the union of ri(F ). The union is equal to cc(ΣfBµB),
and thus to the sum of cc(fµB) by Lemma 2.5 (ii). �

Corollary 3.5. If
∑

B∈B cc(fµB) is bounded and locally simplicial then Mf

restricts to a homeomorphism between cl(EB
µ,f ) and this sum.

Proof. The boundedness implies that the mapping P 7→
∫

ΩB ΣfBdP is contin-
uous on cl(EµB,ΣfB

). Its inverse is continuous due to the second assumption,
see [7, Remark 5.9]. By Lemma 2.2, the assertion follows. �

Example 3.6. Let (Ω, A, B), µ and f be as in Example 2.10. The segment
F = {(t, 1) : 2 6 t 6 4} is a face of the hexagon cc(ΣfBµB). Then FΣ is the
square

{((t, 0), (0, 0), (0, 0), (1, 0), (1, 0), (r, 1)) : 0 6 t, r 6 1}
and ΣfBµB,F is the convolution

[δ(0,0)+δ(1,0)] ∗ δ(0,0) ∗ δ(0,0) ∗ δ(1,0) ∗ δ(1,0) ∗ [δ(0,1)+δ(1,1)] = δ(2,1) + 2δ(3,1) + δ(4,1) .

The cp P = QB,F
µ,f,ϑ(·|B), ϑ = (t, 0) ∈ lin(F ), from cl(EB

µ,f ) is given by

P (10|00, 10) = P (11|01, 11) = et

1+et

P (00|00, 01) = P (00|00, 11) = P (10|10, 01) = P (10|10, 11) = 1 .

The closure of EB
µ,f consists of the family itself and 16 families corresponding

to all vertices and edges of the hexagon.

4 Discussion
In this section, the space Ω is finite, A is the algebra 2Ω of all subsets of Ω, µ is
the counting measure on Ω and f maps Ω to RΩ such that f(ω) is the vector
with the ω-th coordinate equal to 1 and the remaining ones to 0. The family
Eµ,f consists of all pm’s P on Ω that are positive in the sense P (ω) > 0, ω ∈ Ω.

For B ⊆ Ω the measure fµB is concentrated on the linearly independent set
f(Ω), and hence cc(fµB) is the simplex ∆B spanned by the set.

Example 4.1. If Ω = {0, 1, . . . ,m}, m > 1, and B =
(
Ω
2

)
then

∑
B∈B ∆B is

the sum of all segments with the endpoints in f(Ω). This is the polytope known
under the name permutahedron [16], equivalently defined as the convex hull of
all the points (ρ(0), ρ(1), . . . , ρ(m)) where ρ is any permutation of Ω. Assume
A1, . . . , Ak is an ordered partition of Ω such that ω < ω′ for ω ∈ Ai, ω′ ∈ Aj

and 1 6 i < j 6 k. The convex hull of the points (ρ(m), . . . , ρ(1), ρ(0)) where ρ
is any permutation of Ω that satisfies ρ(Ai) = Ai, 1 6 i 6 k, is a face F of the
permutahedron. It is the sum of the faces

FΣ,B =

{
∆B , if B ⊆ Ai for some 1 6 i 6 k ,

{f(ω)} , otherwise ,
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over B = {ω, ω′} ∈
(
Ω
2

)
with ω < ω′. Hence, for ϑ = (ϑω)ω∈Ω ∈ RΩ

QB,F
µ,f,ϑ(ω|B) =

{
eϑω/[eϑω + eϑω′ ] , if B ⊆ Ai for some 1 6 i 6 k ,

1 , otherwise .

Each cp of cl(EB
µ,f ) has this form up to a permutation.

Remark 4.2. Let Ω∗
B denote the set of ordered couples (ω|B) with ω ∈ B ∈ B.

For B ⊆ A nonempty, a cp P on (Ω, A, B) is uniquely given by its nonnegative
values P (ω|B), (ω|B) ∈ Ω∗

B. They are constrained by
∑

ω∈B P (ω|B) = 1,
B ∈ B, and

P (ω|C) = P (ω|B) ·
∑

ω′∈BP (ω′|C) , ω ∈ B ⊆ C and B, C ∈ B.

By Remark 2.1, P ∈ EB
µ,f if and only if there exists a positive measure on Ω

that generates P . It follows from the general results of [4, (6.3), p. 351] that this
takes place if and only if all P (ω|B) are positive and P satisfies the polynomial
constraints ∏n

i=1 P (Ai|Bi) =
∏n

i=1 P (Ai|Bi+1)

for n > 1, B1, . . . , Bn+1 ∈ B with B1 = Bn+1 and Ai ⊆ Bi ∩ Bi+1, 1 6 i 6 n.
Here, it can be assumed equivalently that all Ai’s are singletons {ωi}. Such a
constraint, will be referred to as Császár one.

Remark 4.3. It was observed in [11] that Császár constraints correspond to
cycles in the bipartite graph GB between Ω and B with the edge from each
B ∈ B to each of its elements ω. Since the incidence matrix of any bipartite
graph is unimodular [15, 19.2] Császár constraints play a distinguished role in
the toric ideal induced by the incidence matrix of GB, see [11, Proposition 3.4].

Lemma 4.4. A cp P on (Ω, 2Ω, B) satisfies Császár constraints if and only if it
extends to a cp P ′ on (Ω, 2Ω, 2Ω \ {∅}), in the sense P ′(·|B) = P (·|B), B ∈ B.

A proof is omitted; it is based on [4, (5.9), p. 349] that establishes a connection
between the constraints and the generation of a cp from a family of measures
ordered according to dimension.

Corollary 4.5. The closure of EB
µ,f consists of all cp’s on (Ω, 2Ω, B) that satisfy

Császár constraints.

Example 4.6. In the situation of Example 4.1 with m > 2, for B = {ω, ω′} with
ω < ω′ let P (ω|B) = 1 and P (ω′|B) = 0 with the exception P (0|{0,m}) = 0
and P (m|{0,m}) = 1. Then P is a cp on (Ω,A,

(
Ω
2

)
) that violates the Császár

constraint with n = m+1 and B1 = {0, 1}, . . ., Bm = {m−1,m}, Bn = {0,m}.
Thus, P does not belong to cl(EB

µ,f ).

Remark 4.7. It is not difficult to see that for B =
(
Ω
2

)
every P ∈ cl(EB

µ,f ) extends
to a cp on (Ω, 2Ω, 2Ω \{∅}) uniquely, see the proof of [10, Lemma 4]. In general,
it is only a minor technicality not to admit the singletons of Ω in the sets B.

Remark 4.8. In [11], Császár constraints are interpreted as polynomials and are
used to define a multiprojective toric variety. The variety lives in the product of
the projective spaces of CB over B ∈ B. A point z of this variety is a B-tuple of
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points zB with the projective coordinates z(ω|B), ω ∈ B. By [11, Theorem 4.3],
the mapping

z 7→
∑

B∈B

∑
ω∈B f(ω)

|z(ω|B)|
P

ω′∈B |z(ω′|B)|

is a bijection between the nonnegative part of the variety and
∑

B∈B ∆B . (Note
that in the original definition of this mapping, denoted by ν, the column a.i|I
must be replaced by its projection to the V -coordinates).

The mapping Mf moves a cp P on (Ω, 2Ω, B) linearly as

P 7→
∑

B∈B

∑
ω∈B f(ω) P (ω|B) =

(∑
B∈B P (ω|B)

)
ω∈Ω

.

By Corollary 3.5, Mf restricts to the homeomorphism between cl(EB
µ,f ) and the

sum of ∆B over B ∈ B. On account of Corollary 4.5, the closure corresponds
to the nonnegative part of the variety from Remark 4.8. Hence, in the setting
of this section, the assertion of Corollary 3.5 is equivalent to the statement of
[11, Theorem 4.3].

By Corollary 3.5 and Remark 4.7, the family of cp’s on (Ω, 2Ω, B) with B =
{B ⊆ Ω : |B| > 2} is homeomorphic to the permutahedron of Example 4.1 via

P 7→
(∑

ω′∈Ω\{ω} P (ω|{ω, ω′})
)
ω∈Ω

which is the content of [10, Theorem 1].
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Abstract

We discuss how to obtain an implicit description of the closure of a
discrete exponential family with a finite set of equations derived from an
underlying oriented matroid. These equations are similar to the equations
used in algebraic statistics, although they need not be polynomial in the
general case. This framework allows us to study the possible support sets
of an exponential families with the help of oriented matroid theory. In
particular, if two exponential families induce the same oriented matroid,
then they have the same support sets.

1 Introduction

In this paper we study exponential families, which are well known statistical
models with many nice properties. Let E be an exponential family on a finite
set X , and E its closure. We want to describe the set

S :=
{
supp(P ) ⊆ X : P ∈ E

}
. (1)

of all possible support sets occurring in E .
The problem of determining the possible support sets in an exponential fam-

ily is a classical problem in statistics. It amounts to describing the boundary of
the most basic statistical models. This problem is related to characterizing the
marginal polytope, which can be used, for example, to study the existence or
non-existence of the MLE [EFRS06]. One can show that computing the support
sets of any exponential family is of the same complexity class as NP hard combi-
natorial problems such as the problem of finding maximal cuts in graphs, since
it is known that the class of marginal polytopes contains the so-called cut poly-
topes (see [KWA09]). This means that there is no corresponding fast algorithm,
unless NP = co-NP [DL97]. Nevertheless, considering only certain subclasses
of exponential families, the situation may simplify so that explicit statements
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about support sets become possible. For instance, one of the authors discusses
support sets of small cardinality in hierarchical models, a particular kind of
exponential families [Kah10]. In this paper we find a concise characterization
of the support sets in general exponential families with the help of oriented
matroids. We hope that this will allow for further theoretical results in this
direction.

Although slightly hidden, the connection to oriented matroid theory is very
natural. The starting point, and another focus of the presentation, is the implicit
description of exponential families for discrete random variables inspired by so
called Markov bases [GMS06]. It is described in Theorem 4. We study the—
not necessarily polynomial—equations that define the closure of the exponential
family and relate them to the oriented matroid of the sufficient statistics of the
model. In the case of a rational valued sufficient statistics, our observations
reduce to the fact that the non-negative real part of a toric variety is described
by a circuit ideal. We emphasize how the proof of this fact uses arguments from
oriented matroid theory.

This paper is organized as follows. In Section 2 we develop a theory of im-
plicit representations of exponential families which is analogue to and inspired
by algebraic statistics [GMS06]. In contrast to the toric case we do not require
the sufficient statistics to take integer values and thereby leave the realm of
commutative algebra. What remains is the theory of oriented matroids. We
discuss how answers to the support set problem look like in the language of
oriented matroids and discuss examples coming from cyclic polytopes. These
polytopes are well known in combinatorial convexity for their extremal prop-
erties, as stated, for instance, in the Upper Bound Theorem. In Section 3 we
discuss the basics of the theory of oriented matroids and reformulate statements
from Section 2 in this language, making the connection as clear as possible.

2 Exponential families

We assume a finite set X := {1, . . . ,m} and denote P(X ) the open simplex of
probability measures with full support on X . The closure of any set M ⊆ RX ,
in the standard topology of Rn, is denoted by M . Any vector n ∈ RX can
be decomposed into its positive and negative part n = n+ − n− via n+(x) :=
max(n(x), 0) and n−(x) := max(−n(x), 0). For any two vectors n, p ∈ RX we
define

pn :=
∏
x∈X

p(x)n(x), (2)

whenever this product is well defined (e.g. when n and p are both non-negative).
Let q be a positive measure on X with full support, and let A ∈ Rd×m be a

matrix of width m. We denote ax, x ∈ X , the columns of A. Then we have

Definition 1. The exponential family associated to the reference measure q
and the matrix A is the set of probability measures

Eq,A :=
{

pθ ∈ P(X ) : pθ(x) =
q(x)
Zθ

exp
(
θT ax

)
, θ ∈ Rd

}
, (3)

where Zθ :=
∑

x∈X q(x) exp
(
θT ax

)
ensures normalization.
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If q(x) = 1 for all x ∈ X , i.e. if q is the uniform measure on X , then the
corresponding exponential family is abbreviated with EA.

In the following we always assume that the matrix A has the vector (1, . . . , 1)
in its row span. This means that there exists a dual vector l1 ∈

(
Rd
)∗ which

satisfies l1(ax) = 1 for all x ∈ X . There is no loss of generality in this assumption
as we can always add an additional row (1, . . . , 1) to A without changing the
exponential family.

Remark 2. The exponential family depends on A only through its row span L.
Different matrices with the same row span lead to different parametrizations of
the same exponential family. In the following it will be convenient to fix one
parametrization, hence we work with matrices A instead of vector spaces L.

The geometrical structure of the boundary of Eq,A is encoded in the polytope
of possible values that the map A : P(X ) → Rd, x 7→ Ax takes:

Definition 3. The convex support of Eq,A is the polytope

cs(Eq,A) := conv {ax : x ∈ X} . (4)

In the context of hierarchical models, the convex support is also called
marginal polytope.

We will see later that the faces of cs(Eq,A) are in a one-to-one correspondence
with the different support sets occurring in Eq,A. Even more is true: The
mapping A, restricted to Eq,A, defines a homeomorphism Eq,A

∼= cs(Eq,A) which
maps every probability measure p ∈ Eq,A into the face corresponding to its
support, see for example [BN78]. This homeomorphism is called the moment
map. One can use the properties of the moment map to prove Theorem 15 using
arguments from the theory of oriented matroids. This will be discussed in the
next section.

Note that the parametrization in (3) does not extend to the boundary. This
is one of the motivations to move on to an implicit description of the exponential
family. The next theorem shows how to obtain an implicit description from Eq,A

from the kernel of A. This gives a nice “duality” as the parametrization itself
is derived from the image of A.

Theorem 4. A distribution p is an element of the closure of Eq,A if and only
if all the equations

pn+
qn−

= pn−
qn+

, for all n ∈ ker A, (5)

hold for p.

Remark 5. This theorem is a direct generalization of Theorem 3.2 in [GMS06].
There only the polynomial equations among (5) are studied under the additional
assumption that A has only integer entries. Moreover, only the uniform reference
measure was considered. However, the proof of the theorem generalizes without
any major problem. Actually, the proof of our theorem here needs one step less,
since we don’t need to show the reduction to the polynomial equations. The
different flavor of the results will be made more precise in Remark 13 later.

Our proof closely follows [GMS06]. In our presentation of the proof we want
to explicitly point out how matroid-type arguments are used, the first example
being Lemma 7.
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Before giving the proof of Theorem 4 we first state a couple of auxiliary
results which are of independent interest. The matrix A and derived objects are
fixed for the rest of the considerations. A face of a polytope P is the intersection
of the polytope with an affine hyperplane H, such that all x ∈ P with x /∈ H
lie on one side of the hyperplane. Faces of maximal dimension are called facets.
It is a fundamental result that every polytope can equivalently be described as
a compact set defined by finitely many inequalities (i.e. facets), see [Zie94].

In particular we are interested in the face structure of cs(Eq,A). Since we
assumed that all columns of A lie in the affine hyperplane l1 = 1, we can
replace every affine hyperplane H by an equivalent central hyperplane (which
passes through the origin). This motivates the following

Definition 6. Let {ax : x ∈ X} be the vertex set of a polytope. A set F ⊆ X
is called facial if there exists a vector c ∈ Rd such that

cT ay = 0 ∀y ∈ F, cT az ≥ 1 ∀z /∈ F. (6)

Lemma 7. Fix a matrix A = (ax)x∈X ∈ Rd×m and a nonempty subset F ⊆ X .
Then we have:

• If F is facial then no non-zero non-negative linear combination of the ax,
x /∈ F , can be written as linear combination of the ax, x ∈ F .

• F is facial if and only if for any u ∈ ker A:

supp(u+) ⊆ F ⇔ supp(u−) ⊆ F. (7)

• If p is a solution to (5), then supp(p) is facial.

Proof. For the first statement, assume to the contrary that we can find α(x) ≥ 0
and β(x) not all zero such that u =

∑
x/∈F α(x)ax =

∑
x∈F β(x)ax, and let c be

as in (6). We have

0 ≤
∑
i/∈F

αi ≤
∑
i/∈F

αic
T ai = cT

(∑
i/∈F

αiai

)
= cT

(∑
i∈F

βiai

)
= 0,

whence αi = 0 for all i /∈ F . This also proves the first direction of the second
statement.

The opposite direction is a bit more complicated and uses Farkas’ Lemma
(see for example [Zie94]): Let B ∈ Rl×d, and z ∈ Rl. Either there exists a point
in the polyhedron {x : Bx ≤ z}, or there exists a non-negative vector y ∈ Rl

≥
with yT B = 0 and yT z < 0, but not both. Assume that F ( X is nonempty
and satisfies (7) for all u ∈ ker A. Let B be the (|F | + m) × d matrix with
rows

{
aT

x : x ∈ F
}
,
{
−aT

x : x ∈ F
}
,
{
−aT

x , x /∈ F
}
, and z be the vector which

has entries zero in the first 2 |F | components and entries −1 in the last m−|F |.
Then a solution to Bx ≤ z provides a facial vector. Thus it remains to show that
each non-negative y = (y(1), y(2), y(3))T , decomposed according to the rows of
B, with yT B = 0 satisfies yT z ≥ 0. Assume that the columns of A are ordered
such that the columns with indices x ∈ F come first. Then y(3) must be zero as
otherwise (y(2) − y(1), y(3))T ∈ ker A would violate (7) by non-negativity of y.
But then yT z = 0 trivially.

The last statement follows immediately from the second statement.
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Now we are ready for the proof of Theorem 4.

Proof of Theorem 4. The first thing to note is that it is enough to prove the
theorem when q(x) = 1 for all x. To see this note that p ∈ EA if and only if
λqp ∈ Eq,A, where λ > 0 is a normalizing constant, which does not appear in
equations (5) since they are homogeneous.

Denote ZA the set of solutions of (5). We first show that EA satisfies the
equations defining ZA. We plug in the parametrization to find

pu =
∏
x∈X

p(x)u(x) =
∏
x∈X

(
eθT ax

)u(x)

=
∏
x∈X

eθ(x)(Au)(x) =
∏
x∈X

eθ(x)(Av)(x) = pv.

(8)
Thus EA ⊆ ZA, and also EA ⊆ ZA = ZA.

Next, let p ∈ ZA \ EA. We construct a sequence pµ in EA that converges to
p as µ → −∞.

Consider the following system of equations in variables d = (d1, . . . , dn):

dT ax = log p(x) for all x ∈ supp(p). (9)

We claim that this linear system has a solution. Otherwise we can find numbers
v(x), x ∈ F , such that

∑
x v(x) log p(x) ̸= 0 and

∑
x v(x)ax = 0. This leads to

the contradiction pv+ ̸= pv−
.

Fix a vector c ∈ Rd with property (6) and for any µ ∈ R define

p(µ) := pµc+d =
(
eµcT a1edT a1 , . . . , eµcT amedT am

)
∈ EA.

By (6) it is clear that limµ→−∞ p(µ) = p. This proves the theorem.

We now see that the last statement of Lemma 7 can be generalized [GMS06,
Lemma A.2]:

Proposition 8. The following are equivalent for any set F ⊆ X :

1. F is facial.

2. The uniform distribution 1
|F |1{F} of F lies in EA.

3. There is a vector with support F in EA.

According to Theorem 4, in order test whether p is an element of the closure
of Eq,A, we have to test all the equations (5). The next theorem shows that
it is actually enough to check finitely many equations. For this, we need the
following notion from matroid theory: A circuit vector of a matrix A is a nonzero
vector n ∈ Rm corresponding to a linear dependency

∑
x n(x)ax with inclusion

minimal support, i.e if n′ ∈ Rm satisfies supp(n′) ⊆ supp(n), then n′ = λn
for some λ ∈ R. Equivalently, n is an element of kerA with inclusion minimal
support.

A circuit is the support set of a circuit vector. The minimality condition
implies that the circuit determines its corresponding circuit vectors up to a
multiple. A circuit basis C contains one circuit vector for every circuit.1

1It is easy to see that a circuit basis of ker A spans ker A. However, in general the circuit
vectors are not linearly independent.
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If we replace n by a nonzero multiple of n then equation (5) is replaced by
an equation which is equivalent over the non-negative reals. This means that
all systems of equations corresponding to any circuit basis C are equivalent.

Theorem 9. Let Eq,A be an exponential family. Then Eq,A equals the set of all
probability distributions that satisfy

pc+
qc− = pc−qc+

for all c ∈ C, (10)

where C is a circuit basis of A.

The proof is based on the following two lemmas:

Lemma 10. For every vector n ∈ ker A there exists a sign-consistent circuit
vector c ∈ kerA, i.e. if c(x) ̸= 0 then sgn c(x) = sgnn(x) for all x ∈ X .

Proof. Let c be a vector with inclusion-minimal support which is sign-consistent
with n and satisfies supp(c) ⊆ supp(n). If c is not a circuit, then there exists a
circuit c′ with supp(c′) ⊆ supp(c). Using a suitable linear combination c + αc′,
α ∈ R, we can obtain a contradiction to the minimality of c.

Lemma 11. Every vector n ∈ ker A is a finite sign-consistent sum of circuit
vectors n =

∑r
i=1 ci, i.e. if ci(x) ̸= 0 then sgn ci(x) = sgnn(x) for all x ∈ X .

Proof. Use induction on the size of supp(n). In the induction step, use a sign-
consistent circuit, as in the last lemma, to reduce the support.

Proof of Theorem 9. Again, we can assume that q(x) = 1 for all x ∈ X . By
Theorem 4 it suffices to show: If p ∈ RX satisfies (10), then it also satisfies
pn+

= pn−
for all n ∈ ker A. Write n =

∑r
i=1 ci as a sign-consistent sum of

circuits ci, as in the last lemma. Without loss of generality we can assume
ci ∈ C for all i. Then n+ =

∑r
i=1 c+

i and n− =
∑r

i=1 c−i . Hence p satisfies

pn+
− pn−

= p
Pr−1

i=1 c+
i

(
pc+

1 − pc−1

)
+
(
p

Pr−1
i=1 c+

i − p
Pr−1

i=1 c−i

)
pc−1 , (11)

so the theorem follows easily by induction.

The theorem implies that a finite number of equations is sufficient to de-
scribe Eq,A. The number of equations that are necessary is bounded from above
by the number of different support sets occurring in C.

Example 12. Consider the following sufficient statistics:

A =
(

1 1 1 1
−α 1 0 0

)
, (12)

where α /∈ {0, 1} is arbitrary. The kernel is then spanned by

v1 = (1, α,−1,−α)T and v2 = (1, α,−α,−1)T . (13)

These two generators correspond to the two relations

p(1)p(2)α = p(3)p(4)α, and p(1)p(2)α = p(3)αp(4). (14)
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It follows immediately that

p(3)p(4)α = p(3)αp(4). (15)

If p(3)p(4) is not zero, then we conclude p(3) = p(4). However, on the boundary
this does not follow from equations (14): Possible solutions to these equations
are given by

pa = (0, a, 0, 1 − a) for 0 ≤ a < 1. (16)

However, pa does not lie in the closure of the exponential family EA, since all
members of EA do satisfy p(3) = p(4).

A circuit basis of A is given by the following vectors:

(0, 0, 1,−1)T p(3) = p(4), (17a)

(1, α, 0,−1 − α)T p(1)p(2)α = p(4)1+α, (17b)

(1, α,−1 − α, 0)T p(1)p(2)α = p(3)1+α. (17c)

Remark 13 (Relation to algebraic statistics). In the particular case where the
vector space ker A has a basis with integer components (for example, if A itself
has only integer entries), every circuit is proportional to a circuit with integer
components. In this case the corresponding equations (5) are polynomial, and
the theorem implies that EA is the non-negative real part of a projective variety,
i.e. the solution set of homogeneous polynomials. If we want to use the tools of
commutative algebra and algebraic geometry, then it turns out that circuits are
not the right object to consider: For example, proportional circuits only yield
equivalent equations if we consider them over the non-negative reals, but we
may obtain a different solution set if we allow negative real solutions or complex
solutions, which may greatly increase the running time of many algorithms of
computational commutative algebra. Hence, if we want to use algebraic tools,
it is best to work with a Markov basis, which can be defined as a finite set of
kernel vectors such that the solution set over C of the corresponding equations
equals the Zariski closure of E , i.e. the smallest variety containing E .2 In this
algebraic setting, Theorem 4 remains valid if we replace “closure” by “Zariski
closure” and kerA by the integer kernel kerZ A. This fact was first noted in
[DS98].

In the algebraic case one can also look at the ideal (see [CLO08]) generated
by all polynomial equations induced by integer valued circuit vectors. This
ideal is called the circuit ideal. By what was said above this ideal is in general
smaller than the associated toric ideal, which contains the polynomial equations
induced by all integer valued kernel vectors. Circuit ideals have been studied
already in the seminal paper [ES96]. For further results illuminating their nice
relations to polyhedral geometry we refer to [BJT07].

Finding a Markov basis is in general a non-trivial task, see [HM09]. It seems
to be much easier to compute the circuits of a matrix. However, a minimal
Markov basis is usually much smaller than a circuit basis, and thus it is easier
to handle (but cf. the next remark). For experiments in this direction we recom-
mend the open source software package 4ti2 [4ti2] which can compute circuits
as well as Markov bases.

2It turns out that it is not so easy to find an example of a Markov basis which does not
consists of circuits. In [AT03], S. Aoki and A. Takemura give a model and a Markov basis
element which is not a circuit. Interestingly, the full Markov basis of this model is not known.
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Remark 14. Using arguments from matroid theory the number of circuits can
be shown to be less or equal than

(
m

r+2

)
, where m = |X | is the size of the state

space and r is the dimension of the exponential family Eq,A, see [DSL04]. This
gives us an upper bound on the number of implicit equations which is necessary
to describe Eq,A. Note that

(
m

r+2

)
is usually much larger than the codimension

m− r− 1 of Eq,A in the probability simplex. In contrast to this, if we only want
to find an implicit description of all probability distributions of Eq,A, which
have full support, then m − r − 1 equations are enough: We can test p ∈ Eq,A

by checking whether log(p/q) lies in the column span of A. This amounts to
checking whether log(p/q) is orthogonal to kerA, which is equivalent to m−r−1
equations, once we have chosen a basis of kerA.

It turns out that even in the boundary the number of equations can be fur-
ther reduced: In general we do not need all circuits for the implicit description
of Eq,A. For instance, in Example 12, the equations 17b and 17c are equiv-
alent given 17a, i.e. we only need two of the three circuits to describe Eq,A.
Unfortunately we do not know how to find a minimal subset of circuits that
characterizes the closure of the exponential family. Of course, in the algebraic
case discussed in the previous remark this question is equivalent to determining
a minimal generating set of the circuit ideal among the circuits.

Now we focus on the following problem: Given a set S ⊆ X , is there a
probability distribution p ∈ EA satisfying supp(p) = S? In other words, we
want to characterize the set

S(q,A) := {supp(p) : p ∈ Eq,A} ⊆ 2X . (18)

Proposition 8 gives the following characterization: A nonempty set S ⊆ X is
the support set of some distribution p ∈ Eq,A if and only if the following holds
for all circuit vectors n ∈ ker A:

• supp(n+) ⊆ S if and only if supp(n−) ⊆ S.

Obviously, this condition does not depend on the circuits themselves, but only
on the supports of their positive and negative part. In order to formalize this
observation, consider the map

sgn: n 7→ (supp(n+), supp(n−)),

which associates to each vector a pair of disjoint subsets of X . Such a pair of dis-
joint subsets shall be called a signed subset of X in the following. Alternatively,
signed subsets (A,B) can also be represented as sign vectors X ∈ {−1, 0, +1}X ,
where

X(x) =


+1, if x ∈ A,

−1, if x ∈ B,

0, else.
(19)

In this representation, sgn corresponds to the usual signum mapping extended
to vectors. As a slight abuse of notation, we don’t make a difference between
these two representations in the following.

The signed subset sgn(c) corresponding to a circuit c ∈ kerA shall be called
an oriented circuit. The set of all oriented circuits is denoted by

C(A) := ± sgn(C) = {sgn(c) : c ∈ C or c ∈ −C}, (20)
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where C is a circuit basis of A.
We immediately have the following

Theorem 15. Let S be a nonempty subset of X . Then S ∈ S if and only if the
following holds for all signed circuits (A,B) ∈ C(A):

A ⊆ S ⇔ B ⊆ S. (21)

Corollary 16. If two matrices A1, A2 satisfy C(A1) = C(A2) then the possible
support sets of the corresponding exponential families Eq1,A1 and Eq2,A2 coincide.

According to remark 14, Theorem 15 gives us up to
(

m
r+2

)
conditions on the

support. Usually, some of these conditions are redundant, but it is not easy
to see a priori, which conditions are essential. Of course, a necessary condition
for a subset S of X to be a support set of a distribution contained in EA is
condition (21) restricted to pairs from a subset H ⊆ C(A). For example, one
can take H := sgn(B), where B is a finite subset of kerA, such as a basis.

Example 17. Let’s continue Example 12. From the circuits we deduce the fol-
lowing implications:

p(3) ̸= 0 ⇐⇒ p(4) ̸= 0, (22a)
p(1) ̸= 0 and p(2) ̸= 0 ⇐⇒ p(4) ̸= 0, (22b)
p(1) ̸= 0 and p(2) ̸= 0 ⇐⇒ p(3) ̸= 0. (22c)

Again, as above, the last two implications are equivalent given the first.
From this it follows easily that the possible support sets in this example

are {1}, {2} and {1, 2, 3, 4}. From the spanning set (13) we only obtain the
implication

p(1) ̸= 0 and p(2) ̸= 0 ⇐⇒ p(3) ̸= 0 and p(4) ̸= 0. (23)

We conclude this section with two examples where a complete characteriza-
tion of the face lattice of the convex support and thus of the possible supports
is easily achievable.

Example 18 (Supports in the binary no-n-way interaction model). Consider the
binary hierarchical model [KWA09] whose simplicial complex is the boundary of
an n simplex. If n = 3, this model is called the no-3-way interaction model and
its Markov bases have been recognized to be arbitrarily complicated [LO06], so
we cannot hope to find an easy description of the oriented circuits. However,
if we restrict ourselves to binary variables x = (xi)n

i=1 ∈ X := {0, 1}n, the
structure is very simple. In this case the exponential family is of dimension
2n − 2, i.e. of codimension 1 in the simplex, so kerA is one dimensional. It is
spanned by the “parity function”:

e[n](x) :=

{
−1 if

∑n
i=1 xi is odd,

1 otherwise.
(24)

Using Theorem 15 we can easily describe the face lattice of the marginal polytope
(i.e. convex support) P (n−1): A set Y ( {0, 1}n is a support set if and only if
it does not contain all configurations with even parity, or all configurations
with odd parity. It follows that P (n−1) is neighborly, i.e. the convex hull of any
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⌊dim(P (n−1))
2 ⌋ = 2n−1 − 1 vertices is a face of the polytope. To see this, note

that no set of cardinality less than 2n−1 can contain all configurations with even
or odd parity. We can easily count the support sets by counting the non-faces
of the corresponding marginal polytope, i.e. all sets Y that contain either the
configurations with even parity, or the configurations with odd parity. Let sk

be the number of support sets of cardinality of k, i.e. the number of faces with
k vertices. It is given by:

sk =
(

2n

k

)
− 2
(

2n−1

k − 2n−1

)
, (25)

where
(
m
l

)
= 0 if l < 0. Since this polytope has only one affine dependency

(24) which includes all the vertices, we see that it is simplicial, i.e. all its faces
are simplices. It follows that fk, the number of k-dimensional faces, is given by
fk = sk−1.

Altogether we have determined the face lattice of the polytope, which means
that we know the “combinatorial type” of the polytope. It turns out that the
face lattice of P (n−1) is isomorphic to the face lattice of the (2n−2)-dimensional
cyclic polytope with 2n vertices.

Next, we take a closer look at cyclic polytopes. Define the moment curve in
Rd by

x : R → Rd, t 7→ x (t) :=
(
t, t2, · · · , td

)T
. (26)

The d-dimensional cyclic polytope with n vertices is

C(d, n) := conv {x (t1), . . . ,x (tn)} , (27)

the convex hull of n > d distinct points (t1 < t2 < . . . < tn) on the moment
curve. The face lattice of a cyclic polytope can easily be described using Gale’s
evenness condition, see [Zie94]. The cyclic polytope is simplicial and neighborly,
i.e. the convex hull of any ⌊d

2⌋ vertices is a face of C(n, d), but even better, one
has

Theorem 19 (Upper Bound Theorem). If P is a d-dimensional polytope with
n = f0 vertices, then for every k it has at most as many k-dimensional faces as
the cyclic polytope C(d, n):

fk(P ) ≤ fk(C(d, n)), k = 0, . . . , d. (28)

If equality holds for some k with ⌊d
2⌋ ≤ k ≤ d then P is neighborly.

Theorem 19 was conjectured by Motzkin in 1957 and its proof has a long
and complicated history. The final result is due to McMullen [McM70].

The Upper Bound Theorem shows that the exponential families constructed
above have the largest number of support sets among all exponential families
with the same dimension and the same number of vertices. Finally, we consider
a cyclic polytope of dimension two which also gives an interesting exponential
family, answering the question for the exponential family of smallest dimension
containing all the vertices of the probability simplex. The construction is due
to [MA04].
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Example 20. Let X = {1, . . . , m} and consider the matrix A, whose columns are
the points on the 2-dimensional moment curve, augmented with row (1, . . . , 1):

A :=

1 1 1 . . . 1
1 2 3 . . . m
1 4 9 . . . m2

 . (29)

This matrix defines a two-dimensional exponential family. To approximate
an arbitrary extreme point δj of the probability simplex, consider the pa-
rameter vector θ = (j2,−2j, 1)T , giving rise to probability measures pβθ =
1
Z exp(−βθT A). Since θT Ai = (i − j)2, we get that limβ→∞ pβθ = δj .

Summarizing we see that cyclic polytopes, owing to their extremal proper-
ties, have something to offer not only for convex geometry, but also for statistics.

3 Relations to Oriented Matroids

In this section the results from the previous section are related to the theory of
oriented matroids. The proofs in this section are only sketched, since the main
results of this work have already been proved directly. We refer to chapters 1
to 3 of [BVS+93] for a more detailed introduction to oriented matroids.

Let E be a finite set and C a non-empty collection of signed subsets of E
(see the previous section). For every signed set X = (X+, X−) of E we let
X := X+ ∪ X− denote the support of X. Furthermore, the opposite signed set
is −X = (X−, X+). Then the pair (E, C) is called an oriented matroid if the
following conditions are satisfied:

(C1) C = −C,

(C2) for all X, Y ∈ C, if X ⊆ Y , then X = Y or X = −Y , (incomparability)

(C3) for all X,Y ∈ C, X ̸= −Y , and e ∈ X+ ∩ Y − there is a Z ∈ C such that
Z+ ⊆ (X+ ∪ Y +) \ {e} and Z− ⊆ (X− ∪ Y −) \ {e}. (weak elimination)

In this case each element of C is called a signed circuit.
Note that to every oriented matroid (E, C) we have an associated unoriented

matroid (E,C), called the underlying matroid, where

C = {X+ ∪ X− = supp(X) : X ∈ C} (30)

is the set of circuits of (E, C). In this way oriented matroids can be considered
as ordinary matroids endowed with an additional structure, namely a circuit
orientation which assigns two opposite signed circuits ±X ∈ C to every circuit
X ∈ C.

The most important example of an oriented matroid here is the oriented
matroid of a matrix A ⊆ Rd×m. In this case let E = X = {1, . . . ,m}, and let

C =
{
(supp(n+), supp(n−) : n ∈ kerA has inclusion minimal support.

}
. (31)

This example is so important that oriented matroids which arise in this way are
given a name: An oriented matroid is called realizable if it is induced by some
matrix A.3

3Note that this definition depends, in fact, only on the kernel of A, compare Remark 2
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The only axiom which is not trivially fulfilled for this example is (C3). How-
ever, if we drop the minimality condition and let V = {(supp(n+), supp(n−) :
n ∈ ker A}, then it is easy to see that V satisfies (C3). Thus (E, C) satisfies
(C3) by the following proposition:

Proposition 21. Let V be a nonempty collection of signed subsets of E satisfy-
ing (C1) and (C3). Write Min(V) for the minimal elements of V (with respect
to inclusion of supports). Then

1. for any X ∈ V there is Y ∈ Min(V) such that Y + ⊆ X+ and Y − ⊆ X−.

2. Min(V) is the set of circuits of an oriented matroid.

Proof. [BVS+93], proposition 3.2.4.

This illustrates how (C2) corresponds to the minimality condition. It is
possible to define oriented matroids without this minimality condition using the
following construction:

For two signed subsets X,Y of E define the composition of X and Y as

(X ◦ Y )+ := X+ ∪ (Y + \ X−), (X ◦ Y )− := X− ∪ (Y − \ X+). (32)

Note that this operation is associative but not commutative in general. A
composition X ◦Y is conformal if X and Y are sign-consistent, i.e. X+ ∩Y − =
∅ = X− ∩ Y +.

An o.m. vector of an oriented matroid is any composition of an arbitrary
number of circuits.4 The set of o.m. vectors shall be denoted by V. If the
oriented matroid comes from a matrix A, then V equals the set V from above.

The above proposition implies easily that an oriented matroid can be defined
as a pair (E,V), where V is a collection of signed subsets satisfying (C1), (C3)
and

(V0) ∅ ∈ V,

(V2) for all X, Y ∈ V we have X ◦ Y ∈ V,

Note that in the realizable case linear combinations of vectors correspond to
composition of their sign vectors in the following sense:

sgn(n + ϵn′) = sgn(n) ◦ sgn(n′), for ϵ > 0 small enough. (33)

Now Lemmas 10 and 11 correspond to the following two lemmas

Lemma 10’. For every o.m. vector Y there exists a sign-consistent signed cir-
cuit X such that X ⊆ Y .

Lemma 11’. Any o.m. vector is a conformal composition of circuits.

To every matrix A we can associate a polytope which was called convex
support in the last section. Many properties of this polytope can be translated
into the language of oriented matroids. This yields constructions which also
make sense, if the oriented matroid is not realizable. In order to make this

4In [BVS+93], o.m. vectors are simply called vectors. The name “o.m. vector” has been
proposed by F. Matúš to avoid confusion.
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more precise, we need the notion of the dual oriented matroid. The general
construction of the dual of an oriented matroid is beyond the scope of this
work. Here, we only state the definition for realizable oriented matroids.

In the following we assume that the matrix A has the constant vector
(1, . . . , 1) in its rowspace. This means that all the column vectors ax lie in
a hyperplane l1 = 1. In the general case, this can always be achieved by adding
another dimension. Technically we require that the face lattice of the polytope
spanned by the columns of A is combinatorially equivalent to the face lattice of
the cone over the columns. See also the remarks before Definition 6.

For every dual vector l ∈ (Rd)∗ let N+
l := {x ∈ X : l(ax) > 0} and N−

l :=
{x ∈ X : l(ax) < 0}. This way we can associate a signed subset sgn∗(l) :=
(N+

l , N−
l ) with l. The signed subset sgn∗(l) is called a covector. Let L be

the set of all covectors. If the signed subset (N+
l , N−

l ) has minimal support
(i.e. “many” vectors ax lie on the hyperplane l = 0), then l is called a cocircuit
vector, and sgn∗(l) is called a signed cocircuit. The collection of all signed
cocircuits shall be denoted by C∗.

Lemma 22. Let (E, C) be an oriented matroid induced by a matrix A. Then
(E, C∗) is an oriented matroid, called the dual oriented matroid.

Proof. See section 3.4 of [BVS+93].

Note that the faces of the polytope correspond to hyperplanes such that all
vertices lie on one side of this hyperplane, compare Definition 6. Thus the faces
of the polytope are in a one-to-one relation with the positive covectors, i.e. the
covectors X = (X+, X−) such that X− = ∅. The face lattice of the polytope
can be reconstructed by partially ordering the positive covectors by inclusion
of their supports; however, the relation needs to be inverted: Covectors with
small support correspond to faces which contain many vertices. The empty
face (which is induced, for example, by the dual vector l1 which defines the
hyperplane containing all ax) corresponds to the covector T := (X , ∅).

We can apply these remarks to all abstract oriented matroids such that
T = (X , ∅) is a covector. Such an oriented matroid is usually called acyclic.
Thus a face of an acyclic oriented matroid is any positive covector. A vertex
is a maximal positive covector X in L \ {T}, i.e. if X ⊆ Y for some positive
covector Y ∈ L \ {X}, then Y = T .

In this setting we have the following result, which clearly corresponds to the
second statement of 7:

Proposition 23 (Las Vergnas). Let (E, C) be an acyclic oriented matroid. For
any subset F ⊆ E the following are equivalent:

• F is a face of the oriented matroid.

• For every signed circuit X ∈ C, if X+ ⊆ F then X− ⊆ F .

Proof. The proof of Proposition 9.1.2 in [BVS+93] applies (note that the state-
ment of Proposition 9.1.2 includes an additional assumption which is never used
in the proof).

With the help of the moment map defined in the previous section, this
proposition can be used to easily derive Theorem 15: By the properties of the
moment map, every face of the convex support corresponds to a possible support
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set of an exponential family, and the proposition links this to the signed circuits
of the corresponding oriented matroid.

Finally, Corollary 16 can be rewritten as

Corollary 16’. The possible support sets of two exponential families coincide
if they have the same oriented matroids.

Unfortunately, this correspondence is not one-to-one: Different oriented ma-
troids can yield the same face lattice, i.e. combinatorially equivalent polytopes.
A simple example is given by a regular and a non-regular octahedron as de-
scribed in [Zie94]. The special case has a name: an oriented matroid is rigid, if
its positive covectors (i.e. its face lattice) determine all covectors (i.e. the whole
oriented matroid). Still, Corollary 16’ implies that the instruments of the theory
of oriented matroids should suffice to describe the support sets of an exponential
family.

Remark 24 (Importance of Duality). There are mainly two reasons why the
theory of oriented matroids (as well as the theory of ordinary matroids) is
considered important. First, it yields an abstract framework which allows to
describe a multitude of different combinatorial questions in a unified manner.
This, of course, does not in itself lead to any new theorem. The second reason
is that the theory provides the important tool of matroid duality.

It turns out that the dual of a realizable matroid is again realizable: If A is
a matrix representing an oriented matroid (E, C), then any matrix A∗ such that
the rows of A∗ span the orthogonal complement of the row span of A represents
the oriented matroid (E, C∗).

To motivate the importance of this construction we sketch its implications
for the case that the oriented matroid comes from a polytope. In this case
the duality is known under the name Gale transform [Zie94, Chapter 6]. A d-
dimensional polytope with N vertices can be represented by N vectors in Rd+1

lying in a hyperplane. These vectors form a (d + 1)×N -matrix A. Now we can
find an (N − d− 1)×N -matrix A∗ as above, so the dual matroid is represented
by a configuration of N vectors in RN−d−1. This means that this construction
allows us to obtain a lowdimensional image of a highdimensional polytope, as
long as the number of vertices is not much larger than the dimension. This
method has been used for example in [Stu88] in order to construct polytopes
with quite unintuitive properties, leading to the rejection of some conjectures.
Furthermore, oriented matroid duality makes it possible to classify polytopes
with “few vertices” by classifying vector configurations.

The notion of dimension generalizes to arbitrary oriented matroids (and
ordinary matroids). In the general setting one usually talks about the rank of
a matroid, which is defined as the maximal cardinality of a subset E ⊆ F such
that E contains no support of a signed circuit. In this sense duality exchanges
examples of high rank and low rank, where “high” and “low” is relative to |E|.
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Abstract

The main goal of this paper is to describe inference in hybrid Bayesian
networks (BNs) using mixtures of polynomials (MOP) approximations of
probability density functions (PDFs). Hybrid BNs contain a mix of dis-
crete, continuous, and conditionally deterministic random variables. The
conditionals for continuous variables are typically described by conditional
PDFs. A major hurdle in making inference in hybrid BNs is marginaliza-
tion of continuous variables, which involves integrating combinations of
conditional PDFs. In this paper, we suggest the use of MOP approxima-
tions of PDFs, which are similar in spirit to using mixtures of truncated
exponentials (MTEs) approximations. MOP functions can be easily in-
tegrated, and are closed under combination and marginalization. This
enables us to propagate MOP potentials in the extended Shenoy-Shafer
architecture for inference in hybrid BNs that can include deterministic
variables. MOP approximations have several advantages over MTE ap-
proximations of PDFs. They are easier to find, even for multi-dimensional
conditional PDFs, and are applicable for a larger class of deterministic
functions in hybrid BNs.

1 Introduction

Bayesian networks (BNs) and influence diagrams (IDs) were invented in the mid
80s (see e.g., [17], [7]) to represent and reason with large multivariate discrete
probability models and decision problems, respectively. Several efficient algo-
rithms exist to compute exact marginals of posterior distributions for discrete
BNs (see e.g., [11], [23], and [9]) and to solve discrete IDs exactly (see e.g., [16],
[20], [21], and [8]).

The state of the art exact algorithm for mixtures of Gaussians hybrid BNs is
the Lauritzen-Jensen algorithm [10]. This requires the conditional PDFs of con-
tinuous variables to be conditional linear Gaussians, and that discrete variables
do not have continuous parents. Marginals of multivariate normal distributions
can be found easily without the need for integration. The disadvantages are
that in the inference process, continuous variables have to be marginalized be-
fore discrete ones. In some problems, this restriction can lead to large cliques
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[12].
If a BN has discrete variables with continuous parents, Murphy [15] uses a

variational approach to approximate the product of the potentials associated
with a discrete variable and its parents with a conditional linear Gaussian.
[13] uses a numerical integration technique called Gaussian quadrature to ap-
proximate non-conditional linear Gaussian distributions with conditional linear
Gaussians, and this same technique can be used to approximate the product of
potentials associated with a discrete variable and its continuous parents. Mur-
phy’s and Lerner’s approach is then embedded in the Lauritzen-Jensen algorithm
[10] to solve the resulting mixtures of Gaussians BN.

Shenoy [22] proposes approximating non-conditional linear Gaussian distri-
butions by mixtures of Gaussians using a nonlinear optimization technique, and
using arc reversals to ensure discrete variables do not have continuous parents.
The resulting mixture of Gaussians BN is then solved using Lauritzen-Jensen
algorithm [10].

[14] proposes approximating PDFs by mixtures of truncated exponentials
(MTE), which are easy to integrate in closed form. Since the family of mixtures
of truncated exponentials is closed under combination and marginalization, the
Shenoy-Shafer architecture [23] can be used to solve a MTE BN. [4] proposes
using a non-linear optimization technique for finding MTE approximations for
several commonly used one-dimensional distributions. [2, 3] extend this ap-
proach to BNs with linear and non-linear deterministic variables. In the latter
case, they approximate non-linear deterministic functions by piecewise linear
ones.

In this paper, we propose using mixtures of polynomials (MOP) approxi-
mations of PDFs. Mixtures of polynomials are widely used in many domains
including computer graphics, font design, approximation theory, and numerical
analysis. They were first studied by Schoenberg [18]. When the MOP func-
tions are continuous, they are referred to as polynomial splines [19]. The use of
splines to approximate PDFs was initially suggested by [5]. For our purposes,
continuity is not an essential requirement, and we will restrict our analysis to
piecewise polynomial approximations of PDFs.

Using MOP is similar in spirit to using MTEs. MOP functions can be easily
integrated, and they are closed under combination and marginalization. Thus,
the extended Shenoy-Shafer architecture [25] can be used to make inferences in
BN with deterministic variables. However, there are several advantages of MOP
functions over MTEs.

First, we can find MOP approximations of differentiable PDFs easily by using
the Taylor series approximations. Finding MTE approximations as suggested
by [4] necessitates solving non-linear optimization problems, which is not as easy
a task as it involves navigating among local optimal solutions.

Second, for the case of conditional PDFs with several parents, finding a good
MTE approximation can be extremely difficult as it involves solving a non-linear
optimization problem in high-dimensional space for each piece. The Taylor
series expansion can also be used for finding MOP approximations of conditional
PDFs. In [24], we describe a MOP approximation for a 2-dimensional CLG
distribution.

Third, if a hybrid BN contains deterministic functions, then the MTE ap-
proach can be used directly only for linear deterministic functions. By directly,
we mean without approximating a non-linear deterministic function by a piece-
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wise linear one. This is because the MTE functions are not closed under trans-
formations needed for non-linear deterministic functions. MOP functions are
closed under a larger family of deterministic functions including linear func-
tions and quotients [24]. This enables propagation in a bigger family of hybrid
BNs than is possible using MTEs.

An outline of the remainder of the paper is as follows. In Section 2, we
define MOP functions and describe how one can find MOP approximations with
illustration for the univariate normal distribution. In Section 3, we solve a small
example designed to demonstrate the feasibility of using MOP approximations
with a non-differentiable deterministic function. Finally, in Section 4, we end
with a summary and discussion of some of the challenges associated with MOP
approximations.

2 Mixtures of Polynomials Approximations

In this section, we describe MOP functions and some methods for finding MOP
approximations of PDFs. We illustrate our method for the normal distribution.
In [24], we also describe MOP approximations of the PDFs of the chi-square
distribution, and the conditional linear Gaussian distribution in two dimensions.

2.1 MOP Functions

A one-dimensional function f : R → R is said to be a mixture of polynomials
(MOP) function if it is a piecewise function of the form:

f(x) =

{
a0i + a1ix+ a2ix

2 + · · · + anix
n for x ∈ Ai, i = 1, . . . , k,

0 otherwise.
(2.1)

where A1, . . . , Ak are disjoint intervals in R that do not depend on x, and
a0i, . . . , ani are constants for all i. We will say that f is a k-piece (ignoring the
0 piece), and n-degree (assuming ani ̸= 0 for some i) MOP function.

The main motivation for defining MOP functions is that such functions are
easy to integrate in closed form, and that they are closed under multiplication
and integration. They are also closed under differentiation and addition.

An m-dimensional function f : Rm → R is said to be a MOP function if:

f(x1, . . . , xm) = f1(x1) · f2(x2) · · · fm(xm) (2.2)

where each fi(xi) is a one-dimensional MOP function as defined in Equation
(2.1). If fi(xi) is a ki-piece, ni-degree MOP function, then f is a (k1 · · · km)-
piece, (n1 + . . .+ nm)-degree MOP function. Therefore it is important to keep
the number of pieces and degrees to a minimum.

2.2 Finding MOP Approximations of PDFs

Consider the univariate standard normal PDF ϕ(z) = (1/
√

2π)e−z2/2. A 1-
piece, 28-degree, MOP approximation ϕ1p(z) of ϕ(z) in the interval (−3, 3) is
as follows:

ϕ1p(z) =

{
c−1(1 − z2/2 + z4/8 − . . .+ z28/1428329123020800) if −3 < z < 3,
0 otherwise
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where c−1 ≈ 0.4. This MOP approximation was found using the Taylor series
expansion of e−z2/2, at z = 0, to degree 28, restricting it to the region (−3, 3),
verifying that ϕ1p(z) ≥ 0 in the region (−3, 3), and normalizing it with constant
c so that

∫
ϕ1p(z)dz = 1 (whenever the limits of integration are not specified,

the entire range (−∞,∞) is to be understood). We will denote these operations
by writing:

ϕ1p(z) =

{
TSeries[e−z2/2, z = 0, d = 28] if −3 < z < 3
0 otherwise.

(2.3)

We can verify that ϕ1p(z) ≥ 0 as follows. First, we plot the unnormalized
MOP approximation, denoted by, say, ϕu(z). From the graph, we identify ap-
proximately the regions where ϕu(z) could possibly be negative. Then starting
from a point in each these regions, we compute the local minimum of ϕu(z)
using, e.g., gradient descent. Since MOP functions are easily differentiable, the
gradients can be easily found. If ϕu(z) ≥ 0 at all the local minimums, then we
have verified that ϕ1p(z) ≥ 0. If ϕu(z) < 0 at a local minimum, then we need
to either increase the degree of the polynomial approximation, or increase the
number of pieces, or both.

We have some very small coefficients in the MOP approximation. Rounding
these off to a certain number of decimal places could cause numerical instability.
Therefore, it is important to keep the coefficients in their rational form.

A graph of the MOP approximation ϕ1p(z) overlaid on the actual PDF ϕ(z)
is shown in Figure 1 and it shows that there are not many differences between
the two functions in the interval (−3, 3). The main difference is that ϕ1p is
restricted to (−3, 3), whereas ϕ is not. The mean of ϕ1p is 0, and its variance
≈ 0.976. Most of the error in the variance is due to the restriction of the
distribution to the interval (−3, 3). If we restrict the standard normal density
ϕ function to the interval (−3, 3), renormalize it so that it is a PDF, then its
variance ≈ 0.973.

In some examples, working with a 28-degree polynomial may not be tractable.
In this case, we can include more pieces to reduce the degree of the polynomial.
For example, a 6-piece, 3-degree MOP approximation of ϕ(z) is as follows:

ϕ6p(z) =



TSeries[e−z2/2, z = −5/2, d = 3] if −3 < z < −2,
TSeries[e−z2/2, z = −3/2, d = 3] if −2 ≤ z < −1,
TSeries[e−z2/2, z = −1/2, d = 3] if −1 ≤ z < 0,
TSeries[e−z2/2, z = 1/2, d = 3] if 0 ≤ z < 1,
TSeries[e−z2/2, z = 3/2, d = 3] if 1 ≤ z < 2,
TSeries[e−z2/2, z = 5/2, d = 3] if 2 ≤ z < 3,
0 otherwise.

(2.4)

Notice that ϕ6p is discontinuous at the end points of the intervals. Also,
E(ϕ6p) = 0, and V (ϕ6p) ≈ 0.974. The variance of ϕ6p is closer to the variance
of the truncated normal (≈ 0.973) than ϕ1p.

In some examples, for reasons of precision, we may wish to work with a
larger interval than (−3, 3) for the standard normal. For example, an 8-piece,
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Figure 1: A graph of ϕ1p(z) overlaid on ϕ(z)

4-degree MOP approximation of ϕ in the interval (−4, 4) is as follows:

ϕ8p(z) =



TSeries[e−z2/2, z = −7/2, d = 4] if −4 < z < −3,
TSeries[e−z2/2, z = −5/2, d = 3] if −3 ≤ z < −2,
TSeries[e−z2/2, z = −3/2, d = 3] if −2 ≤ z < −1,
TSeries[e−z2/2, z = −1/2, d = 3] if −1 ≤ z < 0,
TSeries[e−z2/2, z = 1/2, d = 3] if 0 ≤ z < 1,
TSeries[e−z2/2, z = 3/2, d = 3] if 1 ≤ z < 2,
TSeries[e−z2/2, z = 5/2, d = 3] if 2 ≤ z < 3,
TSeries[e−z2/2, z = 7/2, d = 4] if 3 ≤ z < 4,
0 otherwise.

(2.5)

Notice that the degrees of the first and the eighth pieces are 4 to avoid
ϕ8p(z) < 0. E(ϕ8p(z)) = 0, and V (ϕ8p(z)) ≈ 0.99985. Due to the larger
interval, the variance is closer to 1 than the variance for ϕ6p. If we truncate the
PDF of the standard normal to the region (−4, 4) and renormalize it, then its
variance is ≈ 0.99893.

To find a MOP approximation of the PDF of the N(µ, σ2) distribution,
where µ and σ > 0 are constants, we exploit the fact that MOP functions are
invariant under linear transformations. Thus, if f(x) is a MOP function, then
f(ax + b) is also a MOP function. If Z ∼ N(0, 1), its PDF is approximated
by a MOP function ϕp(z), and X = σZ + µ, then X ∼ N(µ, σ2), and a MOP
approximation of the PDF of X is given by ξ(x) = (1/σ)ϕp((x− µ)/σ).
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3 An Example

In this section, we illustrate the use of MOP functions for solving a small hy-
brid Bayesian network (BN) with a deterministic variable. We use the extended
Shenoy-Shafer architecture described in [25]. In [24], we solve more hybrid BNs
with deterministic variables including the quotient and the product determinis-
tic functions.

Consider a BN as shown in Figure 2. X and Y are continuous variables
and W is deterministic with a non-differentiable function of X and Y , W =
max{X,Y }.

Figure 2: A BN with a max deterministic function

The conditional associated with W is represented by the Dirac potential
ω(x, y, w) = δ(w−max{x, y}), where δ is a Dirac delta function [6]. To compute
the marginal PDF of W , we need to evaluate the integral

fW (w) =
∫
fX(x)(

∫
fY (y)δ(w − max{x, y})dy)dx (3.1)

where fW (w), fX(x), and fY (y) are the marginal PDFs of W , X, and Y ,
respectively. Since the deterministic function is not differentiable, the integrals
in Equation (3.1) cannot be evaluated as written.

One solution to finding the marginal PDF of W is to use theory of order
statistics. Let FW (w), FX(x), and FY (y) denote the marginal cumulative dis-
tribution functions (CDFs) of W , X, and Y , respectively. Then:

FW (w) = P (W ≤ w) = P (X ≤ w, Y ≤ w) = FX(w)FY (w). (3.2)

Differentiating both sides of Equation (3.2) with respect to w, we have:

fW (w) = fX(w)FY (w) + FX(w)fY (w). (3.3)

In our example, X and Y have normal PDFs, which does not have a closed
form CDF. However, using MOP approximations of the normal PDF, we can
easily compute a closed form expression for the CDFs, which will remain MOP
functions. Then, using Equation (3.3), we will have a closed-form MOP ap-
proximation for the PDF of W . Assuming we start with the 8-piece, 4-degree
MOP approximation ϕ8p of N(0, 1) on the interval (−4, 4) as described in Equa-
tion (2.5), we can find MOP approximations of the PDFs of N(5, 0.252) and
N(5.25, 1) as discussed in Section 2 as follows:

ξ(x) = 4ϕ8p(4(x− 5)), (3.4)
ψ(y) = ϕ8p(y − 5.25). (3.5)
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Next we find the MOP approximations of the CDFs of X and Y , and then
the MOP approximation of the PDF of W using Equation (3.3). A graph of the
MOP approximation of fW (w) is shown in Figure 3.

Figure 3: A graph of the MOP approximation of the PDF of W

The mean and variance of the MOP approximation of fW are computed as
5.5484 and 0.4574. [1] provides formulae for exact computation of the mean and
variance of the max of two normals as follows:

E(W ) = E(X)FZ(b) + E(Y )FZ(−b) + afZ(b), (3.6)

E(W 2) = (E(X)2 + V (X))FZ(b) + (E(Y )2 + V (Y ))FZ(−b)
+(E(X) + E(Y ))afz(b), (3.7)

where a2 = V (X) + V (Y ) − 2C(X,Y ), b = (E(X) − E(Y ))/a, and fZ and FZ

are the PDF and CDF of N(0, 1), respectively.
In our example, E(X) = 5, E(Y ) = 5.25, V (X) = 0.252, V (Y ) = 1,

C(X,Y ) = 0. Thus, E(W ) ≈ 5.5483, and V (W ) ≈ 0.4576. The mean and
variance of the MOP approximation of W are accurate to three decimal places.
Unfortunately, the reasoning behind this computation of the marginal of W is
not included in inference in BNs.

To obtain the marginal ofW using BN inference, we convert the max function
to a differentiable function as follows: max{X,Y } = X if X ≥ Y , and = Y if
X < Y . We include a discrete variable A with two states, a and na, where a
indicates that X ≥ Y , and make it a parent of W . The revised BN is shown in
Figure 4.

Figure 4: The revised BN for the max deterministic function
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Starting with the BN in Figure 4, the marginal of W can be computed using
the extended Shenoy-Shafer architecture [25]. We start with mixed potentials
as follows:

µX(x) = (1, ξ(x)); (3.8)
µy(y) = (1, ψ(y)); (3.9)

µA(a, x, y) = (H(x− y), 1), µA(na, x, y) = (1 −H(x− y), 1); (3.10)
µW (a, x, y, w) = (1, δ(w − x)), µW (na, x, y, w) = (1, δ(w − y)). (3.11)

In Equation (3.10), H(.) is the Heaviside function such that H(x) = 1 if x ≥ 0,
and = 0 otherwise. The Heaviside function is a MOP function.

To find the marginal of W , we sequentially delete X, Y , and A. To delete
X, first we combine µX , µA, and µW , and then marginalize X from the combi-
nation:

(µX ⊗ µA ⊗ µW )(a, x, y, w) = (H(x− y), ξ(x)δ(w − x)), (3.12)
(µX ⊗ µA ⊗ µW )(na, x, y, w) = (1 −H(x− y), ξ(x)δ(w − y)); (3.13)

(µX ⊗ µA ⊗ µW )−X(a, y, w) = (1,
∫
H(x− y)ξ(x)δ(w − x))dx)

= (1,H(w − y)ξ(w)), (3.14)

(µX ⊗ µA ⊗ µW )−X(na, y, w) = (1, δ(w − y)
∫

(1 −H(x− y))ξ(x)dx)

= (1, δ(w − y)θ(y)); (3.15)

where θ(y) =
∫

(1 −H(x− y))ξ(x)dx.
Next, we delete Y . To do so, we combine (µX ⊗ µA ⊗ µW )−X and µY , and

then marginalize Y:

((µX ⊗ µA ⊗ µW )−X ⊗ µY )(a, y, w) = (1,H(w − y)ξ(w)ψ(y)), (3.16)

((µX ⊗ µA ⊗ µW )−X ⊗ µY )(na, y, w) = (1, δ(w − y)θ(y)ψ(y)); (3.17)

((µX ⊗ µA ⊗ µW )−X ⊗ µY )−Y (a,w) = (1, ξ(w)
∫
H(w − y)ψ(y)dy)

= (1, ξ(w)ρ(w)), (3.18)

((µX ⊗ µA ⊗ µW )−X ⊗ µY )−Y (na,w) = (1, θ(w)ψ(w)); (3.19)

where ρ(w) =
∫
H(w − y)ψ(y)dy.

Finally, we delete A by marginalizing A from ((µX ⊗µA ⊗µW )−X ⊗µY )−Y :

(((µX ⊗ µA ⊗ µW )−X ⊗ µY )−Y )−A(w) = (1, ξ(w)ρ(w) + θ(w)ψ(w))
= (1, ω(w)); (3.20)

where ω(w) = ξ(w)ρ(w) + θ(w)ψ(w). ω(w) is a MOP approximation of fW (w).
Notice that

ρ(w) =
∫
H(w − y)ψ(y)dy = FY (w), and (3.21)

θ(w) =
∫

(1 −H(x− y))ξ(x)dx = 1 − P (X > w) = FX(w), (3.22)

and therefore, ω(w) = ξ(w)ρ(w)+θ(w)ψ(w) is a MOP approximation of fX(w)FY (w)+
FX(w)fY (w). We get exactly the same results as those obtained by using theory
of order statistics but using BN inference.
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4 Summary and Discussion

The biggest problem associated with inference in hybrid BNs is the integra-
tion involved in marginalization of continuous variables. As a remedy, we have
proposed MOP approximations for PDFs in the same spirit as MTE approxi-
mations [14]. Like MTE functions, MOP functions are easy to integrate, and
are closed under combination and marginalization. This allows propagation of
MOP potentials using the extended Shenoy-Shafer architecture [25].

MOP approximations have several advantages over MTE approximations of
PDFs. First, they are easy to find using the Taylor series expansion of differ-
entiable functions. Second, finding MOP approximations of multi-dimensional
conditional PDFs is also relatively straightforward using the multi-dimensional
Taylor series expansion. Third, MOP approximations are closed for a larger
family of deterministic functions including the quotient functions. Beyond these
observations, a formal empirical comparison of MOP vs. MTE approximations
is an issue that needs further study.

Some issues associated with MOP approximations that need to be investi-
gated are as follows. There is a tradeoff between the number of pieces and the
degree of the polynomial. More pieces mean smaller intervals and consequently
smaller degrees. Assuming the goal is to find marginals most efficiently, what
is the optimal number of pieces/degrees?

Another challenge is to describe the effect of pieces/terms on the errors in
the moments of marginals. It appears that most of the errors in the moments
are caused by truncating the domain of variables to some finite intervals. Thus,
it may be possible to decide on what intervals should be used if we wish to
compute marginals within some prescribed error bounds for the moments of the
marginal of variable of interest.

High degree MOP approximations lead to very small coefficients that need
to be kept in rational form. This may decrease the efficiency of computation,
and may limit the size of BN models that can be solved. One solution here is
to use more pieces, which lowers the degrees of the MOP approximations.

MOP approximations are not closed for many classes of deterministic func-
tions such as products and exponentiation. If we can expand the class of MOP
functions to include positive and negative rational exponents and maintain the
properties of MOP functions—easily integrable, closed under combination and
marginalization—then we can solve hybrid BNs with a larger class of determin-
istic functions.
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Abstract

Recent ex post research into mega-projects has disclosed that cost
usually is severely underestimated and benefits severely overestimated. It
is thus proposed to improve the practical methods for taking economic
risk and uncertainty more thoroughly into account. For that purpose we
first compare probabilistic and possibilistic approaches and then combine
them into a unified concept of imprecise stochastic variables. Numerical
examples demonstrate the potential of the methods considered.

1 Introduction

The traditional approach to representation of uncertainty in economics is that of
probabilities [1]. An uncertain parameter may be represented by a probability
distribution reflecting either the objective nature of the parameter or the deci-
sion maker’s subjective belief. The probabilistic approach is particularly suited
for representing the statistical nature or variability of a parameter. In the gen-
eral case where the actual economic problem under consideration is modelled
by a function of uncertain parameters, Monte Carlo simulation can be used to
find the resulting distribution of uncertainty. In the case where the uncertain
variables are represented by independent stochastic variables given by expected
value and standard deviation a linear approximation is used to calculate the
resulting expected value and standard deviation.

An alternative approach is offered by possibility theory [2] based on repre-
sentation of uncertain parameters by fuzzy numbers [3], [4]. This approach is
well suited to represent lack of knowledge or imprecision in connection with
economic parameters. The simplest fuzzy number being the interval, calculat-
ing with intervals and interval functions is far from trivial: In the case of an
interval [5], [6] function being non-monotonic or variables appearing more than
once, algorithms for finding global extreme points must be applied [7]-[9]. Since
the basic operations when calculating with fuzzy numbers are interval opera-
tion the ability to perform correct calculations with intervals is a prerequisite
for handling calculations with fuzzy numbers correctly. The interval approach



214 H. SCHKÆR-JACOBSEN

was previously applied to a product development case [10].

In this paper the two alternative approaches are compared based on a num-
ber of practical examples by means of numerically identical representations of
input variables. For example, a triangular input parameter is interpreted as
a triangular probability distribution when applying the probabilistic approach
and a triangular fuzzy number when applying the possibility approach. As a
general result, it is observed that the probabilistic approach results in numeri-
cally much smaller uncertainties than does the possibilistic approach. In view of
the mega-project experience of budgets overruns, a critical discussion of weak-
nesses of conventional applied methods is presented and special attention is paid
to the handling of outcomes with low probability/possibility but heavy impact.

It is further proposed to represent economic uncertainty by means of impre-
cise stochastic variables (or fuzzy random variables), thereby combining the
probabilistic and possibilistic approaches in a unified concept. A railway re-
construction case is used to demonstrate the potential of imprecise stochastic
variables offering a wide range of interpretations of the uncertainties represented.

2 Representation of uncertainty

For the comparative purpose of this paper, we introduce the rectangular, trian-
gular, and trapezoidal representation of uncertain parameters. In each case we
interpret the representation as a fuzzy number and a probability distribution as
well

2.1 Rectangular representation

An uncertain variable X is represented by two real numbers a and b, where
a < b. Interpreting X as a rectangular fuzzy number (actually an interval) we
write

X = [a; b] (1)

with the membership function

f(x) = 1, a ≤ x ≤ b,
= 0, otherwise.

(2)

Interpreting X as a rectangular probability distribution with probability density
function f(x) (except for normalisation) we define the stochastic variable

X = {µ; σ} (3)

where µ is the expected or mean value and σ is the standard deviation given by

µ = (a + b)/2, σ2 = (b − a)2/12. (4)

By normalisation the probability is constant in the interval [a; b], equal to

h = 1/(b − a), (5)

and equal to zero outside of the interval [a; b].
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2.2 Triangular representation

Here we represent an uncertain variable X by three real numbers a, c, and b,
where a < c < b. Interpreting X as a triangular fuzzy number [11] we write

X = [a; c; b] (6)

with the membership function

f(x) = (x − a)/(c − a), a ≤ x ≤ c,
= (b − x)/(b − c), c ≤ x ≤ b,
= 0, otherwise.

(7)

X may also be interpreted as a triangular probability distribution function with
probability density function (7) (except for normalisation) and we get for the
mean value and standard deviation of the stochastic variable of the form (3)

µ = (a + b + c)/3, σ2 = (a2 + b2 + c2 − ab − ac − bc)/18. (8)

By normalisation the maximum probability h is attained at c,

h = 2/(b − a), (9)

Outside of [a; b] the probability is zero.

2.3 Trapezoidal representation

An uncertain variable X is represented by four real numbers a, c, d, and b,
where a < c < d < b. This variable can be interpreted as a trapezoidal fuzzy
number [12]. We write

X = [a; c; d; b] (10)

and the membership function f(x) is

f(x) = (x − a)/(c − a), a ≤ x ≤ c,
= 1, c ≤ x ≤ d,
= (b − x)/(b − d), d ≤ x ≤ b,
= 0, otherwise.

(11)

X may also be interpreted as a trapezoidal probability distribution [13] with
probability density function (11) (except for normalisation) and we get for the
mean value and standard deviation of the stochastic variable of the form (3)

µ = h((b3 − d3)/(b − d) − (c3 − a3)/(c − a))/6
σ2 = (3(r + 2s + t)4 + 6(r2 + t2)(r + 2s + t)2−

(r2 − t2)2)/(12(r + 2s + t))2,
r = c − a, s = d − c, t = b − d.

(12)

In (11), the maximum probability h by normalisation is constant in the interval
[c; d],

h = 2/(b − a + d − c). (13)

The probability is equal to zero outside of the interval [a; b].
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3 Processing of uncertain input variables

The actual economic problem under consideration is modelled by a function Y
of n uncertain input variables

Y = Y (X1, X2, . . . , Xn) (14)

where Y is the output variable. With intervals and fuzzy numbers as input
variables, the output variable is also an interval or a fuzzy number. When
the input variables are probability distributions or stochastic variables so is the
output variable.

3.1 Processing of intervals and fuzzy numbers

For basic operations on the intervals X1 = [a1; b1] and X2 = [a2; b2] we get the
resulting interval Y by the formulas

Y = X1 + X2 = [a1 + a2; b1 + b2],
Y = X1 − X2 = [a1 − b2; b1 − a2],
Y = X1 · X2

= [min(a1 · a2, a1 · b2, b1 · a2, b1 · b2);max(a1 · a2, a1 · b2, b1 · a2, b1 · b2)],
Y = X1/X2

= [min(a1/a2, a1/b2, b1/a2, b1/b2);max(a1/a2, a1/b2, b1/a2, b1/b2)],
0 ̸∈ [a2; b2].

(15)

It can be shown that the four basic interval operations are inclusion monotonic,
commutative, and associative. However, the distributive rule is not valid in
general. Instead, the so-called sub-distributivity holds, but only for addition
and multiplication [7].

From a rational real valued function y of n real valued variables

y = y(x1, x2, . . . , xn) (16)

we can create the interval extension function as an interval function Y of n
intervals

Y = Y (X1, X2, . . . , Xn) (17)

simply by replacing the real operators by interval operators and the real vari-
ables by intervals.

A rational function can be formulated in many ways whereas the same refor-
mulations cannot be done for interval expressions due to the invalidity of the
distributive rule. This implies that different formulations of a rational function
will lead to different interval extension functions and thus to different interval
results [7]. In the case of Y being a monotonic function within the entire range of
the input variables the minimum and maximum of Y as an interval can simply be
found among the function values y at the extreme points of the variables. In the
general case of Y being non-monotonic, variables appearing more then once, or
intermediate variables are used, the calculation of Y as an interval is non-trivial.
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In order to calculate correct results of interval extension functions in the general
case we thus have to use global optimization methods. In this paper we use the
program Interval Solver 2000 as an add-in module to MS-Excel for all interval
calculations [14], [15]. Straightforward application of interval arithmetic (15)
will result in excessive width output intervals.

Similar to the interval arithmetic formulas (15), we have for basic operations on
triple estimate triangular fuzzy numbers X1 = [a1; c1; b1] and X2 = [a2; c2; b2] we
get the resulting interval Y by the formulas (similar formulas exist for quadruple
estimate trapezoidal numbers [16]).

Y = X1 + X2 = [a1 + a2; c1 + c2; b1 + b2],
Y = X1 − X2 = [a1 − b2; c1 − c2; b1 − a2],
Y = X1 · X2

= [min(a1 · a2, a1 · b2, b1 · a2, b1 · b2); c1 · c2;
max(a1 · a2, a1 · b2, b1 · a2, b1 · b2)],

Y = X1/X2

= [min(a1/a2, a1/b2, b1/a2, b1/b2); c1/c2;
max(a1/a2, a1/b2, b1/a2, b1/b2)], 0 ̸∈ [a2; b2].

(18)

Mathematical operations on triangular fuzzy numbers can be facilitated by in-
troducing the left L(α) and right R(α) representation. For a triangular fuzzy
number with piece wise linear membership function we get

Y = [L(α); R(α)], where L(α) = a + (c − a)α and R(α) = b + (c − b)α,
α ∈ [0, 1]. (19)

For a trapezoidal fuzzy number we have correspondingly

Y = [L(α);R(α)], where L(α) = a + (c − a)α and R(α) = b + (d − b)α,
α ∈ [0, 1]. (20)

Observe that in this notation a fuzzy number is written as an interval with up-
per and lower bounds depending on α. This means that addition, subtraction,
multiplication, and division can be carried out by using interval methods for all
values of α. Likewise, for any triangular and trapezoidal function, the resulting
triangular and trapezoidal functional values can be calculated and represented
by L and R functions using interval methods for all values of α.

With triangular and trapezoidal fuzzy numbers as input variables the resulting
membership function of the output variable Y is obtained by interval calcula-
tions on the α-cuts for a sufficient number of values of α, 0 ≤ α ≤ 1.

3.2 Processing of stochastic variables and probability dis-
tributions

With independent stochastic input variables Y is approximated by means of a
Taylor series

Y ∼= Y (µ1, . . . , µn) + ∂Y/∂X1 · (X1 − µ1) + ∂Y/∂X2 · (X2 − µ2) + . . .
+ ∂Y/∂Xn · (Xn − µn) (21)
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where ∂Y/∂Xi is the partial derivative of Y with respect to Xi calculated at
(µ1, . . . , µn). The expected value is

E(Y ) = µ = Y (µ1, . . . , µn). (22)

The standard deviation σ is approximated by

σ2 ∼= (∂Y/∂X1)2 · σ2
1 + . . . + (∂Y/∂Xn)2 · σ2

n. (23)

In three cases, though, it is recommended to use Monte Carlo simulation:

1. When the uncertain variables are not statistically independent, use Monte
Carlo simulation with a suitable covariance matrix.

2. When the function (16) is not monotonic and the linear approximation
(21) therefore may be too inaccurate.

3. When the uncertain input variables are represented by probability distri-
butions and the probability distribution of the output variable is needed.

4 Comparison of possibilities and probabilities

4.1 Non-monotonic test function

The non-monotonic real valued function

y = x(1 − x) (24)

is calculated with rectangular argument a = 0 and b = 1.

Substituting x with a fuzzy number X = [0; 1] we get by straightforward appli-
cation of interval arithmetic (15) Y = [0; 1]. However, using global optimisation
we get the result Y = [0; 0, 25], which is the correct result, i.e. the most narrow
interval that can be obtained for Y .

Interpreting x as a uniform probability distribution we get by Monte Carlo
simulation [17] the results show in Fig. 1, where also the membership func-
tion of the above result is depicted (normalised as a pdf). It is seen that the
Monte Carlo simulation reproduces the minimum and maximum limitations of
the function. However, the shapes of the membership function and the proba-
bility distribution are quite different.

4.2 Sum of uncertain variables

Project cost functions are often sums of uncertain variables. As an example
consider a simple sum function of 10 uncertain cost variables represented by
identical triangular representations, a = 8, c = 10, and b = 16. Computational
results are shown in Fig. 2. First, observe the triangular piecewise linear mem-
bership obtained by fuzzy arithmetic (15). First, compare with the two Monte
Carlo simulations, one with uncorrelated variables, the other with 100% corre-
lation. The former is well approximated with a normal distribution. The latter
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Figure 1: Function x(1-x) with rectangular representation of x: a = 0, b = 1.

Figure 2: Sum of 10 identical cost elements with triangular representation of x:
a = 8, c = 10, b = 16.

exactly reproduces the triangular shape of the fuzzy membership function.

From a cost uncertainty point of view the approaches give rise to alternative
conclusions. The ”probabilist” argues that the total cost of the project most
probably will be 113,3, provided the variables are independent. The probability
of overrunning the expected total cost with a certain amount is equal to the
probability of running lower. The ”possibilist” argues that the total cost of the
project is 100 and the possibility of overrunning is considerably larger than the
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opposite. Also note that the total cost expected by the ”probabilist” is 13, 3%
higher that the one expected by the ”possibilist”. It is interesting to note that
the ”probabilist” will have to accept that in practice the variables are not un-
correlated, although he might have difficulties in determining the correlation
coefficients. Actually, assuming 100% correlation he discovers that he is facing
exactly the same numerical uncertainty as the ”possibilist” because the prob-
ability distribution is coinciding with the membership function. It should be
noted here that this coincidence is also happening when calculating differences.
For multiplication and division things are more complex.

Simularly, using trapezoidal cost elements, a = 8, c = 9, d = 11, and b = 16,
we get the fuzzy total cost Y = [80; 90; 110; 160] and the probability total cost
Y = {112; 5, 58} normally distributed by independent input variables.

5 Imprecise stochastic variables

The representation of uncertain variables by a conventional stochastic approach
is generally accepted to account for uncertainties of a statistical nature. In
case the expected value of an uncertain economic parameter represented by a
conventional stochastic variable (3) is known only with imprecision, we propose
to represent it by an imprecise stochastic variable X

X = {µ; σ}, (25)

where the expected value µ is now a fuzzy number accounting for the impre-
cision of the actual economic parameter. The variability is still precisely
accounted for by the standard deviation σ.

In (25) the fuzzy expected value µ may have different forms, e.g. an inter-
val

µI = [a; b], (26)

or a triple estimate corresponding to a triangular fuzzy number with α-cuts 0
and 1

µT = [a; c; b], (27)

or even a quadruple estimate corresponding to a trapezoidal fuzzy number with
α-cuts 0 and 1

µTR = [a; c; d; b]. (28)

Let X1 and X2 be independent stochastic variables with expected values E(X1) =
µ1 and E(X2) = µ2 and variances VAR(X1) = σ2

1 and VAR(X2) = σ2
2 . We

then have for the basic calculations with X1 and X2:

Addition : µ = µ1 + µ2; σ2 = σ2
1 + σ2

2 .
Subtraction : µ = µ1 − µ2; σ2 = σ2

1 + σ2
2 .

Multiplication : µ = µ1 · µ2; σ2 ∼= σ2
1 · µ2

2 + σ2
2 · µ2

1.
Division : µ = µ1/µ2; σ2 ∼= σ2

1/µ2
2 + σ2

2 · µ2
1/µ4

2, if 0 ̸∈ µ2.

(29)
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6 A practical cost estimation case

Consider the case of estimating the total cost incurred by a railway reconstruc-
tion project described by independent imprecise stochastic variables, namely 18
cost items X1, . . . , X18 and 3 correction factors X19, . . . , X21. The correction
factors are introduced in order to account for overall influences not accounted
for by the individual cost items.

The total cost before corrections is the sum

Y1 = X1 + X2 + . . . + X18. (30)

The total cost after corrections Y = Y (X) is a non-linear function of all 21
stochastic variables

Y = (X1 + X2 + . . . + X18) · X19 · X20 · X21. (31)

The variability and imprecision of the case represented by standard deviations
and expected values of the 21 input parameters are estimated by railway experts
with relevant project experience. Subsequently, the expected value and standard
deviation of the total cost Y is calculated by means of extended application of
(4) and (5) respectively. (Similar, yet simpler, formulas hold for Y1):

µ = (µ1 + µ2 + . . . + µ18) · µ19 · µ20 · µ21 (32)

and

σ ∼= (∂Y/∂X1)
2 · σ2

1 + . . . + (∂Y/∂Xn)2 · σ2
n (33)

where

∂Y/∂Xi = X19 · X20 · X21, i = 1, . . . , 18, (34)

and

∂Y/∂X19 = (X1 + X2 + . . . + X18) · X20 · X21

∂Y/∂X20 = (X1 + X2 + . . . + X18) · X19 · X21

∂Y/∂X21 = (X1 + X2 + . . . + X18) · X19 · X20

(35)

The total cost estimation results are shown in Table 1 together with a technical
explanation of all the variables in terms of cost items and correction factors.
The term ”code” refers to the cost structure hierarchy. Focusing on total cost
after corrections, an interpretation and discussion of the results with gradually
increased uncertainty follows.

Imprecision and variation may be combined in the cost estimation by pre-
senting the total cost after corrections according to Table 1 as e.g.

Y = {[23.842; 32.930]; 3.659} (36)

or

Y = {[23.842; 26.565; 32.930]; 3.659} (37)
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Var. Code Item {µ; σ}
0,00 Management and specs. {[1.732; 1.780; 1.884]; 268}

X1 0.10 Project management {[524; 540; 575]; 160}
X2 0.20 Construction management etc. {[975; 1.000; 1.050]; 200}
X3 0.30 Design specifications etc. {233; 240; 259]; 80}
X4 10,00 Environmental and soil eng. {[864; 888; 950]; 194}
X5 20,00 Traffic tasks {[48; 50; 53]; 12}

30,00 Renewal of tracks {[8.907; 9.190; 9.664]; 383}
X6 30,10 New outbound main track {[975; 1.000; 1.050]; 200}
X7 30,20 Track renewal at platform 3/5 {[5.432; 5.600; 5.880]; 300}
X8 30,30 New platform edge {[1.533; 1.580; 1.643]; 50}
X9 30,40 Track renewal depot, West {[285; 300; 321]; 80}
X10 30,50 Track layout design {[682; 710; 770]; 90}
X11 40,00 Platform and station {[538; 560; 602]; 120}
X12 50,00 Safety and signal installations {[5.035; 5.245; 5.586]; 1.428}

60,00 Informatics incl. power supply {[2.374; 2.417; 2.626]; 221}
X13 60,10 Phase 2-4 {[78; 80; 86]; 22}
X14 60,20 Sub project management {[249; 259; 275]; 76}
X15 60,30 Passenger information {[1.009; 1.030; 1.123]; 140}
X16 60,40 Electrical power supply {[1.038; 1.048; 1.142]; 152}

70,00 Overhead line incl. pylons {[3.507; 3.624; 3.787]; 487}
X17 70,10 Overhead cables {[3.021; 3.122; 3.262]; 480}
X18 70,20 Layout and planning {[486; 502; 525]; 82}
Y1 Total cost before corrections {[23.005; 23.754; 25.152]; 1.611}
X19 A Internal decision process {[1, 006; 1, 032; 1, 098]; 0, 068}
X20 B Design specifications etc. {[1, 009; 1, 040; 1, 100]; 0, 068}
X21 C Working process {[1, 021; 1, 042; 1, 084]; 0, 079}
Y Total cost after corrections {[23.842; 26.565; 32.930]; 3.659}

Table 1: Total cost estimation for railway reconstruction case by imprecise
stochastic variables (1000 monetary units)
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Some comments concerning the actual shape of the cumulated distribution func-
tion (cdf) connected with the imprecise stochastic variables of the total cost
before and after corrections are in order. Since the cost function (31) basically
is a sum of many small independent contributions (of unspecified shapes) it fol-
lows from the central limit theorem that the resulting distribution may be well
approximated by a normal distribution.

By closer inspection of the set of conventional normal distributions generated
by (37) a number of observations concerning the uncertainty of the total cost
after corrections can be made:

1. Ignoring both variability and imprecision, the conventional (crisp) value of
the total cost after corrections is 26.565, which represents a conventional
budget without taking uncertainties into account.

2. Ignoring variability the double estimate of the total cost after corrections
is [23.842; 32.930]. This accounts for the imprecision involved in the cost
calculation.

3. Ignoring variability the triple estimate of the total cost after corrections
is [23.842; 26.565; 32.930]. In this way the conventional budget figure of
the total cost is represented in the uncertainty estimate.

4. Next consider the cost function represented by the normal distribution
{26.565; 3.659}, thus ignoring imprecision. By inspection of the cumu-
lative distribution function the following statement can be made: With
probability 0,9 the total cost after corrections will be below ∼ 31.000.

5. Next consider the normal distribution functions {[23.842; 32.930]; 3.659},
thus taking imprecision of the expected values into account. This means
that in the worst case the total cost after corrections will be below ∼ 37.500
with probability 0,9 and in the best case below ∼ 28.500 with probability
0,9.

7 Conclusion

The results presented in this paper indicate that the picture of economic uncer-
tainty very much depends on the way uncertainty is represented and processed.
The point of departure is the availability of a conventional economic model,
e.g. in the form of a project budget. The two alternative ways of representing
uncertainty, namely possibilities and probabilities, can be considered as exten-
sions of a conventional budget. In the case of possibilities being modelled by
fuzzy numbers, correct calculations require application of global optimisation.
By using straightforward fuzzy arithmetic, the resulting uncertainty is incor-
rectly getting excessively large. In the case of uncertainty being modelled by
stochastic variables or probability distributions, linear approximation or Monte
Carlo simulation is applicable. Specific attention has to be paid to correlation
between probabilistic variables: Uncertainty tend to become much larger with
correlated variables compared to independent variables. Based on the calcu-
lations done for a sum of 10 triangular uncertain variables it is demonstrated
that by assuming 100% correlation the total uncertainty exactly reproduces the
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result obtained by fuzzy calculations.

Fundamental for the comparison of probabilistic and possibilistic approaches
in this paper is the usage of numerically identical uncertain input variables,
namely rectangular, triangular, and trapezoidal uncertainty. In case of skewed
input variables, it is observed that the conventional budget values are not pre-
served when probabilities are applied, contrary to the case of fuzzy numbers.
Further, it seems intuitively strange that the resulting probabilistic uncertainty
is symmetric (a normal distribution), considering the fact, that more often bud-
gets are overrun than the opposite.

The introduction of imprecise stochastic variables allows for simultaneous rep-
resentation of imprecision and variability. As demonstrated by a railway re-
construction project imprecise stochastic variables allow for a wide range of
uncertainty representations and calculations. Basically, uncertainty of a statis-
tical nature as well as uncertainty of a non-statistical nature can be represented,
calculated, and communicated by means of a unified concept.

Modelling of economic uncertainty is crucially dependent on reliable input data.
This aspect, however, has not been dealt with in the present paper but is the
subject of an ongoing research project. An initiative taken by the Danish Gov-
ernment instigates a new way of dealing with risk and uncertainty in large
infrastructure projects that is primarily based of objective, rather than subjec-
tive uncertainty data. It is expected that the concepts outlined in this paper
will find areas of application in that particular context.
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Abstract

The basic idea of an algebraic approach to learning Bayesian network
(BN) structures is to represent every BN structure by a certain (uniquely
determined) vector, called the standard imset. In a recent paper [11], we
have shown that the set S of standard imsets is the set of vertices (=
extreme points) of a certain polytope P and introduced natural geometric
neighborhood for standard imsets, and, consequently, for BN structures.

The new geometric view led to a series of open mathematical ques-
tions. In this contribution, we try to answer some of them. First, we
introduce a class of necessary linear constraints on standard imsets and
formulate a conjecture that these constraints characterize the polytope P.
The conjecture has been confirmed in the case of (at most) 4 variables.
Second, we confirm a former hypothesis by Raymond Hemmecke that the
only lattice points (= vectors having integers as components) within P
are standard imsets. Third, we give a partial analysis of the geometric
neighborhood in the case of 4 variables.

1 Motivation

The motivation for this research is learning Bayesian network (BN) structures
from data by the method of maximization of a quality criterion (= the score
and search method). By a quality criterion is meant a real function Q of the
BN structure (= of a graph G, usually) and of the database D. The value
Q(G,D) should say how much the BN structure given by G is good to explain
the occurrence of the database D.

The basic idea of an algebraic and geometric approach to this topic, pro-
posed in Chapter 8 of [8] and then developed in [11], is to represent the BN
structure given by an acyclic directed graph G by a certain vector uG having in-
tegers as components, called the standard imset (for G). The point is that then
every reasonable criterion Q for learning BN structures (score equivalent and
decomposable one) is an affine function (= a linear function plus a constant) of
the standard imset. More specifically, one has

Q(G,D) = sQD − 〈t
Q
D, uG〉,

where sQD is a real number, tQD a vector of the same dimension as the standard
imset uG (these parameters both depend solely on the database D and the
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criterion Q) and 〈∗, ∗〉 denotes the scalar product. The vector tQD is named the
data vector (relative to Q).

The main result of [11] is that the set of standard imsets over a fixed set of
variables N is the set of vertices (= extreme points) of a certain polytope P.
Thus, as every reasonable quality criterion Q can be viewed as (the restriction
of) an affine function on the respective Euclidean space (of higher dimension),
the task to maximize Q over BN structures is equivalent to the task to maximize
an affine function over the above-mentioned polytope P.

This maximization problem has been treated thoroughly within the linear
programming community. A classic tool to solve linear programming problems
is the simplex method [5]. One of possible interpretations of this method is that
it is a kind of a search method, in which one moves between the vertices of
the polytope along its edges (in the geometric sense) until an optimal vertex is
reached. This motivated the concept of the geometric neighborhood for standard
imsets, and, consequently, for BN structures.

Several open mathematical questions have been mentioned in the conclusions
of [11]. They are motivated by the above-mentioned intention to apply linear
programming methods in the area of learning BN structures. This contribution
is devoted to three of them.

2 Basic concepts

2.1 Learning BN structures

Throughout this paper we assume that N is a non-empty finite set of variables.
Every variable i ∈ N is assigned a finite set of possible values, the individual
sample space Xi. To avoid trivial cases and consequent troubles we assume
|Xi| ≥ 2 for any i ∈ N .

Let DAGS(N) denote the collection of all acyclic directed graphs having N
as the set of nodes. The (discrete) Bayesian network (BN) is a pair (G,P ),
where G ∈ DAGS(N) and P is a probability distribution on the joint sample
space XN ≡

∏
i∈N Xi which (recursively) factorizes according to G [4]. Given

G ∈ DAGS(N), the respective statistical model of a BN structure is the class of
all distributions P on XN that factorize according to G.

Note it may happen that two different graphs over N describe the same BN
structure. Thus, one is usually interested in describing the BN structure by a
unique representative. A classic such graphical representative is a special chain
graph, called the essential graph [1]. However, in our algebraic approach, we
use an algebraic representative instead, called the standard imset (see below).
There is a polynomial algorithm for transforming the essential graph into the
standard imset and conversely [10].

Learning BN structures is done on the basis of data, assumed in the form of
a complete database D : x1, . . . , xd of the length d ≥ 1, which is a sequence of
elements of the joint sample space XN . Let DATA(N, d) denote the collection
of all databases from XN of the length d. A quality criterion (for learning
BN structures) is a real function Q on DAGS(N) × DATA(N, d). The learning
procedure based on Q consists in maximizing the function G 7→ Q(G,D) over
G ∈ DAGS(N), where D ∈ DATA(N, d) is the observed database. Thus, the
value Q(G,D) should somehow evaluate how the statistical model determined
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by G fits the database D. We refer for the related concept of (statistical)
consistency of a quality criterion to § 8.4.2 in [4].

However, there are other technical requirements on quality criteria raised in
connection with computational methods for their maximization [3]. A criterion
is decomposable if it is the sum of contributions that correspond to factors in
the factorization according to the graph and score equivalent [2] if it ascribes
the same value to graphs describing the same BN structure. There are several
examples of quality criteria that meet these requirements. A kind of standard
example of such a criterion is Schwarz’s Bayesian information criterion (BIC)
[6], but there is also a bunch of Bayesian quality criteria [9].

2.2 A few concepts from polyhedral geometry

Let us consider a real Euclidean space RK , where K is a non-empty finite set.
The scalar product of two vectors v,x in RK will be denoted as follows:

〈v,x〉 ≡
∑
s∈K

vs · xs .

A rational polytope in RK is the convex hull of a finite set V ⊆ QK of rational
points. A well-known result in polyhedral geometry (Corollary 7.1c in [5]) says
that a polytope can equivalently be characterized by means of a finite number
of linear inequality constraints.

Note that the classic version of the simplex method is applicable to the task
to find maximum/minimum of a linear function over a set P ⊆ RK defined by
means of a finite number of linear inequality constraints (see Chapter 11 in [5]).

A vertex (= an extreme point) of a polytope P is a point in P which cannot
be written as a convex combination of other elements in P. An edge of P is a
line-segment [x,y], where x,y are distinct vertices of the polytope P and the set
P \ [u,v] is convex. The vertices and edges of a polytope are quite important in
linear programming because the simplex method applied to a polytope P can be
interpreted as a kind of search method in which one moves between the vertices
of P along its (geometric) edges (see § 11.1 of [5]).

2.3 Imsets

The method of structural imsets has been proposed in [8] to provide an universal
(mathematical) tool for describing probabilistic conditional independence struc-
tures. In the context of graphical models, it leads to an algebraic approach to
learning BN structures.

An imset u over N is an integer-valued function on P(N) ≡ {A; A ⊆ N},
the power set of N . It can be viewed as a vector whose components are integers,
indexed by subsets of N . Any real function m : P(N)→ R will be analogously
interpreted as a real vector (= identified with an element of RP(N)). Thus, an
imset is nothing but an element of ZP(N); in the context of integer programming
[5] called a lattice point in the Euclidean space RP(N).

A trivial example of an imset is the zero imset, denoted by 0. Given A ⊆ N ,
the symbol δA will denote this basic imset:

δA(B) =
{

1 if B = A,
0 if B 6= A,

for B ⊆ N.
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Since {δA; A ⊆ N} is a linear basis of RP(N), any imset can be expressed as a
combination of these basic imsets.

An elementary imset (over N) is an imset of the form

u〈a,b|C〉 = δ{a,b}∪C + δC − δ{a}∪C − δ{b}∪C ,

where C ⊆ N and a, b ∈ N \ C are distinct. In our algebraic approach [8] it
encodes an elementary conditional independence statement a ⊥⊥ b |C. The class
of all elementary imsets over N will be denoted by E(N); it is a finite subset of
RP(N). The cone spanned by E(N) will be denoted by R(N).1

An imset will be called combinatorial if it is a combination of elementary
imsets with non-negative integers as coefficients.2 The degree of a combinatorial
imset u, denoted by deg (u), is the number

deg (u) = 〈m∗, u〉 ≡
∑
S⊆N

m∗(S) · u(S) , (1)

where m∗(S) = 1
2 · |S| · (|S| − 1) for S ⊆ N . It is shown in Proposition 4.3

of [8] that deg (u) is the sum of coefficients in the decomposition of u into
elementary imsets; in particular, this sum only depends on u, not on a particular
combination of elementary imsets yielding u.

2.4 Algebraic approach to learning BN structures

Given G ∈ DAGS(N), the standard imset for G is given by the formula:

uG = δN − δ∅ +
∑
i∈N

{ δpaG(i) − δ{i}∪paG(i) }, (2)

where paG(i) = { j ∈ N ; j → i in G } denotes the set of parents if i in G. Note
that the terms in (2) can both sum up and cancel each other. Nevertheless, it
follows from the definition that uG has at most 2 · |N | non-zero values. Thus,
the memory demand for representing standard imsets are polynomial in |N |.

An important observation is that, for G,H ∈ DAGS(N), one has uG = uH

iff they describe the same BN structure (Corollary 7.1 in [8]). In particular, the
standard imset for G ∈ DAGS(N) is a unique representative of the corresponding
BN structure. Note that every standard imset is combinatorial; actually, it is a
sum of elementary imsets (see Lemma 2 in § 5). The degree of a standard imset
uG is

(|N |
2

)
− r, where r is the number of arrows in G (see Lemma 7.1 in [8]).

Now, Lemmas 8.3 and 8.7 from [8] together say that every score equivalent
and decomposable criterion Q must have the form:

Q(G,D) = sQD − 〈t
Q
D, uG〉 for G ∈ DAGS(N), D ∈ DATA(N, d), d ≥ 1 (3)

where the constant sQD ∈ R and the vector tQD : P(N) → R do not depend on
G. The formulas for the data vector tQD relative to some basic quality criteria
Q have been derived in [8, 9].

1It is a pointed rational polyhedral cone in RP(N).
2Equivalently, the sum of elementary imsets with allowed repetition of summands.
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2.5 Geometric view on learning BN structures

Let us take a geometric view on the set of standard imsets over a fixed set of
variables N , denoted by S:

S ≡ {uG; G ∈ DAGS(N) } ⊆ RP(N) .3

Theorem 4 in [11] says that S is the set of vertices of a rational polytope P ⊆
RP(N), whose dimension is 2|N | − |N | − 1. This polytope P will be called the
standard imset polytope in the sequel. It follows from (3) that the task to
maximize Q over G ∈ DAGS(N) is equivalent to the task to minimize the linear
function u 7→ 〈tQD, u〉 over P.

The idea of application of linear programming methods in the area of learning
BN structures led to the concept of geometric neighborhood for BN structures.
More specifically, two standard imsets u, v ∈ S will be called the geometric
neighbors if the line-segment connecting them in RP(N) is an edge of the standard
imset polytope P.

It has been shown in Theorem 5 of [11] that the well-known inclusion neigh-
borhood, used widely in present computational methods for learning BN struc-
tures, like the GES algorithm [3], is strictly contained in the geometric one.
Moreover, it follows from Corollary 8.4 in [8] that standard imsets u, v ∈ S
correspond to inclusion neighbors iff their differential imset w = u− v is either
elementary one or a multiple of it by −1.

The importance of the concept of geometric neighborhood is based on the
fact that, for any affine function Q on P, a local maximum of Q in u ∈ S with
respect to the geometric neighborhood must be the global maximum of Q over P
(Theorem 6 in [11]). In particular, this holds for any reasonable quality criterion
Q for learning BN structures. The following research goals have been expressed
in conclusions of [11]:

• Describe linear constraints on the elements P. A complete characteriza-
tion of these constraints would provide a description of P suitable for the
intended application of linear programming methods.

• An interesting related conjecture by Raymond Hemmecke is that the only
lattice points within P are standard imsets.

• Describe differential imsets for geometric neighbors, that is, imsets of the
form uG − uH , where G,H ∈ DAGS(N) are such that uG and uH are
geometric neighbors.

These questions concern the complexity of a potential future linear programming
procedure for maximization of a quality criterion Q. In this paper we answer
partially some of them.

3 Necessary linear constraints

In this section, we summarize all linear constraints on standard imsets we are
aware of. Of course, they give necessary conditions on points in P.

3To avoid misunderstanding recall that distinct G, H ∈ DAGS(N) may give rise the same
standard imset uG = uH but S contains just one vector for any group of graphs defining the
same BN structure.
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3.1 Overview of the constraints

We classify our linear constraints into three groups, denoted (A), (B) and (C).
First, basic results from [8] imply that every standard imset belongs to the
cone R(N) generated by elementary imsets. This observation implies two kinds
of necessary linear conditions on the elements of P: the equality constraints,
denoted by (A), and the remaining inequality constraints, denoted by (B).

(A) Equality constraints

If u ∈ S then the following two conditions are valid:

(A.1)
∑

S, S⊆N

u(S) = 0,

(A.2) ∀ i ∈ N
∑

S, i∈S⊆N

u(S) = 0.

This means that S, and, therefore, P as well, belongs to a linear subspace of
RP(N) of the dimension 2|N | − |N | − 1.

(B) Non-specific inequality constraints

The inequality constraints for points in the cone R(N) are related to supermod-
ular functions. A function m : P(N)→ R is called supermodular iff

m(C ∪D) +m(C ∩D) ≥ m(C) +m(D) for every C,D ⊆ N .

An equivalent definition is that 〈m, v〉 ≥ 0 for every elementary imset v over N .
This observation gives a (formally infinite) set of inequality constraints for the
points in R(N), and, therefore, for any standard imset u:

(B) 〈m,u〉 ≥ 0 for every supermodular function m : P(N)→ R.

Nevertheless, the point is that this condition can equivalently be formulated in
the form of a finite number of linear inequality constraints. First, without loss of
generality one can assume that m(S) = 0 for S ⊆ N with |S| ≤ 2. Second, the
class of these special supermodular functions is a pointed rational polyhedral
cone and has, therefore, finitely many extreme rays.4 Thus, the class normalized
integral representatives of these extreme rays, denoted by K�` (N) and called the
`-skeleton in [8], establishes a finite set of normalized inequality constraints:

∀m ∈ K�` (N) 〈m,u〉 ≥ 0.

These (representatives of) extreme rays have been computed for |N | ≤ 5 using
linear programming packages [7]. It seems that the number of these extreme
rays grows super-exponentially with |N |; their numbers are in Table 1.

It looks like none of these inequality constraints for P is derivable from the
other constraints (including those mentioned below).

4See § 5.1.2 and Lemma 5.3 (pp. 90-93) in [8] for both these claims.
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Table 1: Number of non-specific inequality constraints.

|N | 2 3 4 5
|K�` (N)| 1 5 37 117978

(C) Specific inequality constraints

The results of [10] led to a series of specific linear inequality constraints for
standard imsets, that are not valid for all points in the cone R(N). These
constraints are related to “ascending” classes of sets. We say that a class A ⊆
P(N) of subsets of N is closed under supersets if

∀S ∈ A if S ⊆ T ⊆ N then T ∈ A.

To avoid vacuous constraints and a trivial consequence of (A.1) we consider
only non-empty classes of non-empty sets. This gives the following series of
constraints:

(C)
∑
S∈A

u(S) ≤ 1 for any system ∅ 6= A ⊆ {S ⊆ N ; |S| ≥ 1}

which is closed under supersets.

Note that, unlike the number (B)-constraints, the number of constraints in (C)
seems to grow only exponentially with |N |. Actually, these constraints are in
correspondence with log-linear models over N .5 Nevertheless, the list of condi-
tions (C) is not reduced completely: some of these constraints are superfluous
because they follow from the other ones combined with (A) and (B).6 Moreover,
each of the (C)-constraints can, owing to (A.2), be re-formulated equivalently
in a kind of “standard” form∑

S∈B
kS · u(S) ≤ 1 for B ⊆ {S ⊆ N ; |S| ≥ 2} and kS ∈ Z for S ∈ B.

It looks like none of the constraints for A ⊆ {S ⊆ N ; |S| ≥ 2} is superflu-
ous, while if A contains a singleton then both cases can occur: the respective
inequality constraints can be either superfluous or non-derivable from others.7

Lemma 1. (the necessity of specific constraints)
If u ∈ S is a standard imset over N then the condition (C) is valid.

The proof is omitted because of limited scope of a conference contribution.

3.2 Conjecture about the linear constraints

The constraints (A)-(C) from the preceding section have several consequences,
which are, perhaps, not evident at first sight. One of them is that every standard
imset u ∈ S is bounded from below: u(S) ≥ −1 for any S ⊆ N .

5This is because every class of sets closed under supersets is determined by the collection
of its minimal sets, which is a class of incomparable sets. Hierarchical log-linear models also
correspond to classes of incomparable subsets of the class {A ⊆ N ; |S| ≥ 1}, namely to those
whose union is N .

6For example, if A = {S ⊆ N ; i ∈ S} for some i ∈ N then (A.2) gives
P

S∈A u(S) = 0 ≤ 1.
7This happens in the case |N | = 5.
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We have shown that (A)-(C) are necessary constraints on points in P, but we
have also some reasons to conjecture that they are sufficient to characterize the
standard imset polytope P. More specifically, we have verified for |N | ≤ 4 that
the conditions (A)-(C) characterize P. Thus, we dare to formulate the following
hypothesis.

Conjecture The linear constraints (A)-(C) together form a necessary
and sufficient condition for u ∈ RP(N) to belong to P.

4 Lattice points in the standard imset polytope

Another related question concerning the polytope P is how “thick” it is. More
specifically, we may ask whether there exists a lattice point in its interior. Ray-
mond Hemmecke made some computations to find out whether such a point
exists in the case |N | ≤ 5 and the result was negative. This led him to a hy-
pothesis that every lattice point in the standard imset polytope is already the
standard imset. In this paper, we confirm the hypothesis:

Theorem 1. If u ∈ P ∩ ZP(N) then u ∈ S.

The proof is quite technical and strongly depends on former results of ours
[10]; specifically, it depends on the details of an algorithm for testing whether
an imset is standard. It is omitted in this contribution.

In light of Theorem 1 one can formulate a weaker version of the conjecture
from § 3.2:

Conjecture* The constraints (A)-(C) together form a necessary and
sufficient condition for u ∈ ZP(N) to be a standard imset (over N).

Indeed, if Conjecture is true then, by Theorem 1, Conjecture* holds as well.
However, it is not clear at this moment whether the proof of Conjecture* is
enough to confirm the hypothesis from § 3.2.

5 Differential imsets over 4 variables

The result of our analysis of the geometric neighborhood in the case |N | = 4
is an electronic catalogue. To describe the catalogue we need a few auxiliary
observations.

5.1 Some auxiliary concepts and results

Given a differential imset w = u− v for u, v ∈ S it follows from the formula (1)
that the degree difference deg (u)−deg (v) does not depend on the choice of the
pair u, v ∈ S. This seems to be quite important characteristic of w.

We say that two imsets u, v over N are permutation equivalent if there exists
a bijection π : N → N such that, for all S ⊆ N , it holds that u(S) = v(π(S)),
where π(S) = {π(i); i ∈ S}. Each class of permutation equivalent imsets will be
called a PE class. From the point of view of our analysis, it is not necessary to
distinguish between permutation equivalent differential imsets. Every PE class
can be described by an arbitrary representative.
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Evidently, if w = u − v is a differential imset for u, v ∈ S then −w = v − u
is a differential imset, too. Again, from the point of view of our analysis it
is not necessary to distinguish between w and −w. Therefore, we keep only
one of these in the catalogue. If the degree difference is non-zero we choose
w = u−v with deg (u) > deg (v). That means, our catalogue only contains (PE
representatives of) differential imsets with non-negative degree difference.

An important question is how to express the differential imsets. An elegant
solution is offered below.

Lemma 2. Every standard imset is a combination of elementary imsets with
coefficients +1 (and 0).

A kind of consequence of Lemma 2 is the following observation.

Lemma 3. Every differential imset w = u− v for u, v ∈ S is a combination of
elementary imsets with coefficients +1 and −1 (and 0). Moreover, there exists
a combination with at most

(|N |
2

)
non-zero coefficients.

Proofs are omitted because of limited scope of the contribution. In particu-
lar, every differential imset for a pair of geometric neighbors can be expressed
in that way, which we utilize in our catalogue.

5.2 Description of the catalogue

Our catalogue contains differential imsets w = u− v for those u, v ∈ S that are
geometric neighbors. It contains just one representative for each PE class and
only imsets with non-negative degree difference are kept there.

We classified those differential imsets w using three criteria:

• the degree difference for w,

• the squared Euclidean length of w, that is,
∑

S⊆N w(S)2, and

• the number of non-zero imset values, that is, |{S ⊆ N ; w(S) 6= 0}|.

In the case |N | = 4 the degrees of differential imsets (for geometric neighbors)
are integers from the interval [0, 3]. The values of the squared Euclidean length
are even numbers from interval [4, 22]. The numbers of non-zero imset values
are integers from interval [4, 12].

There are 8518 ordered pairs (u, v) of geometric neighbors. As explained
above, for each couple of ordered pairs (u, v) and (v, u), we have chosen only
one differential imset out of w = u−v and −w = v−u. In this way, we got 2831
differential imsets; they constitute 319 PE classes. Table 2 gives these numbers
for each degree difference.

In order to understand better the geometric neighborhood we searched for
an elegant description of differential imsets. One possible solution is offered by
Lemma 3: every differential imset over 4 variables can be written as a combi-
nation (with coeficients +1 or −1) of at most 6 elementary imsets (out of 24
possible elementary imsets).

A complete catalogue of differential imsets over 4 variables with a detailed
analysis for each differential imset is available at:

http://staff.utia.cas.cz/vomlel/imset/catalogue-diff-imsets-4v.html
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Table 2: Numbers of geometric neighbor pairs, differential imsets and PE classes.

degree difference neigh. pairs diff. imsets PE classes
0 2894 927 88
1 4248 1359 144
2 1296 505 71
3 80 40 16

total 8518 2831 319

5.3 A simple example

As mentioned in § 2.5, the classic inclusion neighborhood is contained in the
geometric one and the inclusion neighbors are geometric neighbors with the
degree difference ±1.

One of our previous open questions was whether the converse holds. How-
ever, as one can deduce from Table 2, this is not true for |N | = 4: there are
144 PE classes with the degree difference 1 while one has only 3 PE classes of
elementary imsets.

A simple example of a differential imset w = u − v for geometric neighbors
u, v ∈ S with degree difference 1 that is not an elementary imset is as follows:

w = δ{a} − δ{a,b} − δ{c,d} + δ{b,c,d},

where

u = δ∅ − δ{a,b} − δ{c,d} + δ{a,b,c,d}, v = δ∅ − δ{a} − δ{b,c,d} + δ{a,b,c,d}.

6 Conclusions

Let us mention some of our research goals motivated by the results reported
here. First, we would like either confirm or disprove the conjecture from § 3.2
for |N | = 5. If it is confirmed for |N | = 5 we may try to verify the weaker
version of the conjecture from § 4 then.

The catalogue from § 5 is meant as a step towards a deeper analysis of the
geometric neighborhood. For example, we would like to find out whether there is
a graphical interpretation of geometric neighbors, namely whether differential
imsets (for geometric neighbors) correspond to graphical operations with the
respective essential graphs.
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[9] Studený M. (2008) Mathematical aspects of learning Bayesian networks:
Bayesian quality criteria, research report n. 2234, Institute of Information
Theory and Automation, Prague.
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Abstract

Locally weighted regression is a technique that predicts the response
for new cases from their neighbors in the training dataset. In this paper
we propose to join modern regularization approaches to locally weighted
regression. Specifically, the LASSO method is able to select relevant vari-
ables leading to sparse models. We present two algorithms that embed
LASSO in an iterative procedure that incrementally discard or add vari-
ables, respectively, in such a way that a LASSO-wise regularization path
is locally obtained. The algorithms are tested in two different datasets
from the UCI repository, obtaining promising results.

1 Introduction

Let χ = {χ1, ..., χp} denote the set of covariates and Y the response vari-
able. Linear regression is a widely used tool concerning the influence of χ
over Y . This relationship is modelled by a linear combination of some of
the covariates, such that a least squares function is minimized. Let D =
{(x(1), y(1)), (x(2), y(2)), ..., (x(n), y(n))} be the dataset containing the set of n

points in the space of covariates and the response, where x(i) = (x(i)
1 , x

(i)
2 , ..., x

(i)
p ).

Let X denote the n × p matrix whose rows are the p-vectors x(1), x(2), ...,x(n)

and let y = (y(1), y(2), ..., y(n)) the vector of responses. Assuming the data is
centered, the common linear regression model assumes a relationship such that:
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y = Xβ + ϵ, (1)

where β = (β1, β2, ..., βp) are the regression coefficients. Being Σ the p × p
covariance matrix, the stochastic unobserved component ϵ term is distributed:

ϵ ∼ N(0,Σ). (2)

Hence, there are p parameters to be determined, so that the sum of the
squares of the distances from the response points to the line drawn by the linear
equation is to be minimized. Typical hypothesis to be checked are linearity,
normality, independence and variance homogeneity.

Since it bases its method on empirical loss minimization, linear regression
may overfit the data. Regularization techniques add a penalization term to the
usual regression preventing overfitting, reducing the variance of the estimates
and giving rise to more interpretable models. Two widely used methods are
ridge [1] and the least absolute shrinkage regression and selection operator [2].
We are focusing here on the second, commonly referred to as LASSO or l1-
regularization. For a general review of LASSO, see [3]. A significant property
of the LASSO is its ability to move many regression coefficients to zero, per-
forming a variable selection (sparser models) at the same time than prediction.
The LARS [4] algorithm is a variable selection and regression method that out-
performs the classical forward stepwise regression algorithm [5], and solves the
LASSO with a small modification in a very efficient way.

However, the response variable cannot be always predicted by means of a
simple linear function of the covariates, and the results are not optimal from a
statistical point of view. In this case some kind of nonlinear analysis may be
required. In general, nonlinear regression procedures [6] intend to fit data to
any selected equation, finding the values of the parameters that minimize the
sum of the squares of the distances from the data points to the curve.

Sometimes, to perform a nonlinear analysis is not straightforward, and it is
not possible to establish a unique function for the entire data space. In this case
it is more convenient to use some form of local learning. A common method
is the locally weighted regression (LOESS ), built on classical least squares re-
gression [7, 8, 9]. For each point in the covariate space, there is a neighborhood
containing the point in which the regression surface is well approximated by a
function from a parametric class. In this approach, instead of minimizing the
residual sum of squares, a weighted sum of squares is minimized. The weights
are provided by a function of the distances between the data and the point of
interest, giving more importance to closer points. In [7] a second algorithm,
called robust locally weighted regression, is proposed for providing robustness.
In short, after firstly performing the LOESS procedure, the algorithm itera-
tively calculates new sets of weights basing on the residuals of the estimates ŷ
regarding the real response y, in such a way that large residuals correspond to
small weights and vice versa. Regression and weights calculation are repeated
until some stopping criterion is met. Also in the local fitting arena, in [10] the
authors face nonlinearity by using a sum of smooth functions instead of a single
parametric model for local learning.

A different form of local analysis is the spatial analysis. The expansion
method [11] and the geographically weighted regression (GWR) [12] are well-
known algorithms. Both assume that the influence of the covariates on the
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response might vary according to the spatial location of the data, typically
2D coordinates where the data are collected. In the expansion method, the
regression coefficients at a specific location are the result of a function of the
location itself and a set of parameters (constant for all cases) to be learnt from
the dataset. In the GWR algorithm, weights are locally assigned to data, so
that nearer data are given more importance than further data.

There have been few attempts to combine local learning and variable se-
lection with regularization. Also in the field of spatial analysis, the geograph-
ically weighted LASSO (GWL) [13] introduces a LASSO-wise penalization on
the GWR estimated coefficients. Regardless of spatial analysis, ridge regression
(along with principal components regression and partial least squares regres-
sion) is applied to local linear prediction of chaotic time series [14]. However, to
the best of our knowledge, a LASSO penalization scheme for locally weighted
regression has never been proposed.

Our contribution is a method based on LASSO both for local prediction and
local variable selection. The setting is a scenario where usual linear regression is
not appropriate, and a local approach seems to be convenient. We have devel-
oped two algorithms based on LARS for this aim. Unlike GWL, the distances
are calculated in the covariate space instead of from separate location coordi-
nates. A näıve approximation could be to add a LASSO penalty to the locally
weighted regression. However we are using LASSO because we expect a sparse
solution, and the irrelevant covariates should not have been used in the weights
estimation (distance calculation). The problem lies in that the distance calcula-
tion is previous to the regression, and hence previous to know what variables are
irrelevant. To overcome this obstacle, we suggest a couple of iterative algorithms
that alternate variable selection with distance computation. One proceeds for-
wardly from the empty solution where all variables are excluded from the model
and starts adding variables, one by one, until all the variables are in the model.
The other works in the opposite backwards way, steming from the model with
all variables and removing one by one until the empty solution is reached. At
each step, distances are recalculated from the current variables in the model,
assigning weights to the data for the following regularized regression. LARS is
used for selection and removal of variables. As we will explain below, both local
algorithms produce a pathway of solutions, from where a unique solution might
be selected by means of some selection criterion.

The organization of the paper is as follows: Section 2 describes local re-
gression and the LARS/LASSO algorithms in detail. Section 3 states the novel
algorithms, that we are calling forward local l1 selector, and backward local
LARS selector. Section 4 outlines the set of experiments to test the algorithms.
Finally, in Section 5 we round the paper off with conclusions and future work.

2 Foundations

2.1 Local regression

The local regression method was originally devised for time series, where one ex-
pects that events close in time share common patterns. We focus on the LOESS
procedure discussed in [7]. Although locally weighted regression paradigm is not
limited to local linear fitting, we will not work in this paper with functions other
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than linear. In [15] a bunch of mathematical properties of LOESS is discussed.
[16] lists some advantages of using local regression.

Assuming the response to be centered, LOESS sets out the following local
regression for x(k):

n∑
i=1

{(
y(i) −

p∑
j=1

x
(i)
j βj

)2

g

(
d(x(i),x(k))

τ

)}
, (3)

where g(.) is a weight function, d(.) is a distance function and τ is the bandwidth
constant.

Let w(k) = (w(k)
1 , ..., w

(k)
n ) be the vector of weights, with components

w
(k)
i =

√√√√g

(
d(x(i), x(k))

τ

)
, (4)

and let W be the diagonal matrix whose elements W
(k)
ii = w

(k)
i , the vector of

coefficients can be estimated as:

β(k) = [XT W (k)T W (k)X]−1XT W (k)T W (k)y. (5)

When a new point x(k) comes up, its response y(k) is predicted by using
ad-hoc coefficients β(k) locally to the point itself and calculated just at this
moment. The distribution of y(k) is unknown. This method is known as lazy
regression [17]. If the procedure turns out to be too demanding for the abundant
affluence of new x(k), or we need a ready-to-use closed model for any reason, a
possibility is to run the algorithm for each pair (x(i), y(i)) and use for each new
x(k) the set of regression coefficients corresponding to the closer point in X, say
x(i1). Depending on the distance from x(k) to x(i1), we can also decide either
to calculate a new set of regression coefficients or to use βi1.

There are four relevant aspects when considering LOESS: the parametric
family to be locally fitted, the fitting criterion, the weight function and the
bandwidth [18].

As said above, we are focusing on the linear parametric family. Assuming
y to be Gaussian with constant variance, least squares is a natural choice for
the fitting criterion. If we cannot assure constant variance, some form of regu-
larization may be used along with least squares. On the whole, the parametric
family and the fitting criterion depend on the assumptions about the nature of
the data and the distribution of the response. As we will detail in Section 3, we
are using a penalized least squares favouring parsimony.

Regarding the weight function, any weight function that satisfies the prop-
erties listed in [7] may be used. The different choices we are using for the weight
function are formulated in Section 3.

Finally, the choice of the bandwidth is a crucial parameter; the nature of the
data, its cardinality and dimension, are relevant for a correct selection. On one
hand, the bandwidth may be fixed beforehand or selected locally for each x(k).
The latter is particulary appropriate for online training [19] and yields some
advantages in any case. Typically, it is done by a leave-one-out cross-validation,
which can be solved recursively for an increased efficiency [20]. We have tested
both fixed and variable bandwidth selection. However, in principle the recursive
method of [20] cannot be applied here, as it is thought to solve the least squares
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problem by the classical estimation method. On the other hand, the curse of
dimensionality states that as far as the dimension p is bigger, the points quickly
become sparse. In this case it is a good idea to increment the bandwidth to
compensate this effect.

A relevant issue related to the extent of p is the adecuacy of local regression
for high dimensionality. First, the analyst must take into account that local
methods are relatively computationally intensive. The expected computation
time for a LOESS estimate is the same than for a least squares fit, O(p3 +np2),
plus the complexity for the weights calculation, O(np). For a single x(k), n
distances have to be calculated. It could be demanding, specifically when p is
high. Furthermore, in principle, the estimated β(k) is only valid for this point.
If n is very large, there has been little work done for local regression. In [21]
the author presents some validation tests to test the adecuacy of smoothing in
binary logistic regression. Although the method and the scenario are slightly
different, the conclusions are valid for the LOESS. In short, his analysis shows
that the results are still reliable for increments of p if n is large enough, although
the inclusion of irrelevant variables has a quite negative effect in the smoothing
process. This is just the point we are tackling in this paper.

2.2 LARS/LASSO

During the last years, the original reference for the LASSO algorithm [2] has
received over 1600 cites according to Google Scholar by the time this paper is
being written. The LASSO estimates are defined as

βα = argminβ

n∑
i=1

(yi − β0 −
p∑

j=1

x
(i)
j βj)2, (6)

subject to

p∑
j=1

|βj | ≤ α. (7)

Unlike ordinary least squares and ridge regression, LASSO forces regression
coefficients to become zero as we decrease the tunning parameter α. In this way
it simultaneously performs variable selection and estimation. The complete
solution of the LASSO for all values of α forms the regularization path. The
regularization path usually starts with a small α and all coefficients equal to zero.
One coefficient at a time is made different from zero, although from time to time
any variable may also exit the model. For variable selection purposes, we only
need to concern about a finite set of α values, specifically those that make the
number of zero coefficients to change. Regarding estimation, we still need to pay
attention only to this finite set, since the increments on the coefficients between
two consecutive values of α are linear. This property makes the regularization
path to be entitled as piecewise constant.

The LASSO is a quadratic programming problem with a linear inequality
constraint. However, the LARS algorithm [4], designed for least angle regression,
is able to calculate all possible LASSO estimates for a given problem in O(p3 +
np2) with a small modification. This is the same cost than for a usual least
squares fit. In short, LARS is an iterative algorithm that starts with an empty
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set of active (non-zero) variables and adds at each step one variable χt to this
set. This is the one whose correlation with the residuals is the largest. The
vector of correlations is:

c = XT (y − ŷ). (8)

The coefficients of the variables in the active set are increased toward the
direction of the least-squares fit based on such variables. So forth, a new variable
gets active when its correlation with the residuals equals that of the active set.

Regarding the mathematical properties, there is an amount of theoretical
work supporting the LASSO. For instance, in [22] consistency of LASSO is
discussed and demonstrated under certain conditions. There have also been
some variations of the original LASSO to improve such properties [23].

3 Local LARS/LASSO

In the discussion section, [8] comment the need of incorporating into the LOESS
methodology a variable selection procedure when required, i.e, when we know
of the presence of irrelevant variables. In this line of argument, we present
two algorithms that combine l1-regularization with the usual locally weighted
regression paradigm.

As commented above, a first possible approach is equivalent to the GWL
algorithm in [13], that is, to directly apply a set of weights to the data set.
The weights would be obtained from some transformation of the Euclidean
or Mahalanobis distances to the point of interest. Whereas for GWL these
distances come from separate coordinates, in locally weighted regression the
distances are calculated in the space of covariates. Although simple and easy to
implement, irrelevant variables are getting involved in the distance calculation
task. Therefore, we state that this method is naive and ineffective, and it is
expected to lead to incorrect predictions and incorrect feature selections. This
effect will get more marked as the number of irrelevant variables increases. To
simplify the terminology, we will call this method as naive local selector.

To minimize this risk we propose an iterative algorithm that calculates dis-
tances just on the active set of variables at each step. Two versions are pre-
sented: a forward algorithm and a backward algorithm.

The forward algorithm, that we will call forward local l1 selector, starts with
an empty set of variables. It initializes a set of n weights on the distances over
all variables. After appropriately weighting the data with them, it runs a LARS
algorithm, stopping at the first iteration and keeping the first variable coming
up. This variable, say indexed by j, will be the first member of the active set V .
Then, weights are recalculated, but using only V = {χj}, and LARS is run again
over weighted data, that will stop when a variable not included in V appears.
This variable is then included in V . It recalculates weights again, basing on the
active set, and iterates like that until the active set contains all variables or any
other stopping criterion is met. Note that at each step of the algorithm, LARS
starts from zero variables and makes an arbitrary number of iterations, adding
variables before reaching a variable not included in V . However, it is expected
that, previous to get a variable not in V , LARS will pass through most of the
variables in V at that moment.
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Finally, when the algorithm completes all p iterations, some selection crite-
rion is needed. Since the LARS method has run several times starting from zero
variables, there are some solutions available with one variable, some solutions
with two variables, etc. We will just select the best solution of each variable
cardinality by the criterion applied to a separate test database. For example, as
the algorithm iterates p times, and run LARS p times, there will be exactly p
solutions with one variable. In this work we are using a minimum absolute error
l1-penalized on the (weighted) test database. The pseudocode in Algorithm 1
roughly schematizes the procedure.

Algorithm 1 forward local l1 selector
Input: training data set X,y with p variables and n cases,
Input: testing data set X ′,y′ with p variables and n′ cases,
Input: bandwidth τ of the neighborhood,
Input: weight function g(.) and distance function d(.),
Input: point x(k), whose response is to be predicted,
Output: set of coefficients β(k)

Calculate distances d = (d1, d2, ..., dn) to x(k) over all variables
w := g(d, τ) (vector of weights)
W := diagonal(w)
V := {} (active set)
t := 0
repeat

Xw := W ∗ X (weighted covariates)
yw := W ∗ y (weighted response)
paths(t) := LARS(Xw, yw) (stopping when a variable /∈ V appears)
V := V ∪ χj | pathj(t) ̸= 0
Calculate distances d to x(k) using variables in V
w := g(d, τ)
W := diagonal(w)
t := t + 1

until |V | = p
for j := 1 to p do

β(j) = bestsolution(X ′, y′, paths, j),
the best solution among those with j coefficients different from zero

end for

The second algorithm is a backward version of the forward local l1 selector,
with some differences that we show straightaway. We call it the backward local
l1 selector. The algorithm starts with all the p covariates, V = {χ1, χ2, ..., χp},
calculates the weights and uses LASSO to discard one variable, say indexed by
j. In a second step, it calculates the distances again on V = V \χj , and performs
another LASSO regression with the new weights, discarding another variable.
The algorithm keeps alternating variable selection with weights calculation until
some stopping criterion is met, or until there are no variables left. Two possible
stopping criteria are the similarity of the predictions and the similarity of the
weights across iterations. In this work we are running the algorithm until all
variables are run out. Note that a test database is not needed anymore, because
LARS is run p times and only the last solution before stopping is kept. That
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is, there is already only one solution for each variable cardinality. Hence, the
entire dataset can be used for the training. We show the pseudocode for the
backward local l1 selector in Algorithm 2.

Algorithm 2 backward local l1 selector
Input: training data set X, y with p variables and n cases,
Input: bandwidth τ of the neighborhood,
Input: weighting function g(.) and distance function d(.),
Input: point x(k), whose response is to be predicted,
Output: set of coefficients β(k)

V = {χ1, ..., χp} (active set)
Calculate distances d to x(k) using variables in V
w := g(d, τ) (vector of weights)
W := diagonal(w)
Xw := W ∗ X (weighted covariates)
yw := W ∗ y (weighted response)
paths(0) := LARS(Xw, yw), taking the last solution, with all β ̸= 0
t := 1
repeat

Calculate distances d to x(k) using variables in V
w := g(d, τ)
W := diagonal(w)
Xw := W ∗ Xv (let Xv = X but including only variables in V )
yw := W ∗ y
paths(t) := LARS(Xw, yw), taking the last but one, with one βj = 0
V = V \ χj | paths(t)j = 0
t := t + 1

until |V | = 0

For both algorithms, we have used Euclidean distances, and for weighting
we have employed the well-known tricube function used in [8]. Let x(k) be the
point that the local procedure concerns and x(i) any other point. The tricube
function establishes

wi =


(

1 −
(

d(x(i),x(k))
d(x(q),x(k))

)3
)3

if x(i) ∈ Cτ

0 otherwise,

(9)

where d(.) is a distance function, τ is the bandwidth, Cτ contains the τn closer
points to x(k) and x(q) is the furthest point to x(k) in Cτ .

Regarding the computation complexity of the algorithms, in principle we are
running p times a LARS algorithm with complexity O(p3 + np2), which would
yield a complexity O(p4+np3) plus the distances calculation (O(np)). However,
it is remarkable that for the backward version, as long as the algorithms iterates,
LARS has to deal with fewer variables. Therefore the complexity is

p∑
j=1

O(j3+nj2) =
p∑

j=1

O(j3)+
p∑

j=1

O(nj2) = O

((
j(j + 1)

2

)2

+n
j(j + 1)(2j + 1)

6

)
.

(10)



Variable selection in local regression models via an iterative LASSO 245

For the forward version, LARS stops earlier, specially in the first iterations.
The worst complexity is the same than for the backward algorithm, although
the mean complexity is smaller (at iteration t, LARS will loop at most t times,
but sometimes it stops before). Naive algorithm has the same complexity than
LARS.

4 Experiments

In this section we face the algorithms with two real databases: Housing and
Forest Fires. Both can be found in the UCI Repository 1. Housing dataset
deals with prices of housing in the suburbs of Boston. Besides the response
variable (the price) it has 14 variables (integer and real), and 506 instances.
Forest fires dataset, thoroughly described in [24], has 13 real attributes and
517 instances. It concerns the occurence of forest fires in the Montensinho
natural park, Portugal. A logarithm function ln(yi +1) has been applied on the
response. Since among the variables we have the fires location coordinates, it is
very suitable the use of some way of spatial analysis. However, we will abstain
from including such analysis as it is not the concern of this work. Thus, we
put the coordinates values into the independent variables set. The comparisons
have been done with LASSO, usual LOESS and Regression trees (DT) [25].

Firstly, to compare local approaches, we have run a set of tests using con-
stant bandwidths, experimenting with 12 values between 0.15 and 0.8. To choose
the best solution of the pathway for the proposed algorithms, we have cross-
validated with 1/4 of each dataset. For space reasons, we only show the results
for the Housing dataset (see Figure 1). Tables 1 and 2 show also some useful
statistics for Housing database. An equivalent table has not been shown for For-
est fires database because the many small values of the responses (small predic-
tion errors) are dominated by the few big values (big prediction errors). We have
taken one by one all points in the datasets, we have predicted their responses
and compared to the true response. For each bandwidth and each algorithm,
we show mean prediction errors and the mean numbers of variables. The best
solution of each pathway has been selected with a l1-penalized score, basing
on a separate test proportion of the database. Figure 1 shows that for small
bandwidths the performance of the proposed algorithms is better than LOESS.
However, LASSO turns out to be more accurate excepting for big bandwidths of
LOESS. It reveals that the dataset can be up to a point linearly approximated.
The good news is that the local approach needs some less variables to make the
prediction.

Besides a competitive performance, the proposed algorithms seem to behave
more robustly. It can be observed in the worst case (maximum error) and
standard deviation for LOESS, LASSO and Regression Tree, significantly bigger
than for the other algorithms.

As mentioned above, in local regression it is common to use an ad-hoc band-
width for each point to be predicted. To analyze this method, in Figure 2 split
prediction errors and number of variables in 15 intervals and plot histograms for
each algorithm, for the Forest fires dataset. Again, we have used cross-validation
with 1/4 of the dataset. We have cut off errors above 3.0. This is done to make

1http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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Figure 1: Evolution of the mean error and the mean number of variables for an
increasing bandwidth, for Housing dataset. For LOESS, the number of variables
is always the maximum, so it has been omitted.

Ff Bf Nf LRf Fv Bv Nv LRv L RT
mean 3.8 3.6 3.9 4.3 4.3 4.2 4.0 3.4 3.5 2.9
median 2.5 2.4 2.7 2.0 2.8 2.7 2.5 1.9 2.3 1.9
std dv. 4.4 3.9 4.1 7.3 4.9 4.7 4.4 5.7 3.8 3.6
max. 27.9 23.8 26.8 93.3 27.4 27.2 27.5 61.5 30.8 30.7

Table 1: Some statistics for estimation error, for Housing dataset, and algo-
rithms: forward local l1 selector and fixed bandwidth (Ff), backward local l1
selector and fixed bandwidth (Bf), naive local l1 selector and fixed bandwidth
(Nf), LOESS and fixed bandwidth (LRf), forward local l1 selector and adaptive
bandwidth (Fv), backward local l1 selector and adaptive bandwidth (Bv), naive
local l1 selector and adaptive bandwidth (Nv), LOESS and adaptive bandwidth
(LRv), classical LASSO (L) and Regression tree (RT). For fixed bandwidth
cases, a value of 0.3 has been taken.

Ff Bf Nf Fv Bv Nv L
mean 2.6 3.6 1.4 2.1 2.8 1.2 9.0
median 2.0 3.0 1.0 2.0 3.0 1.0 9.0
std dv. 1.8 1.9 1.0 1.4 1.5 0.6 0.0
max. 10.0 12.0 7.0 8.0 7.0 6.0 9.0

Table 2: Same setting than for Table 1, for average number of variables. Local
Regression algorithms and Regression tree have been removed.
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intervals more specific and informative, ignoring outliers. This is fair play any-
way with regard to our comparisons, since most big errors were obtained with
LASSO and Regression trees. As observed, results are slightly better for the
proposed algorithms than for LOESS and LASSO. Specifically, for LASSO most
errors concentrate around 1, whereas for the other algorithms many error are
smaller. It is remarkable the good behaviour of the Regression tree in this case,
although it produces more big errors than the proposed algorithms. Note that
the best solution for the naive version and LASSO approach often yields all
regression coefficients equal zero, which obviously generalizes poorly. This is so
because there are many zero responses in this dataset. However, the forward
and backward versions usually recover at least two variables.
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Figure 2: Histogram of 15 intervals of error and number of variables, for Forest
fires dataset.

[24] emphasizes the importance of the prediction of small fires, which are
the great majority. In Figure 5 we show a scatter plot of the response against
the error. We exclude backward and naive approaches because of its similarity
with the forward approach. All local algorithms were run with an adaptable
bandwidth. The proposed algorithms are the ones which best predicts small
fires, although all the methods have certain difficulties with responses equal to
zero.

5 Discussion

In this work, we propose two variable selection and shrinkage iterative methods
that lean on traditional locally weighted regression paradigm and l1-regularization.
We prove its usefulness in two real datasets from the UCI repository, but we feel
that better results are possible. The nature of the data is important to decide
the adecuacy of the proposed methods. Specifically, the methods would stand
out when the relation between covariates and response is sparse and nonlinear.

From the regularization side, we are providing an alternative for dealing with
nonlinear data. From the local regression side, we supply the variable selection
functionality. Moreover, using regularization techniques we can overcome the
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Figure 3: Scatter plots for Forest fires dataset, for forward local l1 selector,
LOESS, LASSO and Regression tree, respectively. Responses are not centered

p >> n case, that is, when the data matrix is not invertible As a derivation of
least squares regression, locally weighted regression needs the cardinality of the
dataset to be greater or equal than the number of variables.

Our approach is lazy in the sense that we lack an overall model valid for all
future cases. Hence, as happens with locally weighted regression, we need to
run the whole algorithm each time a new case is presented. Flexibility against
nonlinearity and best performance of prediction are the advantages gained in
exchange for a more expensive computation if compared with linear techniques.
Although the way we are proceeding here is lazy, if computation time is a main
concern, the analysis can draw the regression coefficients for some or all the
cases in the training dataset, and extrapolate the new case to the closest points
in the dataset in some way (for example giving a weighted mean of the “closest”
responses).

Future work will revolve around the adaptation of the algorithms to mul-
tiresponse problems, applications to challeging data, use of recent variations
of LASSO, and improvements over the algorithms. Specifically, we expect to
develop a more sophisticated method for the selection phase of the forward al-
gorithm. We consider this algorithm the most sensible and promising, but it
needs to set aside a piece of the dataset to sieve solutions. This is a disadvantage
against backward and naive algorithms that claims to be solved. Robustness
is also an important concern. There are robust versions that prevent the bad
effects of outliers both for LOESS [7] and for LASSO [26]. Methods that make
the proposed algorithms more robust need to be investigated.
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Abstract

In this paper we present results of experimental comparisons of several
triangulation heuristics on bipartite graphs. Our motivation for testing
heuristics on the family of bipartite graphs is the rank-one decomposition
of BN2O networks. A BN2O network is a Bayesian network having the
structure of a bipartite graph with all edges directed from the top level
toward the bottom level and where all conditional probability tables are
noisy-or gates. After applying the rank-one decomposition, which adds an
extra level of auxiliary nodes in between the top and bottom levels, and
after removing simplicial nodes of the bottom level we get so called BROD
graph. This is an undirected bipartite graph. It is desirable for efficiency
of the inference to find a triangulation of the BROD graph having the sum
of table sizes for all cliques of the triangulated graph as small as possible.
From this point of view, the minfill heuristics perform in average better
than other tested heuristics (minwidth, h1, and mcs).

1 Introduction

A BN2O network is a Bayesian network having the structure of a bipartite graph
with all edges directed from the top level toward the bottom level and where all
conditional probability tables are noisy-or gates. Let U = {u1, . . . , um} be the
nodes of the top level of a BN2O network and V = {v1, . . . , vn} be the nodes of
the bottom level of this network.
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In order to perform efficient inference, we transform these networks using
tensor rank-one decomposition [4, 11, 7]. The rank-one decomposition (ROD)
graph [8] of a BN2O graph G is the undirected graph constructed from G by

• adding an auxiliary node wi for each vi ∈ V ,

• replacing each directed edge (uj , vi) by an undirected edge {uj , wi}, and

• adding an undirected edge {vi, wi} for each vi ∈ V .

The ROD graph is further transformed by triangulation resulting in an undi-
rected triangulated graph. Note that nodes vi ∈ V are simplicial in the ROD
graph and have degree one. Therefore we can perform optimal triangulation
of the ROD graph by optimal triangulation of its subgraph induced by nodes
U ∪W [1]. This graph will be called the BROD graph [8]. See Figure 1 for an
example of the BROD graph.

u1 u2 u3 u4

w1 w2

Figure 1: An example of the BROD graph

An important parameter for the inference efficiency is the total table size
after triangulation. The table size of a clique C in an undirected graph is∏

v∈C |Xv|, where |Xv| is the number of states of a variable Xv corresponding
to a node v. If all variables are binary the table size of a clique C is 2|C|. The
total table size of a triangulation is defined as the sum of table sizes for all cliques
of the triangulated graph. Therefore, it is desirable to find a triangulation of
the BROD graph having the total table size as small as possible. Since this
problem is known to be NP-hard and remains NP-hard for bipartite graphs [2],
diferent heuristics are often used.

In this paper we perform experimental comparisons of existing heuristic tri-
angulation methods applicable to the BROD graph, which is an undirected
bipartite graph. This extends the results already published in [8]. Let us point
out that the class of all possible BROD graphs is the same as the class of all
bipartite graphs. We talk about BROD graphs, since this corresponds to our
motivation.

2 Triangulation heuristics

In Section 3 we will experimentally compare triangulation heuristics minfill [6],
minwidth [6], maximum cardinality search [10], and h1 [3]. In order to describe
these heuristics, we need notions defined below.

Definition 2.1 Let G = (V,E) be an undirected graph and U ⊆ V . The
subgraph of G induced by a set of nodes U , denoted G[U ], is G[U ] = (U,F ),
where F = {{u, v} ∈ E : u, v ∈ U}.
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Definition 2.2 Let F (v) = {{v1, v2} : {v1, v} ∈ E, {v2, v} ∈ E}.

In Table 1 we describe a general template for the considered triangulation
heuristics except of minimum cardinality search. The criterion φ(u) used in
step 1 in the template is different for different heuristics and is as follows.

Definition 2.3 Let v be a node a a graph G = (V,E). Then, let

1. φminfill(v) be the number of edges added if v is chosen,
i.e., φminfill(v) = |F (v) \ E|.

2. φminwidth(v) be the degree of v, φminwidth(v) = |nbG(v)|.

3. φh1(v) be the size of the largest clique containing nbH(v), where H is the
induced subgraph of (V,E ∪ F (v)) on the set V \ {v}.

Table 1: General template for triangulation heuristics using criterion φ

For i = 1, . . . , |V | do:

1. Select a node v of graph G as v = arg minu∈V φ(u),
breaking ties arbitrarily.

2. Set f(v) = i.

3. Make v a simplicial node in G by adding edges to G,
i.e., G = (V,E ∪ F (v)).

4. Eliminate v from the graph G, i.e. replace G by G[V \{v}].

Return f .

Maximum cardinality search has slightly different structure than previously
described heuristics. See Table 2.

Table 2: Maximum cardinality search

For all v ∈ V set weight w(v) = 0.
For i = |V |, . . . , 1 do:

1. Select an unnumbered node v of graph G maximizing
weight w, breaking ties arbitrarily.

2. Set f(v) = i.

3. For all unnumbered nodes u ∈ nbG(v) set w(u) = w(u)+1.

Return f .
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3 Experiments

We performed an experimental comparison of the triangulation heuristics on
three types of random BN2O graphs. In the first set of experiments, we used
1300 BN2O networks, whose edges were chosen from the uniform distribution
on all edges of a complete directed bipartite graph of a given dimension. In the
second and third set of experiments we used submodels of the decision theoretic
version of Quick Medical Reference (QMR-DT) model using a determinisitic
choice of the nodes at the top level and two different types of random choice of
the nodes at the bottom level. We will call these submodels QMR thumbnails.

3.1 Randomly generated BN2O networks

First, similarly to [8], we compared the triangulation heuristics on 1300 BN2O
networks randomly generated with varying values of the following parameters:

• x, the number of nodes on the top level,

• y, the number of nodes on the bottom level, and

• e, the average number of edges per node on the bottom level.

For each x-y-e type, x, y = 10, 20, 30, 40, 50 and e = 3, 5, 7, 10, 14, 20 (excluding
those with e ≥ x) we generated randomly ten BN2O graphs by choosing the set
of edges from the uniform distribution on the set of all e-tuples of edges from
the x · y edges of the complete bipartite graph.

3.2 QMR-DT thumbnails

The decision theoretic version of the Quick Medical Reference [9] (abbreviated
QMR-DT) is a large Bayesian network version of the original Quick Medical
Reference [5]. There are 570 diseases and 4075 observations in the model.
The structure of the model is a directed bipartite graph with edges directed
from diseases in the top level to observations in the bottom level. All variables
are binary and conditional probability tables of observations given diseases are
noisy-or gates. Therefore, QMR-DT represents an example of BN2O model.

Testing triangulation heuristics on the whole QMR-DT is very time consum-
ing and the analysis of this model requires specific algorithms. Our goal is to
test the heuristics on smaller graphs. However, we want to test the heuristics
on graphs, which contain substructures similar to those, which may appear in
real applications. For this purpose, we split the top level of QMR-DT into 10 or
20 disjoint intervals of indices in the order of the nodes, in which the model is
presented. This choice implies that similar nodes have higher chance to be cho-
sen to the same subgraph. The exact bounds of the k intervals, where k = 10 or
k = 20, were computed as [si−1 + 1, si], where i = 1, . . . , k and si = b570 · i/kc.

For each of the k intervals in the top level, denoted X, we used two types
of random selection of the set Y of y = d4075/ke nodes in the bottom level and
generated 10 randomly selected sets Y using each of the two methods. Hence,
each interval X yields 20 pairs (X,Y ) describing a submodel of QMR-DT of the
required size. We used the following two types of random selection of Y .
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• Selection by edges. We choose a random permutation of the edges with
the starting point inX from the uniform distribution on such permutations
and consider the sequence of the end points of these edges. Then, Y is
the set of the first y different nodes in this sequence.

• Selection by nodes. We consider the set of end points of the edges,
whose starting point is in X. Then, Y is a random subset of these end
nodes of size y chosen from the uniform distribution on such subsets.

When k = 10, we obtain 200 models, which form the group of thumbnails
denoted QMR-DT-57-408. When k = 20, we obtain 400 models, which form
the group denoted as QMR-DT-29-204.

3.3 Results of experiments

Triangulation heuristics were tested on the BROD graphs GBROD. We used
the total table size tts of the graph Gh

BROD triangulated by a triangulation
heuristics h as the criterion for comparisons. We used the minfill method as
the base method against which we compared all other tested methods. Since
randomness is used in the triangulation heuristics we run each heuristics ten
times on each model and selected a triangulation with the minimum value of
total table size tts.

For each tested model we computed the decadic logarithm ratio

r(h,minfill) = log10 tts
(
Gh

BROD

)
− log10 tts

(
Gminfill

BROD

)
,

where h stands for the tested triangulation heuristics.
We used three sets of models for the experiments:

• 1300 randomly generated models x-y-e from Section 3.1,

• 200 larger QMR thumbnails QMR-DT-57-408 from Section 3.2, and

• 400 smaller QMR thumbnails QMR-DT-29-204 from Section 3.2.

For each of these three groups of models we computed the tts estimate produced
by heuristics h ∈ {minfill,minwidth,mcs}. For groups x-y-e and QMR-DT-
29-204, we additionally computed the triangulation by h = h1. The obtained
values of tts for h 6= minfill were than compared to the results of minfill
for the same group of models. We eliminated the pairs of values of tts for h
and minfill, which are equal, and performed two-sided Wilcoxon two-sample
tests of the null hypothesis that the distribution of r(h,minfill) is symmetric
about 0 on the cases, where the two heuristics produced different values. The
alternative hypothesis is that the distribution of r(h,minfill) is biased towards
negative or positive values. In order to asses, which sign of the typical difference
is more likely, we present not only the p-values of the test, but also the values of
the statistics W+ and W−. If W+ > W−, then the tested statistics is typically
worse than minfill, when W+ < W−, then it is typically better. The results are
summarized in Tables 3, 4, and 5, where nr. obs. means the number of models
(observations), for which h and minfill yield different tts.

The tests revealed that minfill performs significantly better than mcs on all
three sets of models.
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Table 3: Results of Wilcoxon test for models x-y-e

h nr. obs. W+ W− p-val
minwidth 486 78150 40191 8.96e-10
mcs 1266 802011 0 0.00e+00
h1 499 87367 37383 8.88e-15

Table 4: Results of Wilcoxon test for models QMR-DT-57-408

h nr. obs. W+ W− p-val
minwidth 193 12946 5775 3.95e-06
mcs 200 20100 0 0.00e+00

Also, minfill performed significantly better than minwidth on the set of ran-
domly generated models x-y-e and on the model set QMR-DT-57-408, while on
the model set QMR-DT-29-204 the difference was not significant. On the model
set x-y-e the advantage of minfill over minwidth increases with larger value of
tts, which was not observed on the other test sets, see Figure 2.
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Figure 2: Dependence of r(minwidth,minfill) on decadic logarithm of tts of
minfill for the set of randomly generated models x-y-e and on the model set
QMR-DT-57-408.

The computations of the h1 heuristics on QMR-DT-57-408 took too long,
which kept us from the comparisons of minfill with h1 on this model set. On
the set of randomly generated models x-y-e minfill performed significantly better
than h1 heuristics, while on the model set QMR-DT-29-204 the difference was
not significant.

In Figures 3, 4 and 5 we present histograms of values of r(h,minfill) for
x-y-e, QMR-DT-29-204, and QMR-57-408 model sets.
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Figure 3: Histograms of values of r(h,minfill) for x-y-e.
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Figure 4: Histograms of values of r(h,minfill) for QMR-DT-29-204.
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Table 5: Results of Wilcoxon test for models QMR-DT-29-204

h nr. obs. W+ W− p-val
minwidth 313 24517 24624 0.9736
mcs 400 80200 0 0.0000
h1 325 32008 20967 0.0011

4 Conclusions

In this paper we presented results of experimental comparisons of existing
heuristic triangulation methods applicable to the BROD graph. The results
of experiments reveal that, although no heuristics was dominant on all graphs,
in average, the minfill heuristics gave the best results from the tested heuristics.
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Abstract

The analysis of survey data, collected on a set of response variables
defined over a finite population, benefits from a bird’s eye view of their
inter-relationships and in particular, of their strengths. This overall anal-
ysis should highlight those variables that strongly modify the conditional
distribution of another variable, and by contrast, should indicate those
which have little affect. The weighted graph based on divergence mea-
sures of independence strength calculated from the sample fulfills this
purpose. Survey data from the 1970 British Cohort Study provides an
example for this methodology.

1 Introduction

Whittaker and Kao (2009) introduce the divergence weighted independence
graph (dwig) to give a high level overview of dependency between categorical
variables. The dwig gives a visual representation of the strengths of associa-
tion with respect to a specified collection of observed survey variables. The
weights are measures of mutual information between categorical variables in
given marginal, joint and conditional distributions, and are measured in the
common unit of millibits. In the next section a brief outline of the principal
concepts of dwigs is given, which is followed by an extended application to the
1970 British Cohort Study.

2 Outline of the theory

We define a dwig to portray the independence relationships manifest in a set
of variables Y1, Y2, . . . , Yk. These relationships are defined entirely in terms of
population measures and are then estimated using their sample equivalents. A k-
dimensional divergence weighted independence graph is the graph G = (V,E, W ),
with vertices V = {i|i = 1, . . . , k}, all edges E = {(i, j)|i, j ∈ V } and weights
W = {wij |i, j ∈ V }. We may define several dwigs to focus on different aspects
of the joint distribution of variables in V .
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In any one dwig each edge (i, j) corresponds to a single pairwise condi-
tional independence statement between the random variables corresponding to
its vertices. The weight wij is the information divergence corresponding to that
statement, and is a measure of edge strength. A natural form of display is to
set the width and tone of each edge proportional to the or edge strength. Each
graph is complete.

The difference between different dwigs is how the array of conditioning sets
is chosen, and this determines (by convention) which edges are undirected or
directed. These arrays have the property that, in some sense, they specify the
joint distribution of the variables in V . If all of the weights are zero so that all the
corresponding independence statements hold, then the resulting graph should
be the graph of mutual independent variables. If a subset of the weights are
zero so that the corresponding independence statements hold, then the resulting
graph is the graph of a proper distribution.

The weights of the undirected divergence weighted conditional independence
graph are

wij = inf(Yi⊥⊥Yj |YV \{i,j}),

specified by conditioning on the subset V \{i, j}, known as the ‘rest’, so wij is
the extra information for predicting Yi provided by Yj after conditioning upon
the rest. The information measure is the mutual information, see Whittaker
(1990); Cover and Thomas (2002). If the edge (i, j) is excluded from E when
wij = 0 and all other weights are set equal 1, the graph is identical to the classic
conditional independence graph of Darroch et al. (1980).

There are two advantages of using conditional measures of mutual informa-
tion of the form inf(Yi⊥⊥Yj |YV \{i,j}). Firstly the resulting graph approximates
the conditional independence graph and makes its separation or Markov prop-
erties available, Lauritzen (1996). Secondly using the conditional divergence
implies the strong neighbours of any vertex (those with high edge strengths) are
always required for the best prediction of the vertex.

Chain graphs, Wermuth and Cox (1996), incorporate the use of both directed
and undirected edges. It is assumed that there is a partial ordering, <, on the
vertex set so that V can be partitioned into m subsets or blocks and the blocks
form a chain b1 < b2 < . . . < bm. For instance, the variables in b1 are potential
parents of the variables in b2, and the variables in b1 ∪ b2 are potential parents
of the variables in b3, and so on. All directed edges connect variables from
different blocks and are directed away from the preceding block. The divergence
weighted conditional independence chain graph has two types of edges: directed
and undirected, with weights defined as follows. All undirected edges occur
within the same block and are measured by the information against conditional
independence conditioned on the rest of the variables in that block and all
variables in the previous blocks. Suppose i ∈ bτ so that τ is the index of the
block containing i. If j is also in that block, j ∈ bτ , the edge is undirected and

wij = inf(Yi⊥⊥Yj |YV (τ)\{i,j}), where V (τ) = ∪r≤τ br.

If j is in a preceding block, the edge is directed.
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3 BCS70

The Centre for Longitudinal Studies (2009) gives a short description of the 1970
British Cohort Study (BCS70), some of which we reproduce here. The study is
a continuing, multi-disciplinary longitudinal study which takes as its subjects all
those living in England, Scotland and Wales. Data were collected on the births
and families of just under 17,200 babies. who were born in one particular week
in April 1970. Since 1970 there have been six attempts to gather information
from the whole cohort: 1975, 1980, 1986, 1996, 2000 and 2004.

With each successive attempt, the scope of enquiry has broadened from a
strictly medical focus at birth, to encompass physical and educational develop-
ment at the age of five, physical, educational and social development at the ages
of ten and sixteen, and then to include economic development and other wider
factors at 26, 29 and 34 years.

Data have been collected from a number of different sources, and in a va-
riety of ways. In the birth survey, information was collected by means of a
questionnaire that was completed by the midwife present at the birth, and sup-
plementary information was obtained from clinical records. The five-year and
ten-year surveys were carried out by the Department of Child Health, Bristol
University and the survey at these times was named the Child Health and Ed-
ucation Study (CHES) . In 1975 and 1980, parents of the cohort members were
interviewed by Health Visitors, and information was gathered from head and
class teachers (who completed questionnaires), the school health service (which
carried out medical examinations on each child), and the subjects themselves
(who undertook tests of ability). In both 1975 and 1980, the cohort was aug-
mented by the addition of immigrants to Britain who were born in the target
week in 1970.

Variables of interest

We examine a subset of 2457 individuals which had recorded information on
most tests for language and mathematics over the six follow up years. The
scores in each year have different scales as the testing procedures changed with
different ages. To make these variables comparable and discrete we replace each
score by an approximate percentile categorisation. For both language and math-
ematics and for each year, we classify the score into one of the three percentile
bands (0, 1/3), (1/3, 2/3), (2/3, 1) of that score, and label the result 0, 1, 2 re-
spectively. As the scores are integers these percentiles only approximately hold
1/3 of the cases. The missing values are recorded in a fourth category, labelled
3. While this categorisation leads to some suppression of information, much
is retained. This gives 12 categorical variables 1975:mat1,lan1, 1980:mat2,lan2,
1986:mat3,lan3, 1996:mat4,lan4, 2000:mat5,lan5, and 2004:mat6,lan6. Two other
variables included are sex, and social class at birth (scbirth) recorded in 4 levels.

For example a tabulation of the language percentiles in 1980 and 1986 is
shown on the left hand side of Table 1, and of the language and mathematics
percentiles in 1986 on the right. From this table it is seen there are a substantial
number of missing values, which is typical for many longitudinal studies. In
Table 2 we give the number of missing values for language and mathematics.
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Table 1: Cross tabulation of the percentiles for language 1980 and 1986 (left) and
for mathematics 1986 and language 1986 (right).

lan3
lan2 0 1 2 3

0 155 98 64 127
1 108 146 151 205
2 26 52 82 103
3 302 234 218 386

lan3
mat3 0 1 2 3

0 262 179 118 87
1 153 166 186 136
2 98 153 194 157
3 78 32 17 441

Table 2: Missing values for language and mathematics.

lang1 lang2 lang3 lang4 lang5 lang6
45 1140 821 717 1704 2284

math1 math2 math3 math4 math5 math6
69 1182 568 716 1970 2333

Dwigs for language and mathematics

We are interested in the longitudinal dependency structure for language and
mathematics considered separately and together, and where the presence of
missing values is taken into account. A chain that follows the time line of
the cohort is clearly meaningful, so the variables are placed in blocks by year
of observation. The initial block contains just sex and social class which are
determined at time of birth. We use the code discussed in Whittaker and Kao
(2009). Here the divergences are approximated by a deviance calculation from
fitting main effect binary logistic regressions.

The longitudinal dependency structure for language and for mathematics is
given in Figure 1. Two covariates, sex and social class at birth, form the first
block of the chain graph. The lack of an edge between these covariates indicate
their marginal independence. The percentile measure lan1 weakly depends on
both these covariates, while lan2 is approximately independent of these covari-
ates give lan2. However lan3 depends on social class having adjusted for lan1
and lan2. The percentile lan4 also depends on social class and its preceding
language percentiles, but here the dependency from lan3 is rather larger than
other divergences. A similar story is associated with lan5 but there is an addi-
tional dependency to sex. However lan6 shows a different picture with almost
no dependency on previous language percentiles.

The pattern for the mathematics percentiles has a remarkably similar con-
figuration as that for language, with slightly weaker dependences.

Missing values

A worry is that because the missing value indicator is included with the subject
percentile, it is the missing values that dictate, or at least modify, the dwigs
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max 78.6 / 100 mbits

sex lan1

lan2

lan3

lan4

lan5

lan6

scbirth

max 81.5 / 100 mbits

sex mat1

mat2

mat3

mat4

mat5

mat6

scbirth

Figure 1: Dwigs exhibiting the longitudinal dependency structure for language (up-
per panel) and mathematics (lower panel).
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above. In principle it is possible to do a complete case analysis but as can be
seen from Table 2, there are few complete cases that cover six subject variables.

We make two proposals. The first is to construct the dwig for the longitu-
dinal dependency structure of the missing values. The second is to condition
on observing a subject variable, and to examine any dependence on a previous
missing value. This differs from a complete case analysis because only a sin-
gle variable is taken, rather than all six, and one may expect extra power by
working with its marginal distribution. While it is impossible to assess whether
a measured language or mathematics percentile is associated with its missing
value indicator, it is possible to do this for preceding indicators.

The dwig for the longitudinal dependency structure of the missing values is
displayed in Figure 2. The indicator is a combined indicator for language and
mathematics that takes the value 0 when both subjects are measured, and 1
otherwise. It would be possible to build separate dwigs for separate indicators
but there is almost no difference for this data set, and the simplification helps.
The graph shows that the missing values in the different years are approximately

max 30.8 / 100 mbits

sex

m1

m3

m4

m5

scbirth

m2

m6

Figure 2: A dwig for the longitudinal dependency structure of the missing values.

independent, with one exception of the transition from 1986 to 1996 (m3 to m4).
An example of the second proposal is displayed in Figure 3, which considers

the conditional distribution of the language percentile in 1996 (lan4) given that
it is observed, and the preceding missing value indicators. The conditioning is
handled by confining the analysis to the subset of data for which lan4<3. No
large divergences between the indicators and lan4 are seen in this graph, sup-
porting the hypothesis of missing values occurring at random. Further analyses
taking a single language variable and its preceding missing values, and similarly
for the mathematics variables, all reached the same independence conclusion.

In this subset of data the divergence between lan4 and social class is larger
than in the upper panel of Figure 1. This may be explained because this graph
marginalises over lan3 which has a strong effect on lan4 and is also indirectly
dependent on social class.
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max 65.1 / 100 mbits

sex m1

m3

lan4
scbirth

m2

Figure 3: A dwig for the conditional distribution of the language percentile in 1996
(lan4) given that it is observed, and the preceding missing value indicators.

A combined dwig

Somewhat speculatively we give a combined dwig for both language and math-
ematics in Figure 4. The reason for the hesitancy is that with 14 variables in
the graph the conditional distribution of the later dependencies is rather sparse,
and hence subject to larger sampling fluctuations. Having said this we note
the Figure shows the strong association between language and mathematics in
any given year, and that this association is stronger than any connections to
previous years. The approximate independence of the variables in the final year
of the study is consistent with Figure 1. There may be an argument that the
serial dependence in the sequence of the language percentiles is stronger and
more linear than that of the mathematics percentiles. Interestingly, but again
speculatively, is the assymmetry in the transitions from 1986 (lan3,mat3) to
1996 (lan4,mat4). The transition seems to be between lan3 and lan4, and this
might be argued to ‘explain’ the stronger dependence between mat3 and mat4
visible in Figure 1.

4 Summary

We have shown by example that dwigs give an overview of variables taken
from survey data. In the context of the 1970 British Cohort Study we have
displayed the parallel dependence structure of mathematics and language per-
centiles. We have indicated that missing values have little effect on these rela-
tionships, though because of their very nature it is impossible to demonstrate
that missing values are entirely unrelated to the counter factual value of the
unobserved variable. We have demonstrated that the observed variables of in-
terest are unrelated to other missing value indicators, which substantiates part
of the assumption that data is missing at random in BCS70. Such an analysis
may well generalise to other longitudinal studies.

Acknowledgements: Thanks go to Ian Plewis for introducing the author to
the British Cohort Study.
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max 937.6 / 100 mbits

sex

lan1

scbirth

lan3

lan4 lan5

lan2

mat1 mat2

mat3
mat4 mat5

lan6

mat6

Figure 4: A combined dwig exhibiting the longitudinal dependency structure for
the joint distribution of language and mathematics.
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Abstract 
In this paper, we transform a PERT network into a mixtures of truncated 
exponentials Bayesian network. We use the Shenoy-Shafer architecture to 
propagate the MTE potentials in the resulting MTE PERT Bayes net and thus 
to find the marginal distribution of the project completion time. Finding the 
distribution of the project completion time is important because there is no 
closed form expression for the distribution of the maximum of two normal 
distributions and this fact, previously forced the researchers to make false 
assumptions about its distribution. In this research, we show that by 
approximating the maximum of two distributions using MTE’s a very accurate 
estimation for the project completion time can be obtained. 

 

1 Introduction 
Large projects contain a series of activities that possess precedence constraints 
which makes project completion time difficult to manage. One of the most 
famous project management techniques is Program Evaluation and Review 
Technique (PERT). PERT was invented in 1958 for the POLARIS missile 
program by the Program Evaluation branch of the Special Projects Office of the 
U. S. Navy [Malcolm et al. 1959]. PERT networks are directed acyclic networks 
where the nodes represent duration of activities and the arcs represent 
precedence constraints. The easy applicability of PERT networks to all kind of 
projects made it widely used in practice. However, although a project may be 
represented with good accuracy using PERT networks, the accurate estimation 
of the project completion time is not an easy task to fulfill.  
 The classical solution [Malcolm et al., 1959] for PERT networks assumes 
that all activities are independent random variables, having approximate beta 
distributions parameterized by three parameters: mean time m, minimum 
(optimistic) completion time a, and maximum (pessimistic) completion time b. 
Using the expected duration times we compute the path that takes the longest 
time to finish (the critical path), hence the project completion time.  
 In order to involve uncertainty in the computation of project completion 
time and hence to improve the accuracy of the estimations, Sculli [1983] 
suggested to assume that all activity durations are independent, having the 
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Gaussian distribution. This suggestion is good in the sense that it involves the 
uncertainty of activity durations in the computation of the project completion 
time. However, with this method it is also assumed that the distributions of the 
activity completion times are Gaussian. The completion time of an activity i is 
given by Ci = Max{Cj | j ∈Π(i)} + Di, where Cj denotes the completion time of 
activity j, Dj denotes the duration of activity j, and Π(i) denotes the parents 
(immediate predecessors) of activity i. The maximum of two independent 
Gaussian random variables is not Gaussian, but the distribution of Ci is assumed 
to be Gaussian with the parameters estimated from the parameters of the parent 
activities.  The current methods in the literature fail to recognize the true 
distribution of the maximum of two independent distributions and thus make 
false assumptions, like the maximum of two normal distributions are again 
normally distributed. Depending on the value of parameters this assumption can 
lead to large errors for the completion time of the activities which will lead to 
inaccurate estimates for the project completion time.  
 Motivated by this problem in the literature, Cinicioglu and Shenoy [2006] 
provided a new method which aims to approximate the true distribution of the 
project completion time by eliminating the false assumptions for the distribution 
of the maximum of two Gaussians. With this method, a PERT network is 
transformed into a mixtures of Gaussians Bayesian network and then Lauritzen-
Jensen algorithm is used to make inferences in the resulting MoG Bayesian 
network. Mixtures of Gaussians (MoG) hybrid Bayesian networks [Lauritzen, 
1992] are Bayesian networks with a mix of discrete and continuous variables. In 
MoG Bayesian networks the discrete variables cannot have continuous parents, 
and all continuous variables have the so-called conditional linear Gaussian 
distributions.  
 Representation of a PERT network as a MoG Bayesian network is 
beneficial in the sense that it eliminates the false assumption made in the 
literature which assumes that the maximum of two normally distributed 
independent random variables is again normally distributed. However, the 
transformation process of a PERT network into a MoG Bayesian network is 
cumbersome because of the restricted nature of MoG Bayesian networks. The 
inability of discrete variables to have continuous parents and the enforcement 
for continuous variables to possess conditional linear Gaussian distributions 
makes the transformation process of a PERT network into a MoG Bayes net too 
complex for practical use. 
 For that reason, in this research we work on a different method, an 
alternative to MoG Bayesian networks, which overcomes the difficulties 
involved in solving stochastic PERT networks using MoG’s, but still possess the 
advantages involved in it. The alternative we suggest in this paper for solving 
stochastic PERT networks with MoGs, is to solve them using mixtures of 
truncated exponentials (MTE). We proceed as follows: First we transform a 
PERT network into a PERT Bayes net, so we can model the dependencies 
between activity durations. Next, we transform the PERT Bayes net into a MTE 
network by approximating the activity durations using MTE’s. Finally using the 
Shenoy-Shafer architecture we propagate the MTE potentials and find the 
marginal distribution of the project completion time. To evaluate our method we 
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compare the mean and variance of the marginal distribution of the project 
completion time with the exact analytic results using Clark’s method [1961] and 
the shape of our distribution with the actual distribution calculated by brute 
force using order statistics. 
  

2 Representation of a PERT network as a Bayesian 
network 

 
 In order to demonstrate our method of solving stochastic PERT networks 
using mixtures of truncated exponentials we will use a simple example of a 
PERT network and compute the marginal distribution of the project completion 
time. Consider the PERT network given in Figure 1 below. This network 
represents a project with the activities A1, A2 and A3. S stands for the project start 
time and E stands for the project completion time. We assume that the project 
start time is zero. The precedence constraints, represented by arcs, are as 
follows: The activities A1 and A2 do not have any predecessors. The activity A3 
can only be started after A1 is completed.  
   

A1

A2

A3

ES

A1

A2

A3

ES
 

Figure 1. An example of a stochastic PERT network with three activities 

 The distributions of activity durations are known, and we are informed that 
the activity durations A1 and A3 are positively correlated. Following the method 
described in Jenzarli[1995] this PERT network will be transformed into a PERT 
Bayesian network in four basic steps, allowing us to  model the dependencies 
between the activity durations.  
 Let Di and Ci denote the duration and the completion time of the activity i, 
respectively. As the first step of the transformation process, the activity 
durations are replaced with activity completion times. Next, activity durations 
will be added with an arrow from Di to Ci, so that each activity will be 
represented by two nodes, its duration Di and its completion time Ci. As the next 
step, notice that the completion times of the activities which do not have any 
predecessors will be the same as their durations. Hence, these activities A1 and 
A2 will be represented just by their durations, as D1 and D2. Remember that we 
are informed that the activities D1 and D3 are positively correlated. As the last 
step of the transformation process, the dependency between these activity 
durations will be depicted by adding an arrow from D1 to D3. We assume that 
the project start time is zero with probability 1 and each activity will be started 
as soon as all the preceding activities are completed. Accordingly, E represents 
the completion time of the project, which is the Max{D2, C3}. The resulting 
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PERT Bayes net is given in Figure 2 below. Notice that the deterministic 
variables, C3 and E, are depicted as double bordered ovals. The next section 
describes mixtures of truncated exponentials.  

D1

D2

C3

E

D3

E = Max{D2, C3}

C3 = D1 + D3

D1 ~ N(0.4, 0.01)

D3 ~ N(0.6+D1, 0.04)

D2 ~ N(1.4, 0.01)

D1

D2

C3

E

D3

E = Max{D2, C3}

C3 = D1 + D3

D1 ~ N(0.4, 0.01)

D3 ~ N(0.6+D1, 0.04)

D2 ~ N(1.4, 0.01)  
Figure 2: An example of a PERT Bayesian network 

  

3 Mixtures of Truncated Exponentials 
MTE’s are an alternative to discretization and Monte Carlo methods for solving 
hybrid Bayesian networks [Moral et al. , 2001; Rumi, 2003]. MTE potentials 
can be used for inference in hybrid Bayesian networks that do not fit the 
restrictive assumptions of the conditional linear Gaussian (CLG) model, such as 
networks containing discrete nodes with continuous parents.  
 A mixture of truncated exponential (MTE) [Moral et al. , 2001; Rumi, 
2003] has the following definition. 
 Let X be a mixed n-dimensional random variable. Let Y = (Y1, …, Yd) and Z 
= (Z1,…, Zc) be the discrete and continuous parts of X, respectively, with c + d = 
n. A function φ: ΩX Rα + is an MTE potential if one of the next two 
conditions holds: 
The potential φ can be written as  
 φ(x) = φ(y, z) = a0

y + 
1 1

exp( )
m c

y y
i j j

i j
a b z

= =
∑ ∑   (3.1) 

where ay
0, ay

i and by
j are real numbers for all i = 1,…,m, j = 1,…, c, y ∈ ΩY and z 

∈ ΩZ.  
 There is a partition Ω1, …, Ωk  of ΩX verifying that the domain of 
continuous variables, ΩZ, is divided into hypercubes, the domain of the discrete 
variables, ΩY, is divided into arbitrary sets, and such that φ is defined as 
 φ(x) = φi(x) if x ∈ Ωi, where each φi, i = 1, …, k can be written in the form 
of equation (3.1)  
 In the definition above, k is the number of pieces and m is the number of 
exponential terms in each piece of the MTE potential.  
 The nice thing about MTE’s is that any probability density function can be 
approximated by an MTE potential, which can always be marginalized in closed 
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form. Consider a normally distributed random variable X with mean μ and 
variance σ2 > 0. The PDF for the normal distribution is  

fX(x) =  
21 exp 1/ 2

2
x μ
σπσ

⎧ ⎫−⎪ ⎪⎛ ⎞−⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 A general formulation for a 2-piece, 3-term unnormalized MTE potential 
which approximates the normal PDF is as follows [Cobb and Shenoy, 2006a]. 
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           (3.2) 

 
  In the following sections the PERT network example will be transformed 
into a MTE PERT Bayesian network and solved using the Shenoy-Shafer 
architecture. The operations necessary to carry out propagation in MTE 
networks using the Shenoy-Shafer architecture are described in the following, 
subsection 3.1.  

3.1 Operations in MTE Networks 
 
This section describes the operations of restriction, combination, 
marginalization, normalization, operations with linear deterministic equations 
and finding the maximum of two distributions using MTE’s. These operations 
are necessary to carry out propagation in our MTE network example. The class 
of MTE potentials is closed under these operations which allows us to use the 
Shenoy-Shafer architecture [Shenoy and Shafer, 1990] to propagate the MTE 
potentials in the network. The definitions of restriction, combination, 
marginalization and normalization are described in Moral et al. [2001]. The 
operations with linear deterministic variables in MTE networks are described in 
Cobb and Shenoy[2005]. The operations for finding the maximum of two 
distributions using MTE’s are first described here.  

3.1.1 Restriction 

Restriction is the operation of entering evidence during the propagation. In 
restriction, known variables are substituted with their values. 
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 Let φ be an MTE potential for X = Y ∪ Z. Suppose we receive the evidence 
for a set of variables X′ = Y′ ∪ Z′ ⊆ X , s.t. its values x↓Ωx′ are as follows: x′ = 
(y′, z′). After receiving the evidence the values of the variables are known. 
Accordingly, the potential φ should be updated. The new potential defined on 
ΩX\X′ is as follows: 
 φR(X′ = x′)(w) = φR(Y′ = y′, Z′ = z′)(w) = φ(x) (3.3) 
for all w ∈ ΩX\X′ such that x ∈ ΩX, x↓ΩX\X′ = w and x↓ΩX′ = x′. In this definition 
each occurrence of X′ in φ is replaced with x′. An example for restriction is 
provided in section 6.   

3.1.2  Combination 

MTE potentials are combined by pointwise multiplication. Let φ1 and φ2 be the 
MTE potentials for X1 =Y1 ∪ Z1 and X2 =Y2 ∪ Z2. The combination of φ1 and φ2 
is a new MTE potential for X = X1 ∪ X2 defined as follows: 
 φ(x) = φ1(x↓X1) φ2(x↓X2) for all x ∈ Ωx (3.4) 

3.1.3 Marginalization 

MTE potentials are marginalized by summing over discrete variables and 
integrating over continuous variables. Let φ be an MTE potential for  
X = Y ∪ Z. The MTE potentials are closed under marginalization, so the 
marginal of φ for the set of variables X′ = Y′ ∪ Z′ ⊆ X is a MTE potential which 
is computed as follows:  
 φ↓X′ (y′, z′) = 

\ \

( ( , ) )
Y Y Z Z

y
y z dzφ

′ ′∈Ω Ω

′′∑ ∫  (3.5) 

where z = (z′, z′′), and (y′, z′) ∈ ΩX′′. The variables can be marginalized in any 
sequence, discrete before continuous or continuous before discrete as shown in 
Formula 3.5.  
 In the process of marginalization, when the limits of integration include 
linear functions, then we may end up with linear terms in the remaining 
variables. These linear terms can be replaced with an MTE approximation so 
that the result of the marginalization is again an MTE potential. For a linear 
term x defined over the domain [xmin, xmax], we replace x with  

min
min max min

max min

min

max min

0.0726981( )( )(0.5*( 13.5070292 13.5070292 [ ]
( )

(0.0754406( )0.5*(13.5070364 13.5070364 [ ]
( )

x xx x x Exp
x x

x xExp
x x

−
+ − − +

−
− −

+ −
−

   (3.6) 

 The replacement of the linear terms ensures that MTE potentials are closed 
under marginalization.  
 

3.1.4 Normalization 

Let X =Y ∪ Z be a set of variables where Y is a discrete and Z is a continuous 
variable. Let φ′ be the MTE potential for X. Normalization constant for K is 
calculated as follows: 
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 K = ( ( , ) )
Y Z

y
y z dzφ

∈Ω Ω

′∑ ∫  (3.7) 

 If join trees are initialized with normalized potentials the normalization 
constant equals to one when no evidence is observed. 

3.1.5 Linear Deterministic Equations 

If the variable being deleted is contained in a linear deterministic equation in the 
network, then the marginalization operation is different. If it is the case, then we 
solve the equation for the variable being deleted and then substitute this solution 
in the updated potentials in the network. 
 Let ψ denote the distribution of Y|x ~ fY|x and let ζ denote the equation  
Z = X + Y. Suppose we want to delete the variable Y from the network. By 
solving the equation for Y and substituting the solution in fY|x we can remove Y 
out of the combination and hence find the distribution of Z|x. The details are as 
follows: 
(ζ⊗ψ)−Y = ([Z = X + Y] ⊗ fY|x(y))−Y = ([Y = Z − X] ⊗ fY|x(y))−Y =  fY|x(z −x)  

3.1.6 Maximum of Two Distributions 

Finding the distribution of the maximum of two or more distributions has been 
the interest of many communities of researchers. Especially in the domains of 
project management, this problem occupies an important place since the 
completion time of an activity is the sum of its duration and the maximum 
between the completion times of its immediate predecessors. For this reason, it 
can be concluded that an accurate estimation of the project completion time is 
very much affected by an accurate estimation of the activity completion times.  
   

X Y

G

X ~ fX(x) Y ~ fY(y)

G = Max{X,Y}

X Y

G

X ~ fX(x) Y ~ fY(y)

G = Max{X,Y}  
Figure 3. Maximum of two distributions 

 
 The marginal probability density function of the maximum of two 
distributions can be computed by brute force using order statistics. Consider the 
small BN given in Figure 3. X and Y are continuous variables which have 
density functions fX(x) and fY(y), respectively. G is a deterministic variable 
which is distributed as G = Max{X, Y}. Let FG denote the cumulative 
distribution function (CDF) of G, FX denote the CDF of X and FY denote the 
CDF of Y. Then, FG(g) = FX(g)FY(g). Therefore, the probability density function 
of G is given by fG(g) = (d/dg)FG(g) = fX(g) FY(g)+ FX(g) fY(g), where fX and fY 
are the PDFs of X and Y, respectively. Since there is no closed form expression 
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for the CDF of a normal distribution, there is no closed form expression for 
fG(g) when X and Y are normally distributed. Since MTE potentials are closed 
under integration both FX(g) and FY(g) can be expressed as MTE potentials. And 
since MTE potentials are closed under multiplication and addition fG(g) can also 
be expressed as MTE potentials. Then, by using the MTE approximations of X 
and Y, we can obtain an MTE approximation for the distribution of fG(g). 
 The next section describes the transformation of our PERT Bayes net  
example into a MTE PERT Bayesian network.  

4 Transformation of a PERT Bayesian network into 
a MTE PERT Bayesian network 

The primary objective of this study is to compute the completion time of the 
project without setting any assumptions for activity distributions. This objective 
will be materialized by approximating the activity durations using mixtures of 
truncated exponentials and propagating the resulting mixtures of truncated 
exponentials network using the Shenoy-Shafer architecture. 
 Consider the PERT Bayes net given in Figure 2. Notice that it is not a MTE 
Bayesian network since the activity durations D1, D2, and D3 are all normally 
distributed. In order to transform this PERT Bayes net into a MTE Bayesian 
network all of these activities will be approximated using MTE’s. The MTE 
approximation of D1 overlaid on the actual normal distribution is given in Figure 
4 below.  
  

0.2 0.3 0.4 0.5 0.6 0.7

1

2

3

4

 
Figure 4. The actual distribution of D1 overlaid on its MTE approximation 

 
 The probability distribution for D3 is defined as D3|d1 ~ N(0.6+d1, 0.04). 
The plot for the MTE approximation for D3 is given in Figure 5 below. 
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Figure 5. MTE approximation for D3|d1 

 

5 Fusion Algorithm 
The fusion algorithm, first described by Cannings et al. [1978], is used to 
compute the marginal for a variable using local computation [Shenoy, 1992]. 
Shenoy [1997] described the fusion algorithm as a guide to construct join trees 
where Shenoy-Shafer architecture will be used to compute the marginals of the 
variables. The basic idea of the fusion algorithm is to delete all the variables in 
the network successively, until we end up with the marginal distribution of the 
variable of interest.  
 In this research, we are interested in computing the marginal distribution of 
the project completion time. Hence, using fusion algorithm, the variables in the 
MTE PERT Bayes net will be deleted successively, until we end up with the 
marginal distribution of the project completion time, F. Though different 
deletion sequences may lead to different computational efforts, the outcome of 
the network does not get affected with the deletion sequence used. In this 
example, we will use the deletion sequence D3, D1, (D2, C3) in order to find the 
marginal distribution of the project completion time. Figure 6 illustrates the 
construction of the join tree for the PERT example.  
 The details of the messages necessary to compute the marginal distribution 
of the project completion time are as follows: 
Fusion with respect to D3:  
 Fusion w.r.t. D3, refers to removing the variable D3 from the network. This 
will be done first by combining all the potentials that contain D3 and next by 
removing D3 out of the combination by marginalizing the combination down to 
the remaining variables. Let fD3|d1

 denote the distribution of D3|d1. Let χ3 denote 
the equation for  
C3 = D1 + D3. By solving the equation for D3 and substituting D3 in fD3|d1 we can 
find the distribution of C3|d1. The details are as follows: 
 C3 = D1 + D3 
 D3 = C3 − D1 

 fC3|d1(c3) = fD3|d1(c3 −d1) 
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Figure 6. Creation of the binary join tree using the fusion algorithm. 

  
Fusion with respect to D1: 
 The variables whose domains contain D1, (D1 itself and C3|d1), are both 
continuous variables, so deleting D1 from the network involves finding the joint 
fC3, D1(c3, d1)  and integrating this combination over the domain of D1. The 
details are as follows: 
 fC3, D1(c3, d1) = fC3|d1(c3) fD1(d1) 
 (fC3, D1(c3, d1))↓C3 = ∫fC3,D1(c3, d1) dd1= fC3(c3) 
 The expected value and variance for the marginal of C3 are calculated as 1.4 

and 0.0786. These answers are comparable with results from multivariate 
normal theory, which gives an expected value and variance of 1.4 and 0.08.  

 The next step is to find the marginal distribution of  
E = Max{C3, D2} which requires the variables, C3 and D2, to be deleted at the 
same time.  
 Figure 7 represents the current state of our network after the variables D3 
and D1 are removed from the network. As the next and final step, we have to 
find the project completion time E = Max{C3, D2} which requires the variables 
C3  and D2  to be deleted at the same time.  
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C3
D2

E

C3 ~ fC3
(c3) D2 ~ N(1.4, 0.01)

E = Max{C3, D2}

C3
D2

E

C3 ~ fC3
(c3) D2 ~ N(1.4, 0.01)

E = Max{C3, D2}   
Figure 7. The conditional distribution of E after D3 and D1 are deleted from the 

network 

 As explained in subsection 3.1.6, the probability density function of FE is 
given by fE(e) = (d/de)FE(e) = fC3

(e) FD2
(e)+ FC3

(e) fD2
(e), where fC3

 and fD2
 are 

the PDFs of C3 and D2, respectively. In sections 4 and 5 the PDF’s of D2 and C3 
are approximated using MTE’s. As the next step of our analysis, we calculate 
the CDF’s of both D2 and C3 which we later use for the calculation of the 
marginal distribution of the project completion time, fE(e). The plot of the MTE 
approximation for the CDF of D2 is illustrated in Figure 8 below. 
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Figure 8. MTE Approximation for FD2

(e) 

 
 The MTE approximation of fE(e) overlaid on the actual distribution is given in 
Figure 9 below.  
 By comparing the means and variances of the approximation with the exact 
analytic results calculated with Clark’s method [1961], we can evaluate the 
goodness of our approximation for the marginal distribution of the project 
completion time, fE(e) . Accordingly, using our method described in this paper 
the mean and the variance of the marginal distribution of E is calculated as 
1.51883 and 0.0300638, respectively. Comparing it to 1.51968 and 0.0306761 
given by the exact analytic results, the approximation can be considered as quite 
successful.  
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Figure 9. Approximation of fE(e)overlaid on the actual distribution 

 After normalization, when the limits of integration include linear terms, 
then we may end up with linear terms in the remaining variables as it is the case 
with the approximation of C3 and of the CDF of D2. These linear terms can be 
approximated again using MTE potentials, which ensures that the result is again 
an MTE approximation and MTE’s are closed under marginalization. However, 
replacing the linear terms with the MTE potentials causes bad accuracy in our 
approximations. 

6 Entering Evidence in a MTE PERT Network 
In this research MTE PERT Bayes nets are described as an alternative method to 
solve stochastic PERT networks with which we can compute the marginal 
distribution of the project completion time without setting any false assumptions 
for the activity completion times. In this context, it is natural to question our 
methods described in this research and ask for the advantage obtained by using 
the methods described, instead of using straight forward simulation methods that 
are already handy.  
 With simulation methods the activity durations can be represented 
realistically. As it is the case with our methods, the activity durations can have 
any type of distribution and one can also represent the correlation between the 
activity durations. However, with straight-forward Monte Carlo simulation 
methods we can not include the observations of continuous variables and update 
our inferences accordingly. By transforming the PERT network into a MTE 
Bayesian network and solving it using the Shenoy-Shafer architecture we can 
update our network, once evidence is observed, and find the posterior 
distributions of the activities which in turn will result in more accurate estimates 
for the project completion time.  
 Consider the PERT Bayesian network given in Figure 10. This is a PERT 
Bayes net with four activities A1, A2, A3 and A4. Notice that the activities are 
depicted by their durations, as D. Suppose we know that the activities A1 and A2 
will be performed by the same contractor. The quality of the work done by this 
contractor is distributed as fQ(q). The quality of the work performed by the 
contractor effects the duration of the activities A1 and A2 such that with higher 
quality it will take less time to complete these activities. In addition to these, we 
also have the information that the same contractor performs another activity 
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similar to ours within the firm. This activity A4 is outside of our project but we 
included it in our network in Figure 10 anyway since it will effect our later 
conclusions. As you can see in Figure 10 the duration of activity A4 also 
depends on the quality of the contractor’s job.  

D2

D1 C3

F

D3 D3 ~ N(8, 1)

C3 = D1 + D3

F = Max{C3, D2}

Q

D4

D1~ N(2d1− q, 1 )

Q~ fQ(q)

D2 ~ N(d2 − 2q, 2 )
D4~ N(d4 − q, 2 )

D2

D1 C3

F

D3 D3 ~ N(8, 1)

C3 = D1 + D3

F = Max{C3, D2}

Q

D4

D1~ N(2d1− q, 1 )

Q~ fQ(q)

D2 ~ N(d2 − 2q, 2 )
D4~ N(d4 − q, 2 )  

Figure 10. Representation of the example as a PERT Bayesian network 

 The example described above can be solved using the means of simulation 
methods as well as with the methods represented throughout this research. 
However, suppose we observe that the duration of activity A4 lasted 10 days to 
complete. Hence we have the evidence eD4 = 10. With the methods described in 
this dissertation this evidence can be incorporated in the network and the 
estimates for the durations can be updated accordingly, which is not possible 
using the straight forward simulation. With our method we can find the posterior 
distribution of Q after receiving the evidence eD4 which in turn will change the 
estimates for the distributions of A1 and A2 and consequently the estimate for the 
project completion time. Including the observations in the network and updating 
the distributions accordingly will improve the quality of the inference. The 
PERT BN after receiving the evidence eD4

 is represented in Figure 11 below.  

D2

D1 C3

F

D3 D3 ~ N(8, 1)

C3 = D1 + D3

F = Max{C3, D2}

Q

D4

δ1′

Q~ f′Q(q)

δ2′

eD4 
= 10

D2

D1 C3

F

D3 D3 ~ N(8, 1)

C3 = D1 + D3

F = Max{C3, D2}

Q

D4

δ1′

Q~ f′Q(q)

δ2′

eD4 
= 10  

Figure 11. The PERT Bayesian network after receiving the evidence eD4 

7 Summary and Conclusions 
 
Mixtures of truncated exponentials are an alternative tool to mixtures of 
Gaussians (MoG) to make inferences in stochastic PERT networks. Both MoG’s 
and also MTE’s are able to find accurate estimations for the maximum of two 
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distributions and hence for the project completion time. However, the inference 
process using MTE PERT networks, compared to MoG’s, is much more 
straightforward in the sense that the MTE PERT networks do not force 
restrictive settings like, the inability of discrete variables to have continuous 
parents as it is the case with MoG networks. This fact makes the use MTE 
PERT Bayes nets better suited for practical use.  
 Comparing our method to straight forward simulation on the other hand, the 
MTE PERT Bayesian networks possess the advantage that the observations can 
be integrated to the inference process. Once evidence is observed we can update 
our network accordingly and find the posterior distributions of the activities and 
thus obtain a more accurate estimation for the project completion time.  
 The drawback with our method is on the other hand, that the number of 
exponential terms increases rapidly as the fusion algorithm is applied which in 
turn makes the inference process more difficult to apply. Additionally, in the 
process of marginalization, when the limits of integration include linear 
functions, we may end up with linear terms in the remaining variables. These 
linear terms can be approximated using an MTE approximation and it can be 
ensured that the result is again an MTE potential. However, replacing the linear 
terms with the MTE potentials causes bad accuracy in our approximations. 
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