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Foreword

Writing the opening words to the Proceedings of the 10th Workshop on Uncertainty Processing (WU-
PES 2015) is a natural opportunity to take a glance back at the 27-year history of these scientific
meetings. Though the organization of the first meeting of this series was a reaction of defiance to the
fact that we could not attend the (1st) Conference on Uncertainty Processing and Management of Un-
certainty held in 1986 in Paris, it finally appeared to be a good idea to start organizing small informal
meetings with a limited number of participants. This has enabled us to keep the working atmosphere,
which is supported by the printed Proceedings of the preliminary versions of the lectures presented
that are distributed to the participants at the beginning of the meeting. There are no parallel sessions
and the participants have enough time for personal discussions above and beyond the Proceedings,
either during coffee breaks, lunch time, or on the occasion of an excursion, which are integral parts of
the WUPES programme. Starting in 1994, the meetings have been organized at different interesting
places in the Czech Republic as indicated in the following survey.

1) 1988, June 20-23, Alšovice

2) 1991, September 9-12, Alšovice

3) 1994, September 11-15, Třešt́

4) 1997, January 22-25, Praha

5) 2000, June 21-24, Jindřichův Hradec

6) 2003, September 9-12, Hejnice

7) 2006, September 16-20, Mikulov

8) 2009, September 19-22, Liblice

9) 2012, September 12-15, Mariánské Lázně

10) 2015, September 19-22, Monínec

Thus, we can see the meetings have been held in several historical castles, one monastery, and
one of the best-known Czech spa towns. This year, we are meeting in a sports centre, Monínec, the
geographic barycentre of Bohemia.

Having data describing ten cases, statisticians would be able to present an extended statistical
survey from the history of WUPES meetings. But let us stop looking back in history and turn our
attention to the actual meeting. Based on the extended abstract, the Programme Committee accepted
23 papers for presentation at the meeting. Besides traditional topics like the fuzzy-set approach to the
coherence theory, conditional independence, compositional models, imprecise probabilities (including
belief functions) and the marginal problem, new themes have emerged, namely the applications of

v



graphical models (in particular Bayesian networks and phylogenetic trees), methods of polyhedral
geometry and learning and troubleshooting algorithms.

As usual, the best papers will be selected and their authors will be invited to submit their ex-
tended versions for publication in the special issue of a reputable international journal. This year
we have made a preliminary agreement with the International Journal of Approximated Reasoning.
Nevertheless, reading the contributions from these Proceedings one should keep in mind the working
character of the meeting. Let us stress that it is also a tradition that contributions presenting prelim-
inary achievements from on-going projects and not-yet-finished results have been invited. Namely,
such contributions spur exciting discussions, and thus we believe that this year’s Workshop will be at
least as pleasant and successful as those in the previous years.

WUPES 2015 is organized jointly by the Institute of Information Theory and Automation of the
Czech Academy of Sciences and by the Faculty of Management, University of Economics, Prague.
It is quite natural that such a meeting could not materialize if it were not for the hard work of many
our colleagues and friends. This is why we want to express our gratitude to all the members of both
the Programme and Organizing Committees. Last but not least, we also want to acknowledge the fact
that this workshop is organized, due to the fact that the research of several members of the Organizing
Committee is financially supported by grants GA ČR no 15-00215S and 13-20012S.

Radim Jiroušek Václav Kratochvíl Milan Studený
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Properties of composition for

continuous variables

Vladislav B́ına

Faculty of Management in Jindřich̊uv Hradec

University of Economics in Prague

Jarošovská 1117/II, 37701 Jindřich̊uv Hradec

e-mail: bina@fm.vse.cz

Abstract

Author presents an operator of composition for densities of continuous ran-
dom variables and analyzes its properties, i.e., particularly the assertions useful
for marginalization, concerning the conditional independence, entropy and al-
teration of ordering of composed densities in the model. He proposes generalized
function of Dirac delta as a degenerated distribution allowing to express oper-
ations of conditioning and intervention using composition of Dirac delta with
continuous density or compositional model.

Keywords: Operator of composition, continuous random variable, Dirac delta func-
tion, causality, conditioning, intervention.

1 Introduction

The paper presents an operator of composition for densities of continuous random
variables (defined in [1]) and analyzes its basic properties in a manner analogous
to [3]. The basic aim is to introduce well-known generalized function of Dirac delta
as a (degenerated) distribution allowing to define operation of conditioning and in-
tervention (for discrete case see [2]) in compositions of continuous densities.

But Dirac delta also provides a possibility to include deterministic variables into
the models, to define mixed random variables (partially continuous with steps in
probability density function) and to include discrete distributions to compositional
models build from densities of continuous random variables. This unifying element
thus allows us to approximately model the problems including continuous random
variables and has a potential to make such approximations computationally feasible.

Vladislav Bína
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2 Preliminaries and basic notions

Throughout the paper we consider finite set of random variables (X1, . . . , Xn) with
values or vectors of values denoted by corresponding lowercase letter. The domain of
variables will be denoted by corresponding bold uppercase letter Xi. Variables with
finite or countable set of possible states are called discrete, other variables are called
continuous (at which we particularly aim). Both discrete and continuous variables
can be described using (multi-dimensional) cumulative distribution function (CDF).
But for definition of operator of composition in discrete case we need probability mass
function which is in theory of compositional models usually denoted by small Greek
letters (κ, λ, µ, ν, π, . . . ). The theory of discrete compositional models and all related
notions can be found in [3].

In order to define the operator of composition of continuous variables we require
its cumulative distribution function F (X) to be absolutely continuous and thus must
be differentiable almost everywhere. The corresponding probability density function
is then

f(x) =
d

dx
F (x).

Similarly, in case of multivariate (joint) probability density function we require CDF
to be sufficiently differentiable and use multiple partial derive.

As we already hinted, the probability density functions (of continuous random
variables) will be denoted by small letters of Latin alphabet (f, g, h, . . . ). E.g., the
abbreviated notation f(xK) denotes a multidimensional density of variables having
indices from set K.

For a probability density function f(xK) and L ⊂ K we can compute a marginal
probability density f(xL) of f(xK) for almost every xL in the following way

f(xL) =

∫

XK\L

f(xK)dxK\L

where obviously the integration run over the domains of all variables in K \ L.
Having two sets of variable indices K and L, the symbol f(xK∩L) and f↓{K∩L} are

two ways of corresponding marginal density representation. This density is marginal-
ized up from f(xK), and thus represents a multivariate density of continuous random
variables with indices from K ∩ L.

For validity of definitions we require a notion of support (of a function), i.e., the
set of points where function f has non-zero values

supp f = {x | f(x) 6= 0}.
In case of densities, we mean positive values.

Having probability density f(xK) and two disjoint subsets L,M ⊆ K we define
conditional probability density of XL given the occurrence of value xM ∈ XM for
almost every xL∪M as

f(xL |xM )f(xM ) = f(xL∪M ).

Let us remark that for f(xM ) = 0 the definition is ambiguous, but we do not need to
exclude such cases.

Properties of composition for continuous variables
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3 Conditional independence

Continuous random variables xK having a joint density f(xK) are all independent
from each other if and only if for almost every xK holds f(xK) = f1(x1) · · · fn(xn).
An important generalization of this notion is so called conditional independence.

Definition 1 (Conditional independence). Let us have probability density function
f(xK) nad three disjoint subsets L1, L2, L3 ⊆ K where L1 and L2 are non-empty. We
say that groups of variables XL1

and XL2
are conditionally independent given group

XL3
if almost everywhere

f(xL1∪L2∪L3
)f(xL3

) = f(xL1∪L3
)f(xL2∪L3

). (1)

We write XL1
⊥⊥XL2

|XL3
[f ].

Let us mention the principle of marginal zeroing, i.e., if we have probability density
f(xK) and M ⊆ L ⊆ K then for almost every xK holds f(xM ) = 0 implies f(xL) = 0.

Now it is apparent that in Formula (1) the equality holds for xK such that f(xL3
) =

0. For almost every xK such that f(xL3) > 0 we can according to definition above
introduce conditional probability density and divide both sides of Formula (1) f(xL3)
obtaining

f(xL1∪L2∪L3
) = f(xL1∪L3

)f(xL2
|xL3

). (2)

4 Operator of composition

The definition of the operator and its properties are in a way analogous to the situation
in discrete probability distributions (see Jiroušek [3]).

Definition 2. Consider two sets of continuous variables XL and XM , a probability
density f(xL), and a probability density g(xM ) with supports fulfilling the condition
supp f(xL∩M ) ⊆ supp g(xL∩M ). The right composition is given by

f(xL) . g(xM ) =
f(xL)g(xM )

g(xL∩M )
.

We can see that the composition exists when the assumption concerning the sup-
ports of the densities to be composed is fulfilled. The reason is that the definition
in fact involves only the multiplication of density f(xL) by the conditional density
g(xM\L |xL∩M ), i.e., conditioned by the variables in the intersection. If there ap-
pears a zero in the denominator g(xL∩M ) the condition on supports and principle of
marginal zeroing imply that we get also product of two zeros in numerator and in this
case we can quite naturally define the result of composition as 0.

Lemma 1. For probability densities f(xL) a g(xM ) such that

supp f(xL∩M ) ⊆ supp g(xL∩M )

Vladislav Bína
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(thus the composition f(xL) . g(xM ) is defined) we can perform a marginalization
with the result

(f . g)(xL) = f(xL)

almost everywhere.

Proof. First let us assume g(xL∩M ) > 0. From the definition of marginalization we
have

(f . g)(xL) =

∫

XM\L

(f . g)(xL∪M )dxM\L =

∫

XM\L

f(xL)g(xM )

g(xL∩M )
dxM\L.

Now we can rewrite the density g(xM ) using a conditional probability density in the
following way.

(f . g)(xL) =

∫

XM\L

f(xL)g(xL∩M )g(xM\L|xL∩M )

g(xL∩M )
dxM\L =

= f(xL)

∫

XM\L

g(xM\L|xL∩M )dxM\L

Since g(xM\L|xL∩M ) is a conditional probability density we know that
∫

XM\L

g(xM\L|xL∩M )dxM\L = 1.

Now for g(xL∩M ) = 0 we can use the assumptions on supports supp f(xL∩M ) ⊆
supp g(xL∩M ) which implies that also f(xL∩M ) = 0. In this case we defined the
result of composition as zero.

Corollary 1. From the preceding Lemma 1 for XM ⊆ XL directly follows that

f . g = f.

The result of composition is also a (multivariate) probability density in variables
with indices from L ∪M , see the next Lemma.

Lemma 2. For probability densities f(xL) a g(xM ) such that supp f(xL∩M ) ⊆ supp g(xL∩M )
the composition f(xL) . g(xM ) is a probability density.

Proof. Let us marginalize the result of composition (f . g)(xL∪M ) over all variables
∫

XL∪M

(f . g)(xL∪M )dxL∪M .

This expression can be rewritten into two subsequent integrals where the inner one
appeared in the proof of preceding lemma, i.e,

∫

XL∪M

(f . g)(xL∪M )dxL∪M =

∫

XL

∫

XM\L

(f . g)(xL∪M )dxM\LdxL =

=

∫

XL

f(xL)dxL = 1.

The last integration follows from the fact that f(xL) is a probability density.

Properties of composition for continuous variables
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Let us remark, that the definition of the operator of composition resembles the
formulae of conditional independence (2). To be more precise, we can formulate the
following assertion.

Lemma 3. Let us have well defined composition h(xL∪M ) = f(xL) . g(xM ). Then

XL\M⊥⊥XM\L |XL∩M [h].

Proof. We have to show that for h = f . g Formula (1) holds for almost every xL∪M .
For xL∪M such that g(xL∩M ) = 0 we have also f(xL∩M ) = 0 thanks to the

condition connecting supports of composed densities supp f(xL∩M ) ⊆ supp g(xL∩M ).
This implies that also h(xL∩M ) = 0 and from principle of marginal zeroing also
h(xL∪M ) = h(xL) = h(xM ) = 0. Now we immediately see that for this case the
assertion holds, because both sides of Equation 1 are equal to zero.

Now let us consider xL∪M such that g(xL∩M ) > 0. From Lemma 1 we know that
marginal of composition h(xL) = f(xL), now let us express h(xM ) in a similar way
as in proof Lemma 1

h(xM ) =

∫

XL\M

(f . g)(xL∪M )dxL\M =

=

∫

XL\M

f(xL)g(xM )

g(xL∩M )
dxL\M =

=

∫

XL\M

f(xL∩M )f(xL\M |xL∩M )g(xM )

g(xL∩M )
dxL\M =

=
f(xL∩M )g(xM )

g(xL∩M )

∫

XL\M

f(xL\M |xL∩M )dxL\M

where ∫

XL\M

f(xL\M |xL∩M )dxL\M = 1.

Now we can express

h(xL)h(xM ) = f(xL)
f(xL∩M )g(xM )

g(xL∩M )
=
f(xL)g(xM )

g(xL∩M )
f(xL∩M ) =

= (f(xL) . g(xM ))f(xL∩M ) = h(xL∪M )h(xL∩M ) (3)

where the last modification leading to term h(xL∪M ) was done thanks to definition of
composition and from Lemma 1 we know that f(xL) = h(xL) which implies equality
f(xL∩M ) = h(xL∩M ).

We arrived at equality h(xL)h(xM ) = h(xL∪M )h(xL∩M ), i.e.,

XL\M⊥⊥XM\L |XL∩M [h].

Vladislav Bína
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Definition 3. Two density functions f(xL) and g(xM ) are consistent if f(xL∩M ) =
g(xL∩M ).

Note that densities f(xL) and g(xM ) with L ∩M = ∅ are consistent. The pair
of probability densities is commutative under assumption of consistency, see next
Lemma.

Lemma 4. For two consistent probability densities f(xL) and g(xM ) such that both
compositions f(xL) . g(xM ) and g(xM ) . f(xL) are defined holds

f(xL) . g(xM ) = g(xM ) . f(xL).

Proof. From consistency assumption f(xL∩M ) = g(xL∩M ) and definition of operator
of composition we directly see

f(xL) . g(xM ) =
f(xL)g(xM )

g(xL∩M )
=
g(xM )f(xL)

f(xL∩M )
= g(xM ) . f(xL).

Lemma 5. Let us have two probability densities f(xL), g(xM ) and P such that L ∩
M ⊆ P ⊆ L ∪M

(f . g)(xP ) = f(xL∩P ) . g(xM∩P ).

Proof. The composition f . g is defined if and only if f(xL∩P ) . g(xM∩P ) is defined.
Now let us marginalize the variables out in two consequent steps, first choose M \ P
and then L \ P and let us rewrite both f and g using corresponding conditional
distribution.

(f . g)(xP ) =

∫

XL\P

∫

XM\P

f(xL)g(xM )

g(xL∩M )
dxM\P dxL\P =

=

∫

XL\P

∫

XM\P

f(xL)g(xM∩P )g(xM\P |xM∩P )

g(xL∩M )
dxM\P dxL\P =

=

∫

XL\P

f(xL)g(xM∩P )

g(xL∩M )

∫

XM\P

g(xM\P |xM∩P )dxM\P dxL\P =

=

∫

XL\P

f(xL)g(xM∩P )

g(xL∩M )
dxL\P =

=

∫

XL\P

f(xL∩P )f(xL\P |xL∩P )g(xM∩P )

g(xL∩M )
dxL\P =

=
f(xL∩P )g(xM∩P )

g(xL∩M )

∫

XL\P

f(xL\P |xL∩P )dxL\P =

=
f(xL∩P )g(xM∩P )

g(xL∩M )
= f(xL∩P ) . g(xM∩P )

The conditional densities marginalized out, since the integrals are equal to one.

Properties of composition for continuous variables
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5 Compositional models

Analogously to the discrete case (see again Jiroušek [3]) we can iterate the operation
of composition in order to build a multidimensional compositional model involving
certain types of dependencies among variables. And the resulting multidimensional
probability density is defined (if the assumptions of all operations hold) for all vari-
ables appearing at least once in the densities composed in the whole compositional
model.

Let us stress that the operation of composition is generally neither commutative
nor associative and the compositions are performed from left to right, i.e.,

f1 . f2 . f3 . · · · . fn−1 . fn = (. . . ((f1 . f2) . f3) . · · · . fn−1) . fn.

Now let us present an assertion which under certain conditions allows to change
the sequence of composition and comprises thus an associativity rule.

Lemma 6. Let us have densities f1(XL1
), f2(XL2

) and f3(XL3
), now if L2 ⊆ (L1 ∩

L3) then

(f1 . f2) . f3 = f1 . (f2 . f3).

The proof is completely analogous to the one presented in [3] for the discrete case.

6 Entropy of composition

Let us now explore the properties of the result of composition for probability densities
from the viewpoint of information theory. First we will recall well-known definitions
of differential entropy and Kullback-Leibler divergence (see, e.g., [4]).

Definition 4. For multidimensional density f(xL) the differential entropy H(f) is
given by

H(f) = −
∫

Sf

f(xL) log f(xL)dxL

where Sf = supp f(xL).

Definition 5. For two densities f1(xL) and f2(xL) the Kullback-Leibler divergence
(or Kullback-Leibler distance, or relative entropy) D(f1 ‖ f2) is defined by

D(f1 ‖ f2) =

∫
f1(xL) log

f1(xL)

f2(xL)
dxL.

Notice that D(f1 ‖ f2) is finite under the assumption that supp f1 ⊆ supp f2. For
the sake of simplicity we can continuously set 0 log 0

0 = 0. Jensen’s inequality (strict
convexity of logarithm) implies that the Kullback-Leibler divergence is non-negative.
The equality to zero occurs only if f1 = f2 almost everywhere.

The following pair of theorems was published in [1] together with both proofs.

Vladislav Bína

7



Theorem 1. Consider two sets of continuous variables XL and XM . If their corre-
sponding densities f(xL) and g(xM ) are consistent and their composition exists, the
entropy of this composition is given by

H(f . g) = H(f) +H(g)−H(g↓L∩M )

where g↓L∩M denotes marginal of density g with remaining variables L ∩M .

In Theorem 1 we expressed (under assumption of consistency) the entropy of
composition using the entropies of particular operands. Now we will show that the
operator of composition maximizes the entropy in the following sense.

Theorem 2. For two sets of continuous variables XL and XM , and the corresponding
consistent densities f(xL) and g(xM ), consider a set of all common extensions of f
and g denoted by Ξ(f, g), i.e., a set

Ξ(f, g) = {h(xL∪M )|h(xL) = f(xL), h(xM ) = g(xM )} .

Then

f . g = arg max
h∈Ξ(f,g)

H(h).

7 Dirac delta

In this section, we will introduce Dirac delta function as a degenerated density use-
ful for practical realization of conditioning and intervention in compositional models.
Another possible usage can be introduction of mixed models containing both dis-
crete and continuous variables. In the preceding sentences we mentioned Dirac delta
function, but in fact it is not a function. Dirac delta can be rigorously defined as a
measure or as a distribution. In the theory of distributions a generalized function of
Dirac delta is viewed not as a function but as the way how it affects other function
(so called test function from some space) when integrated. Typically the space of test
functions contains smooth functions (on real axis) with compact support (for more
detail see, e.g., [6]).

For the sake of simplicity we will define Dirac delta function from the perspective of
its properties. But first of all we recall Heaviside step function (or unit step function)
in a variant

U(x) =

{
1 x ≥ 0,

0 x < 0
(4)

where symbol U(x) was chosen in order not to confuse it with entropy.

Definition 6. Dirac delta function is an object with the following properties

Values: δ(x) =

{
+∞ x = 0,

0 x 6= 0,

Properties of composition for continuous variables
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Integration:
∫∞
−∞ δ(x)dx = 1,

moreover for any ε > 0 it holds that
∫ ε
−ε δ(x)dx = 1,

Sifting: for any function f(x) continuous in the ε neighborhood of x0 so called
sifting property holds

∫ +∞

−∞
f(x)δ(x− x0)dx =

∫ +ε

−ε
f(x)δ(x− x0)dx = f(x0),

CDF: δ(x) = d
dxU(x), where U(x) is Heaviside step function (4).

7.1 Conditioning

Now we will introduce the composition of Dirac delta function with continuous dis-
tribution as a mean of conditioning analogically to the degenerated probability mass
function δ in discrete case in [2].

Theorem 3. Let us have a probability density f(xL), single variable X ∈ XL and
subset of variables XM such that M ⊂ L and X 6∈ XM . Then

f(xM |x = x0) = (δ(x− x0) . f(xL))↓XM

where again ↓ XM denotes corresponding marginalization.

Proof. Denote P ⊂ L such that XL = XM ∪{X}∪XP . Let us rewrite the righthand
side of the equation in assertion

(δ(x− x0) . f(xL))↓xM =

∫

XL\M

δ(x− x0) . f(xL)dxL\M =

=

∫

X

∫

XP

δ(x− x0) . f(xL)dxP dx =

=

∫

X

∫

XP

δ(x− x0)f(xM∪P |x)dxP dx =

=

∫

X

δ(x− x0)

∫

XP

f(xM∪P |x)dxP dx =

=

∫

X

δ(x− x0)f(xM |x)dx = f(xM |x = x0).

Where integration over variables XP was simple marginalization and the last modifi-
cation employed the sifting property.

7.2 Intervention

Now let us take some preliminary consideration concerning modeling of intervention in
case of continuous variables (for introduction and motivation concerning probabilistic
approach to causality, interventions and do-calculus see [2] or [5]). According to
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this we call compositional model with causal interpretation of dependencies among
considered variables causal compositional model.

In agreement with the case of discrete compositional models [2] we a set of variables
XK = {X1, . . . Xn} where for any variable Xi ∈ XK set C(Xi) ⊂ XK denotes its
causes. We limit our considerations to the models in which variables can be ordered
in such manner that causes precede their effects (for all k such that Xk ∈ C(Xi) must
hold that k < i). Now denote XLi = C(Xi) ∪ {Xi} and density fi(xLi) describes the
relation of variable Xi and its causes. So we consider causal model

h(xK) = f1(xL1
) . f2(xL2

) . · · · . fn(xLn
). (5)

According to Pearl [5] the result of intervention on some variable X ∈ XK can
be performed as a conditioning in a modified causal model where causal influence on
the intervened variable is blocked, i.e., C(X) = ∅. The intervened variable appears
for the first time in ith density in the model and this new model is

h′(xK) = fi(X) . f1(xL1) . f2(xL2) . · · · . fn(xLn). (6)

The expression is certainly valid for i = 1 thanks to the Corollary 1. For i = 2 it
follows from the fact that neither f2(X) nor f1(xL1

) have any causes and we can
apply Lemma 4 and then Corollary 1. In general case of i > 2 we also first apply
Lemma 4, then i− 2 times Lemma 5 and finally Corollary 1 which results in

h′(xK) = f1(xL1
) . f2(xL2

) . · · · . fi(X) . · · · . fn(xLn
)

where obviously fi(X) stands instead of fi(xLi
).

Theorem 4. For the causal model h given by Formula 5, for any X ∈ XK and its
value x0 and for subset XM ⊆ XK \ {X} we have

h
(
xM |do(x = x0)

)
=
(
δ(x− x0) . fi(X) . f1(xL1

) . f2(xL2
) . · · · . fn(xLn

)
)↓XM

.

Proof. According to Pearl [5] the intervention is defined as a conditioning in the
altered model (6), i.e., h(xM |do(x = x0)) = h′(xM |x = x0). From this and Theorem 3
we get

h(xM |do(x = x0)) =
(
δ(x− x0) .

(
fi(X) . f1(xL1) . f2(xL2) . · · · . fn(xLn)

))↓XM

.

Now we use n times special associativity condition from Lemma 6 and finally Corol-
lary 1 which leads to

h(xM |do(x = x0)) =
(
δ(x− x0) . f1(xL1

) . f2(xL2
) . · · · . fn(xLn

)
)↓XM

.

This theorem shows the usage of Dirac delta in composition and presents the
difference between conditioning and intervention.

Properties of composition for continuous variables
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8 Conclusion and further work

In the paper we presented an operator of composition for continuous random variables
and analyzed its properties. Among others we elicited that the operator of composi-
tion embeds a relation of conditional independence and that it maximizes the entropy
in certain sense. The results of the approach can serve as a computationally feasi-
ble model for approximate reasoning with continuous random variables allowing to
interconnect low-dimensional densities without necessity to compute with the whole
multidimensional density.

The Dirac delta was used to introduce conditioning and intervention to causal
compositional models of continuous random variable in a consistent way. But it
also provides a possibility to include deterministic variables, to define mixed random
variables (partially continuous with steps in PDF) and to include discrete distributions
to compositional models build from densities of continuous random variables which
may be the aim of future work.
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Abstract

This article shows a novel approach to modelling and reinforcement learning
of dynamic stochastic partially observable environment. We present an MCMC
algorithm which learns the structure of a graphical model representing the en-
vironment. We use an approximation to a Bayesian method to learn posterior
distribution over parameters of learned structure. The learning algorithm is on-
line which allows us to use it in reinforcement learning setup. We demonstrate
that this algorithm is usable on several simple experiments.

1 Introduction

Partially observable dynamic systems can be modelled using Hidden Markov model
(HMM), which regards state as a single variable and observation as a single variable.
Partially observable Markov decision processes(POMDPs) furthermore allow to place
an agent in dynamic system and allow it to take actions and collect rewards. Modelling
all possible states or all possible observations of a more complicated environment with
one non-factorized variable could be impractical. That is why Dynamic Bayesian
networks (DBNs) [1] are useful. They describe the environment by multiple variables.

Basic algorithms for inference in DBNs require that the structure of DBN is known
and that values in conditional probability tables are exactly specified by an expert.

There are methods to learn DBNs from data [2]. Our algorithm differs from other
existing DBN learning approaches in two points:

1. The structure and parameters are being learned dynamically as the agent col-
lects observations.

2. Actions are selected in a way which tries to maximize collected reward.
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According to the article [3] Ross and Pineau has successfully learned large struc-
tures of fully observable dynamic environments in 2012 by a MCMC method. Mean-
while Poupart and Vlassis presented a novel way to learn the parameters of DBN
representing partially observable environment.

Both of these articles utilize a Bayesian approach and we argued in a recent ar-
ticle [4] that they are suitable for combining to a single algorithm which learns both
structure and parameters in a partially observable environment.

In this article we repeat the main ideas, explain them in more details and report
first experimental results.

2 Proposed model

We suppose that environment behaves as DBN with the exception that one of the
variables denoted A is not random but selected by the agent. We do not assume that
the structure of this graphical model is known. The environment is in an partially
observed state s ∈ S at each time step, where S denotes the state space. We assume
that it can be factorized according to state variables X ∈ X hence each state s is a
vector s = (s1, ...s|X|) ∈ S =

∏
X∈X.

We assume that some of the variables from X may be observable. We denote
them O ⊂ X. We refer to the part of the state which is observed as observation and
we denote it o. It is actually s restricted to O which we denote as o = sO. Other
restriction operation will be denoted analogously.

We always restrict vectors which are denoted by bold lower case letters to sets of
variables, which are denoted as bold upper case letters. Capital letter which are not
bold will denote single variable. Lower case non-bold letter denotes its value.

Specially in case when G is the graph of a Bayesian network, PAGX denotes the
set of parents1 of variable X in graph G. Values of variables of parents of X will be
denoted paGX where X ∈ X.

When the time advances to the next step the state s changes to s′ according to
unknown transition probability P (s′|s).

We assume that the transition probability P (s′|s, a) factorizes according to a dy-
namic Bayesian network with unknown structure G with unknown parameters.

P (s′|s, a) =
∏

X∈X
P (s′X |(s′, s, a)PAGX) (1)

Dynamic Bayesian network with structure G is described as Bayesian network
which has X′ ∪X ∪ {A} as its nodes. By (s′, s, a)PAGX we denote (s′, s, a) restricted
to the variables which are parents of variable X according to structure G.

To emphasize that we take P (s′X |(s′, s, a)PAGX) as an unknown parameter, we
denote it:

1 Parent variable V of variable W is a term used in Bayesian-networks-literature to denote that
there is an arrow from V to W in the graph of Bayesian network.
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θ
(s′,s,a)PAGX

X . (2)

It is actually a vector of real values between 0 and 1 summing to 1 containing for
each value s′X the probability P (s′X |(s′, s, a)PAGX). As the indexes suggest that we
have such a set of parameters for each state variable X and for each combination of
values of its parents.

Even though we do not assume structure G to be known we still assume that
a prior probability distribution P (G) over structures G is known. This probability
distribution can express expert’s prior knowledge or it can just prefer simple structures
over more complicated ones.

The transition probability can be expressed as:

P (s′|s, a) =
∑

G

P (G) · P (s′|s, a,G). (3)

We assume that the parameters θ
(s′,s,a)PAGX

X follow the Dirichlet distribution,
which is conjugate to multinomial distribution.

Each unknown parameter θ
(s′,s,a)PAGX

X can be regarded as an additional state
feature. This way a DBN with unknown parameters can be converted into a bigger
Bayesian network without unknown parameters. From this point of view, learning
the state is equivalent to learning the state and the dynamics of the environment.
During the learning process we maintain probability distribution over possible states.
We call this belief.

Surprisingly, as Poupart and Vlassis showed [5], even though there is an infinite
number of possible parameters the belief for a given structure can be maintained in
a closed form. We will review it in section 2.1.

There is only a finite number of possible graphical structures implying that the
belief over all of them can be maintained in a closed form. But the number of possible
graphs may be large. That is why approximation is introduced in section 2.2.

2.1 Belief for a given structure

We begin by describing how belief looks like when we are given the structure. It is
exactly the same as described by Poupart & Vlassis [5].

The key component is the nice properties of Dirichlet distribution. Let us have one
discrete random variable V which can take values from 1 up to K with probabilities
(θ1, θ2, ...θK), where

∑
i θi = 1.

The usual way to estimate these parameters in Bayesian statistics is to compute
the posterior when assuming that the prior follows Dirichlet distribution. Its density
is given by D(θ;n) = 1

B(n)

∏
i θ
ni−1
i , where θ = {θi}i, n = {ni}i are some hyperpa-

rameters and B(n) is a constant depending on them which makes the distribution
sum to one. It is known as multinomial beta function.
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The prior distribution which states that we have no evidence is expressed by setting
all hyperparameters ni equal to 1. It can be interpreted as evidence that all values
were observed exactly once or it can be thought of only as smoothing the posterior.

The posterior probability that the variable V contains value i is then equal to
proportion of how many times was value i observed.

P (V = i) =
ni∑
i ni

. (4)

In the fully observable environment then we could estimate all parameters in the
whole structure by (4). We would use this estimate for each state variable X and for
each combination of values of its parents paGX. That is the reason why we add X
as a lower index to θ and paGX as an upper index to θ as in (2).

Each set of parameters θ
paGX
X sums to one.

From now on θ without any indexes will denote all these sets of parameters to-
gether.

In the simplified case when the whole history is observed the density of probability
of being in ”information state” θ is

∏

X,paGX

D(θ
paGX
X ;n

paGX
X ). (5)

The problem that not all state features are observable can be overcome by the
following theorem proven by Poupart and Vlassis [5].

Theorem 1. If the prior is a mixture of products of Dirichlets

b(s, θ) =
∑

i

ci,s
∏

X′,paGX
′

D(θ
paGX

′

X′ ;n
paGX

′

X′,i,s ) (6)

then the posterior is also a mixture of products of Dirichlets

bo′(s
′, θ) =

∑

j

cj,s′
∏

X′,paGX
′

D(θ
paGX

′

X′ ;n
paGX

′

X′,j,s′ ). (7)

But how can we get the probability of being in a specific state from this represen-
tation? We show in the following theorem that this can be easily done.

Theorem 2. Parameter θ in formula (6) for the mixture of products of Dirichlet can
be integrated out in a closed form.

Proof.

b(s) =

∫
b(s, θ) = dθ (8)

=
∑

i

ci,s

∫ ∏

X′,paGX
′

D(θ
paGX

′

X′ ;n
paGX

′

X′,i,s )dθ = (9)
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=
∑

i

ci,s
∏

X′,paGX
′

∫
D(θ

paGX
′

X′ ;n
paGX

′

X′,i,s )dθ = (10)

=
∑

i

ci,s (11)

The equation (8) defines symbol b(s). The equation (9) follows from the definition
of b(s, θ) by switching sum and integral. The equation (10) switches integral and
multiplication which is possible in this case because each factor depends on the differ-
ent variable of multidimensional integration. Density of all probability distributions
(including Dirichlet distribution) integrates to one and the product of ones is one.
That is why the equation (11) holds.

Despite this encouraging results the number of components in the mixture (7)
grows exponentially. Luckily the belief can be approximated by the approximation
proposed by Poupart & Vlassis. This will be described in section 2.4. Firstly, in the
next section, we describe the way the belief over possible structures is maintained.

2.2 Belief over structures

The simplest and most naive approach to maintaining the overall belief which contains
the probability of structure, its parameters and state is straightforward. It is sufficient
to keep the belief for each structure and the probability of the structure. The problem
is that the number of graphs on given number of vertices grows very fast with the
increasing number of vertices but we want to maintain only small number of graphs.

We propose to remember only one randomly chosen structure where the probability
that the structure G is chosen would be proportional to the probability P (G|history).

The probability P (G|history) could be difficult to compute. But, as Ross &
Pineau noted in article [3] about MDP, a Markov chain of graphs can be maintained
using Metropolis-Hastings algorithm. The algorithm will ensure that the Markov
chain converges to a distribution of graphs which is equal to P (G|history).

The Metropolis-Hastings algorithm needs to use P (history|G) which can be com-
puted as follows: It is equal to P (o|b,G) · P (ht−1|G), where ht−1 denotes history up
to the previous time step.

Then the idea of computing P (o′|b, a) is as follows: P (o′|b, a) is equal to sum of
P (s′|b, ) over states s′ compatible with observation o′. P (s′|b, a) can be computed di-
rectly from hyperparameters. States s′ compatible with observation o are enumerated
during belief update procedure which converts one mixture of products of Dirichlets
(6) to other mixture of products of Dirichlets (7). Assuming that total weight of
components of mixture for belief in time t− 1 is P (historyt−1|G), the total weight of
samples in time t is P (historyt|G). Hence the algorithm for computing P (historyt|G)
is straightforward.

We propose to start with any arbitrary structure, then learn its parameters by the
application of theorem 1 and approximations from next section. Then we propose to
switch the structure after specified amount of time and repeat the whole process.
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The algorithm for switching the structure is given in algorithm 1 where q(G′|G)
is the probability of transition from graph G to graph G′. This distribution can be
set any arbitrary way which will ensure that all graphs are reachable. P (G) is prior
distribution over graph structures and the probability P (history|G′) can be computed
as described above.

Random transitions with probability min
(

1, P (history|G′)P (G′)q(G′|G)
P (history|G)P (G)q(G′|G)

)
are well

known under the name Metropolis-Hastings algorithm. This algorithm ensures that
the Markov chain of graphs converges to the distribution P (G|history) which implies
that our algorithm eventually learns either the correct structure or a structure which
is equally good with respect to encountered history.

We implemented random changes and distribution q(G′|G) as local change of the
graph structure by deleting or adding an edge.

This change depends on distribution q(G′|G) and isn’t explicitly written in algo-
rithm 1. We assume that this change is done on the line G := G′ which changes the
structure.

Algorithm 1: switchStructure(G)

Data: structure G
Result: possibly modified structure G
G’ := random modification of G;

With a probability min
(

1, P (history|G′)P (G′)q(G′|G)
P (history|G)P (G)q(G′|G)

)

G:=G’;

2.3 Action selection

Agent’s goal is to collect as much reward as possible. It needs to select best combi-
nation of actions to do so. Mappings from believes to actions are called policies. The
question how to find best or good policies for known models is intensively researched
and information can be found in POMDP-related literature.

Our algorithm learns the distribution of possible models. As an approximation,
the best model can be selected and then any of the existing POMDP solvers can be
used to find the policy and select action.

There even exist an approach which can use distribution of possible models in
the form of product of Dirichlets to construct a policy [5]. We suggest to use such
techniques off-line after the model has been learned. During learning fast action
selection algorithm needs to be used. We suggest to select actions randomly at the
beginning when there isn’t known information about parameters of structure and
hence when there is none or only small amount of information about consequences of
actions. Afterwards we suggest to select action which appears the best when compared
in simple simulation using learned models.
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2.4 Approximate representation of the mixture of products of
Dirichlets

As noted in section 2.1 the number of components of the mixture representing current
belief for a given graph grows exponentially with time which is untraceable. Each
component of the mixture is associated with coefficients ci,s. Naturally some of these
coefficients will be smaller while the others will be bigger. We propose to handle this
approximately and sample only some components with bigger coefficients.

For description of possible approximations along with some of their advantages and
disadvantages we encourage the reader to read [5] where the same approximations are
described.

3 Experiments

We tested our approach on several synthetic experiments. In each experiment we ap-
proximated mixture of product of Dirichlets by 100 samples. The algorithm switched
the structure each 800 time steps and we let the algorithm switch 1500 structures.
Then we learned again the best structure for 2000 time steps to compare the results.

We include precise description of all experiments including the description of tran-
sition models.

3.1 Water levels modelling

Our first experiment is based on practical motivation. It models behaviour of river’s
water levels. Possible usage of such model could be for example floods prediction.
However our goal is not modelling reality but instead watching what the model learned
and allowing to learn everything from scratch. That is why we don’t use expert
information already known about this problem. We also want to compare the learned
model with the model generating data. That justifies why we use synthetic data
rather than real data.

We simplified reality as follows: Two variables are observed, Rain which indicates
whether it is raining or not and variable WaterLevel indicating water levels. For
simplicity we assume only one hidden variable ReservoirFullness indicating the state
of hidden natural water reservoirs.

In our data generating model the rain behaves as follows: If it has rained, the
probability of the rain in the next day is 0.8 and if it did not rain during the previous
day the probability of raining during the next day is 0.2. We also assume that the
fullness of water reservoir behaves randomly and that it depends only on the previous
value of itself. The probability that the fullness of water reservoir will not change is
0.9.

The water level stochastically depends on the Rain variable and on the
ReservoirFullness variable as follows: If the reservoir is full, the rain causes higher
water levels more likely, not raining causes lower water levels more likely. In the
opposite case, when the water reservoir is not full, we let the rain have exactly opposite
influence on water level. All relevant probabilities were set to 0.9 or 0.1 respectively.
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3.2 Telephone

The previous experiment is over a fixed number of variables and cannot be scaled
over different number of variables. That is why we introduce the next experiment.
Telephone (or Chinese whispers in British English) is a game played around the world,
in which one person whispers a message to another, the message passed through a line
of people until the last player announces it to the entire group. In our experiment we
represent each player by a variable. First player generates random messages consisting
of one 0 or one 1 with probability 50% at each time step. Other variables (players)
copy message from previous player at each time step. Last player in a row is our
agent. His task is to tell what the value of previous variable was at previous time
step. The agent can tell the answer through action and it gets reward 1 whenever it
answers correctly and reward 0 if it answers incorrectly.

To test how our algorithm scales with increasing number of variables we tried
this experiment multiple times with various number of players. To test that agent
is capable of using hidden variables and then learn the structure we made every
second variable unobserved. Which means that agent does not receive information
from previous player but instead it observes value of second last player. The correct
strategy for the agent is remembering what the message is (in a hidden variable) and
then answering it two time steps later.

In our first setup we assumed that the model behaves deterministically - players
forward messages without errors. If i-th variable is observable then its value at time
t+ i− 1 equals the value of first variable at time t.

We tested the telephone structure with 3,5,7, 9 and 11 variables. We also tested
non-deterministic variant of this experiment. If i-th variable is observed at time step t
then the same value is observed in i+2-th variable with probability 0.85 and opposite
value with probability 0.15 at time step t+ 2.

We expected that successfully learned structures should contain arrows from i-th
variable in one time slice to i+ 1 in the next time slice, but possibly with permutated
hidden variables and with values 0 and 1 flipped and with unnecessary arrows. To our
surprise the program found other models correctly representing the situation. They
were composed of several variables with XOR-like behavior with arrows inside one
time slice which were used to transfer information in the opposite direction of the
arrow.

3.3 Practical note

Metropolis-Hastings algorithm can be used to create Markov chain of samples from
any distribution which one knows up to scaling constant. This is used in our work
to sample Markov chain of structures which are sampled according to P (G|history).
Despite nice theoretical properties, mixing time is also very important property in
practice.

Consider that Metropolis-Hastings algorithm compares structures G1 and G2. The
typical probability of observation given structure G1 is 0.55. The structure G2 per-
forms slightly worse and typical probability of observation is 0.50. Then assuming
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that history consist of 800 observations, the ratio
P (history|G1)/P (history|G2) would be equal to 0.55800/0.50800 = 1033. The correct
conclusion is that structure G2 is 1017 times worse that G1. Although structure G1

might be much better than G2, it could still be only local optimum and it could be
necessary that the Markov chain of structures go to G2 and then by modification of G2

it will go to some structure which performs even better than G1. Hence even though
the stationary distribution of this Markov chain follows P (G|history), it could take
1017 steps until the chain moves from local optimum to a structure with 5% smaller
observation probabilities.

To decrease the mixing time we replaced P (G|history) by P (G|history)
12
800 which

intuitively means that we take probabilities of 800 observations as if that were proba-
bilities only of 12 observations. This decreased mixing time to reasonable values while
preserving the property that the Markov chain stays in good structures for most of
the time.

3.4 Comparing the results

We compared the theoretically computed entropy of model generating data against
the approximate log-likelihood of best structure reported by the algorithm. The
reported log-likelihood of selected structure can be overfitted and choosing the best
structure could cause that the most overfitted structure is selected. To see how big
this influence is, we learned again the parameters on the best structure now for 2000
time step. The result is in column val. data in table 1. Column best shows what
log-likelihood was reported during learning the parameters for given structure on
800 observations. Column limit shows what is the log-likelihood of data given the
generating model.

Column time shows how many structures the program tried before model exceeded
specified log-likelihood. The specified log-likelihood depends on complexity of the
environment. It is equal to (2 ∗ limit + trivialLimit)/3 where trivialLimit is log-
likelihood of structure without arrows.

In our experiments, the agent at first doesn’t know what actions to take to get
reward. So we expected that agent will randomly get reward 1 with probability 0.5 and
reward 0 with probability 0.5. Hence the average amount of reward received will be
for some time around 0.5. The chance to get reward increases after the search through
possible structures finds necessary arrows first time. The experiments confirmed this
conjecture. To exclude this initial randomness from table we measured the time when
the agent started collecting rewards. This is shown in column rw start and then we
averaged the rewards from that point onwards in column rw.

We started all experiments 20 times. Results in table 1 are averages from all the
runs. However However in some cases the program did not find the structure which
exceeded specified log likelihood in given time limit (which is 1500 structure changes).
Hence in some cases we did not have values to average in the column time. In the
column f (as fail) we report the number of such cases. The column time reports the
average of all other cases.

The column r rw shows the maximal fraction of reward collected by best structure.

Robert Brunetto, Marta Vomlelová

21



The column r ll shows the fraction of reward collected by structure with best log-
likelihood. The maximal possible value in the last two columns is 1. However in
non-deterministic case the expected value in the non-deterministic case for the best
possible action selection policy is 0.85.2

#vars limit best val. data time rw start rw f r rw r ll
floods

3 -1.5 -1.3 -1.53 1.12 - - 0 - -
telephone

3 -1.00 -1.0 -1.01 78.05 49.9 0.88 0 1.00 0.99
5 -1.00 -1.0 -1.02 235.0 87.0 0.87 0 1.00 0.99
7 -1.00 -1.3 -1.70 586.2 321.1 0.67 1 0.94 0.88
9 -1.00 -1.8 -1.87 450.8 536.4 0.71 0 0.88 0.74
11 -1.00 -2.3 -2.55 646.4 872.1 0.84 1 0.78 0.73

nondeterministic telephone
3 -1.61 -1.4 -1.62 31.79 25.6 0.71 0 0.87 0.86
5 -2.22 -2.1 -2.32 451.4 179.9 0.64 0 0.87 0.82
7 -2.83 -2.9 -3.19 392.1 311.2 0.58 0 0.85 0.74
9 -3.44 -3.8 -4.13 598.1 501.6 0.57 2 0.81 0.66
11 -4.05 -4.2 -4.56 603.7 1006.6 0.52 1 0.65 0.52

Table 1: Results of experiments

3.5 Interpretation of results

You can see that the best model reported by the algorithm is slightly overfited when
compared on validation data (columns best vs. val. data). But even though learned
models perform well on validation data. You can compare column val. data with
column limit to see that learned models are similar to models generating data.

Sadly, time needed to learn the model grows with number of variables. As can
be seen from the table, the time before good model appeared and time when the
agent started collecting rewards grows with number of variables (columns time and
rw start).

The amount of reward the agent would collect when using learned model (column r
rw) is surprisingly high. But the amount of reward that agent receives during learning
r ll is better than random but still far from perfect. This is caused by random changes
of structure which are not always good but sometimes bad and hence cause geting
smaller reward.

2Values 0.86 and 0.87 imply that some overfitting did happen. Agent most certainly found right
structure and policy, then maximization over them selected the case in which the agent was most
lucky.
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3.6 Best likelihood vs. best reward

The experiments confirm that algorithm is usable in some environments. Found
models should converge to models with high likelihood.

Even our simple experiments show significant difference between best reward col-
lecting structures and highest likelihood structures (columns r rw and (t ll)). This
can be easily explained: The complete model is not required to be known in order to
select right action in these experiments.

It seams that making the model better cannot make any harm. But suppose the
following scenario: The agent is maximizing the likelihood of model. It can rise to
local or global optimum or it can get stack in a space of models with similar or equal
likelihoods. We even believe that there could exist models which are equally likely or
almost equally likely as data generating model. (Imagine the telephone experiment
in which each player flips the message for an instance.)

If the agent learns model with switched values of hidden variables it won’t make
any change. But in other experiments it could happen that two or more models are
equally likely but using one leads to greater reward than using the other.

Unfortunately approximations will select only few of high-likelihood models and
can miss other high-likelihood model. When the agent chooses action according to
model with high likelihood it does not necessarily imply that it will also get high
reward.

This simple debate shows that learning reward yielding models rather than high
likelihood models is also important. We consider this as our future work.

3.7 Conclusion and future work

Mixtures of products of Dirichlets can be successfully utilized to learn the parameters
of DBN describing the partially observable environment. The Metropolis-Hastings
algorithm can be used to switch between structures and search for the best ones.
The experiments we performed show encouraging results and that this approach is
applicable and that it can be used in reinforcement learning.

The overall performance depends on several parameters set by user and we do not
give an answer to how these parameters should be tuned.

Namely the following ones (which were set during experiments to following val-
ues): The number of samples in the mixtures of products of Dirichlets (100), the time
for learning parameters of each structure (800), the constant from section 3.3 balanc-
ing mixture time with quality of learned structures (12), the prior distribution over
structures (P (G) ∝ 0.85#parameters), proposal function q from Metropolis-Hastings
algorithm (uniform probability between structures differing by one edge).

We expect that after tuning the mentioned parameters, even better results could
be reached.3 However, adapting these parameters automatically during the learning
process would be much more interesting. We consider this as our future work.

3We consider our implementation just a proof of concept. We assume that by a more careful
implementation of approximations from [3] the program could be speeded up significantly.
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Our approach to learning structures of partially observable dynamic environments
is also innovative by the fact that it is online. It doesn’t need all observations to be
known before the program is started and actual model can be used any time to select
actions.

The experiments shows not only usability and scalability of proposed approach
but we also discuss interesting phenomenon that highest likelihood model needs not
to be the best ones for action selection. This might be related but is not equivalent
to well known exploration-exploitation dilemma.
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Abstract

We aim at redesigning the hybrid fuzzy classifier proposed in [8] that joins
together probabilistic inference with classical Wang-Mendel fuzzy rule bases.
We will profit from coherent probabilistic fuzzy IF-THEN rules, as already de-
scribed in [3], with a novel elicitation strategy based on a new learning method-
ology. This will lead us to propose a probabilistic fuzzy rule based classification
algorithm. The methodology for constructing and drawing inferences from a
probabilistic fuzzy rule based classifier guarantees the global coherence of the
probability evaluations and allows to take into account potentially imprecise
(lower-upper) probabilistic conclusions. The proposed classification algorithm
will be tested on a doping alert problem and compared with two other fuzzy
IF-THEN rule based classifiers on artificial datasets.

Keywords: Probabilistic fuzzy system, probabilistic fuzzy IF-THEN rule based
classifier, coherent conditional probability

1 Introduction

This paper is a first proposal for constructing hybrid probabilistic fuzzy classifiers
based on the coherent conditional probability paradigm. Due to space limitations,
our goal here is to sketch the main steps to reach the goal, leaving implementation
details to future contributions.

Conciliation between probability and fuzzy theories has been largely debated in
literature and several approaches have been proposed, leading to a plethora of different
hybrid methodologies (see, e.g., [10, 11, 12, 13, 14, 16, 17]).
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Even though the question of consistence with a framework of reference is of promi-
nent importance for an hybrid methodology to produce meaningful results, the exist-
ing proposals do not seem to pay particular attention to this fact.

In the recent past the two theories have been consistently joined together thanks
to the Coletti & Scozzafava representation of fuzzy sets through coherent conditional
probabilities (see, e.g., [5, 6, 7]). Hence, it is possible to complete the aforementioned
hybrid models by integrating them through probabilistic techniques, all maintaining
consistence with the coherent conditional probability framework.

In particular, we focus on classification problems where both uncertainty and
vagueness are present. A prototypical real problem of this kind is the doping di-
agnosis, or better “alert”, where a claim on the suspect use of forbidden drugs by
a non-professional athlete must be performed. Indeed, the doping alert problem is
characterized by the presence of linguistic descriptions of some attributes (such as in-
creasing muscles, severe headaches, high blood pressure, and so on) together with the
possible absence of a specific test (the so-called “gold standard”) on some quantitative
feature.

The paper sketches a procedure to build a probabilistic fuzzy IF-THEN rule based
classifier starting from a training set of examples, each endowed with a linguistic class
label. Differently from other proposals present in the literature (see, e.g., [8]), our
method uses the training set also to estimate the membership functions of fuzzy
antecedents and consequents of IF-THEN rules. In particular, all the probabilistic
evaluations that are produced during the construction phase are coherent conditional
probabilities. Once the rule based classifier is built, the paper discusses its use in a
classification task starting from an instance whose description is either quantitative
(crisp) or linguistic (fuzzy). The proposed classification algorithm is first applied to
a doping alert problem showing its good robustness with respect to the choice of the
t-norm used to realize fuzzy operations. Then it is compared with the Wang-Mendel
classifier and with the classifier described in [8] in a classification task on artificial
datasets.

The paper is organized as follows. Section 2 introduces the main tools and the
theoretic interpretation of probabilistic fuzzy IF-THEN rules. Section 3 specifies the
practical construction of the rule base. Section 4 describes the reasoning mechanism,
dividing the situations where the new case to classify is expressed by crisp or fuzzy
attribute values. Section 5 illustrates an application to a doping alert problem and
some preliminary results on an empirical study, finally, Section 6 concludes by giving
some outline on future developments.

2 Preliminaries

In line with Coletti & Scozzafava interpretation [5, 6, 7], we intend a generic fuzzy set
connected to a linguistic characteristic ϕ of a random variable (r.v.) X with range χ,
as a couple of the form

A?ϕ = (EA?
ϕ
, µA?

ϕ
(x)) (1)
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where EA?
ϕ

denotes the Boolean event “You claim that X has property A?ϕ”, while
µA?

ϕ
(x) : χ → [0, 1] is the associated membership function intended as the coherent

conditional probability µA?
ϕ

(x) = P (EA?
ϕ
|X = x) and expressing the (subjective)

probability of classifying with linguistic label A?ϕ an instance showing the crisp value
x for the r.v. X. Let us recall that every assessment P (EA?

ϕ
|X = x), for x ∈ χ,

ranging in [0, 1] and such that P (EA?
ϕ
|X = x) = 0 if EA?

ϕ
∧ (X = x) = ∅ and

P (EA?
ϕ
|X = x) = 1 if (X = x) ⊆ EA?

ϕ
, is a coherent conditional probability [5]. In

the sequel we denote with Fχ the set of all fuzzy sets on χ according to (1) and we
avoid to explicitly write the linguistic characteristic ϕ of a fuzzy set in order to have
a lighter notation.

Instances of the classification problem are described by a attributes, i.e., by r.v.
X1, . . . , Xa which are supposed (at present stage) to be logically independent and so
the random vector (X1, . . . , Xa) has the Cartesian product χ1 × . . . × χa as range.
For each attribute Xi, i = 1, . . . , a, classification instances - also named profiles - can
show either crisp xi ∈ χi or fuzzy A?i ≡ (EA?

i
, µA?

i
(xi)) ∈ Fχi

values.
In the following we will use bold letters to denote multidimensional quantities,

hence the random vector of attributes will be denoted as X = (X1, . . . , Xa), x =
(x1, . . . , xa) will indicate a crisp point in its range χ1× . . .×χa, while B? a fuzzy set
in Fχ1×...×χa

with membership function µB?(x).
Due to the vagueness in the classification task, we consider class labels C?j , j =

1, . . . , d, as fuzzy linguistic labels, hence we operate as in Mamdani-type fuzzy sys-
tems. In general, classes C?j refer to an output variable Y with range Υ, where it can
be Y = X and so Υ = χ1 × . . .× χa. Since, in general, it is not easy to determine an
output variable Y that can be used as target of the classification and that is distinct
from X , in the present paper we assume Y ≡ X, thus linguistic class labels are
denoted as C?

j , j = 1, . . . , d, since they belong to Fχ1×...×χa
.

Probabilistic fuzzy classifiers are composed by a set of rules that have the following
general structure [12]:

IF A?
i THEN C?

j with probability wj|i, j = 1, . . . , d, (2)

where A?
i is an “antecedent” fuzzy set for the random vector of attributes X =

(X1, . . . , Xa), i.e., A?
i ∈ Fχ1×...×χa , and wj|i are probabilities of the consequent C?

j

conditioned to antecedent A?
i .

Under the interpretation of fuzzy sets in terms of coherent conditional probabilities
as stated in equation (1), given any (finitely additive) probability π on an algebra of
χ for which µA? satisfies some suitable restrictions of measurability and setting

P (EA?) =

∫
µA?dπ, (3)

where the integral is an abstract Stieltjes integral, the assessment {µA? , π, P} is coher-
ent. In particular, if π is countably additive and defined on a σ-algebra, the definition
above exactly coincides with the “probability of a fuzzy event” as introduced by Zadeh
[19].

In our context, assuming the joint probability distribution for the random vector of
attributes X to be expressed by the distribution function F (x), provided P (EA?

i
) > 0,
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we get

wj|i = P (EC?
j
|EA?

i
) =

P (EC?
j
∧ EA?

i
)

P (EA?
i
)

=

∫
χ1×...×χa

µC?
j
(x)�t µA?

i
(x)dF (x)∫

χ1×...×χa
µA?

i
(x)dF (x)

(4)

where �t is any t-norm that guarantees overall coherence. Concerning this last point
(see [5]), coherence is guaranteed only by adopting a t-norm in the Frank’s class:

x�t y =





min{x, y} if t = 0
xy if t = 1
max{0, x+ y − 1} if t = +∞
logt

(
1 + (tx−1)(ty−1)

(t−1)

)
otherwise

t ∈ [0,+∞]. (5)

The choice of the parameter t is a degree of freedom in the system so a sensitivity
analysis by varying t should be performed.

3 Rule base construction

The construction of rules like (2) is the core of the classifier, and the crucial point
is the choice of the fuzzy sets for the antecedents and for the consequents. Once
they have been built, conditional probabilities (4) can be estimated either directly by
Monte Carlo techniques or through an estimation of the joint probability distribution
F (x).

In literature several techniques, like genetic algorithms, fuzzy-neuro systems, para-
metric estimations and so on, for elicitation of the membership functions µA?

i
(x) and

µC?
j
(x) have been proposed. We chose a fully non parametric approach, relying on a

supervised learning procedure carried on a training set

T S = {(x1, c1), . . . , (xn, cn)}, (6)

where the j-th instance in the training set has attribute description xj and a class
cj . Classes cj are assumed to be linguistic labels belonging to a finite set C =
{C∗1, . . . ,C∗d} and attached by a field expert: for each instance in T S, the expert
chooses the label with “highest degree of membership” according to him. Hence,
class labels correspond to fuzzy sets whose membership needs to be estimated. For
the moment, we limit ourselves to consider training sets with crisp descriptions for
all the attributes, hence xi ∈ χ1 × . . .× χa, i = 1, . . . , n.

Concerning the elicitation of the antecedents membership functions µA?
i
(x), we

chose to estimate marginal membership functions

µA?
k.c

(xk), k = 1, . . . , a, c = 1, . . . , d, (7)

defined on each attribute range χk, for each consequent label C∗c , and then to aggre-
gate them through a proper t-norm in the Frank’s class:

µA?
i
(x) = µA?

1.ci1
(x1)�t . . .�t µA?

a.cia
(xa), cij ∈ {1, . . . , d}, j = 1, . . . , a. (8)
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Note that the number of potential antecedents is da, an hence the number of different
rules is r ≤ da since for some combination of marginal membership functions in (8)
the resulting membership can be identically null: this happens whenever at least one
membership µA?

k.cij
(xk) has a disjoint support with respect to some other marginal

membership of a different attribute. We neglect antecedents with null membership
because we want to base our system only on the training set and in such config-
urations our sample does not give us any valuable information. The deepening of
the admissibility also of antecedents with null memberships is demanded to a future
contribution.

Note that, for a fixed attribute range χk, we have a marginal membership µA?
k.c

(xk)
for each consequent label C?

c because, since the interpretation of the membership
function as

µA?
k.c

(xk) = P (EA?
k.c
|Xk = xk), (9)

it can be directly estimated through conditional relative frequencies on T S, and the
only discriminant information that can be automatically used are the consequent
labels. Hence, we will have a membership for each consequent label on each attribute
variable domain, with a total number of a · d membership functions.

A “rough” but direct way for estimating (7) is by discretizing - if not yet finite -
the range χk in a finite number of cells hk1, . . . , hknk

(if the r.v. Xk is real such cells
are intervals) and for each class to count the relative frequencies:

µ̃A?
k.c

(xk) =
]{(xt, ct) ∈ T S | (xt)k ∈ hki and ct = C∗c}

]{(xt, ct) ∈ T S | (xt)k ∈ hki}
∀xk ∈ hki, (10)

where (xt)k denotes the k-th component of xt with (xt, ct) ∈ T S.

These estimations lead to stepwise membership functions that, by construction,
for each dimension k ∈ {1, . . . , a} form a proper (or strong) fuzzy partition:

d∑

c=1

µA?
k.c

(xk) = 1 ∀xk ∈ χk. (11)

Such membership functions can be smoothed with different techniques. A simple
method that we propose is to replace the crisp partitions Hk = {hk1, . . . , hknk

}, k =
1, . . . , a, with proper fuzzy grid partitions Hk = {H?

k1, . . . ,H
?
knk
} and consequently

approximate the membership functions (7) for xk ∈ χk by

µ̂A?
k.c

(xk) =

kn∑

i=1

(∑
{(xt,ct)∈T S and ct=C?

c}
µH?

ki
((xt)k)

∑
{(xt,ct)∈T S} µH?

ki
((xt)k)

)
µH?

ki
(xk). (12)

Similar considerations can be done to estimate the consequents’ membership functions
µC?

j
(x), but now by partitioning the range χ1 × . . .× χa either by the crisp partition

H = H1 × . . . ×Ha or by the proper fuzzy partition H = H1 × . . . × Ha and setting
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for x ∈ χ1 × . . .× χa

µ̃C?
j
(x) =

]{xt ∈ T S|xt ∈ h and ct = C?
j}

]{xt ∈ T S|xt ∈ h} ∀x ∈ h ∈ H, (13)

µ̂C?
j
(x) =

∑

K?∈H

(∑
{(xt,ct)∈T S and ct=C?

j }
µK?(xt)

∑
{(xt,ct)∈T S} µK?(xt)

)
µK?(x). (14)

If membership estimations through frequencies (10) and (13) are used, also the
joint probability distribution F (x) can be approximated by the relative frequencies
of the training set on H so that the probabilities of fuzzy events P (EC?

j
∧ EA?

i
) and

P (EA?
i
) involved in (4) can be approximated by setting

ph =
]{xt ∈ T S|xt ∈ h}

]{xt ∈ T S}
∀h ∈ H, (15)

and then

P̃ (EC?
j
∧ EA?

i
) =

∑

h∈H

(
µ̃C?

j
(x)�t µ̃A?

1.cj
(x)1 �t . . .�t µ̃A?

a.cj
(x)a · ph

)
(16)

P̃ (E?Ai
) =

∑

h∈H

(
µ̃A?

1.cj
(x)1 �t . . .�t µ̃A?

a.cj
(x)a · ph

)
, (17)

respectively, and consequently weights (4) become

w̃j|i =
P̃ (EC?

j
∧ EA?

i
)

P̃ (EA?
i
)

. (18)

On the other hand, whenever approximations (12) and (14) are adopted, probabilities
of fuzzy events in them can be approximated through Monte Carlo techniques and,
consequently, estimates of the conditional probabilities (4) directly computed as

ŵj|i = P̂ (EC?
j
|EA?

i
) =

∑
x∈T S

(
µ̂C?

j
(x)�t µ̂A?

1.cj
(x)1 �t . . .�t µ̂A?

a.cj
(x)a

)

∑
x∈T S

(
µ̂A?

1.cj
(x)1 �t . . .�t µ̂a.A?

cj
(x)a

) . (19)

Note that the latter quantity does not require estimation of the joint probability
distribution F (x). All the conditional probabilities introduced so far can be easily
shown to be coherent.

4 Reasoning

Once probabilities of consequents given the antecedents wj|i are estimated either
through w̃j|i or ŵj|i as in (18) or (19), it is possible to classify a new case. For the
sake of simplicity, in the following we denote with a bullet • estimates computed either
through relative frequencies or their smoothed versions, hence, e.g., w•j|i stands either

for w̃j|i or ŵj|i, indifferently.
First of all we have to distinguish if the new case has a crisp or fuzzy description,

as detailed in the following two subsections.
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4.1 Classification with crisp inputs

In the former case, whenever we have xnew ∈ χ1 × . . . × χa, we can compute the
activations µ•A?

i
(x), i = 1, . . . , r, of the various rules (2) that represent the “degree

of fitness” of the new case with respect to the various antecedents.
Two approaches are now possible. The first one is inspired to the Wang-Mendel

generalization given in [8], according to which we foremost select the rules with max-
imum activation

I = arg max
i=1,...,r

µ•A?
i
(xnew), (20)

and subsequently we classify through the maximum weight

C?
new = arg max

j=1,...,d
{w•j|i|i ∈ I}. (21)

In general the solution of the above maximization could not be unique and in such a
case, either the new instance is not classified since uncertainty remains on the final
label, or an imprecise classification with more then one plausible label is allowed.

The second approach is inspired to the Takagi-Sugeno reasoning generalization
given in [18]. In this case we want that all the rules contribute to the classification.
Fixing a consequent C?

j , for each rule we can combine its weight with its activation
and, by assuming the conditional independence of claimed consequent EC?

j
from the

observation (X = xnew) given the claimed antecedent EA?
i
, we obtain

w•j|i · µ•A?
i
(xnew) = P •(EC?

j
|EA?

i
) · P •(EA?

i
|X = xnew) (22)

= P •(EC?
j
∧ EA?

i
|X = xnew).

The conditional independence assumption adopted to obtain (22) is quite natural in
our context, since the construction of the fuzzy rule based classifier is founded on the
idea that rules are fired by the antecedents, so, once a specific antecedent is claimed
the specific value observed xnew does not matter.

Assuming the almost sure exhaustiveness of the r antecedents built according to
Section 3, the disjunction of all combinations like (22) covers all possible combinations
of the fixed claimed consequent EC?

j
and rules, so that the probabilities

P •
(

a∨

i=1

(EC?
j
∧ EA?

i
)

∣∣∣∣∣X = xnew

)
j = 1, . . . , d (23)

can be use to classify the new case. Let us stress that (23) is not uniquely determined
by the membership functions and the distribution on X: in general, coherence implies
that the possible values form a closed interval. Hence, lower p

j|xnew
and upper

bounds pj|xnew, j = 1, . . . , d, for (23) can be assessed by coherent extension - e.g.,
through automatic procedures like that presented in [2] - of the whole conditional
probability assessment

{
P •(EC?

j
∧ EA?

i
|X = xnew), µ•A?

k.cj

(xnew)k, µ
•
C?

j
(xnew)

}
, (24)
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j = 1, . . . , d, i = 1, . . . , r, k = 1, . . . , a.
The d intervals of coherent values [p

j|xnew
, pj|xnew] do not determine, in general,

a dominant consequent label C?
new. Hence, also in these cases we can just discard

the surely dominated labels, obtaining an imprecise classification.

4.2 Classification with fuzzy inputs

In the second input possibility, whenever we have B?
new ∈ Fχ1×...×χa

, we cannot
compute exact activation values µ∗A?

i
(x) but we can resort to some similarity grading

�, e.g., like those proposed in [1], select the group of rules with antecedents A?
i more

similar to the input B?
new

Is = {i ∈ {1, . . . , r}| 6 ∃l ∈ {1, . . . , r} s.t. (A?
i ,B

?
new) ≺ (A?

l ,B
?
new)} , (25)

and then proceed with classification through weight maximization like in (21).
Note that with this kind of input the rule aggregation in Takagi-Sugeno style as

done in (22) or (23) is not possible since we cannot use activation levels.

5 Empirical study

The final goal of the present study is to implement the whole classification method
described in previous sections in R software [15].

Due to space limitations we show only some preliminary results focusing on datasets
with crisp attribute descriptions, both in the training set and in the test set, and mem-
bership estimations performed through frequencies approximations. We first consider
the following example in which our method is applied to a doping alert problem.

Example 1 A medical center has collected 2000 profiles of non-professional athletes,
the half of which have been claimed to use illegal doping drugs. The profiles are
described by means the variables BMI = “percentage of body mass increment” and
PV C = “percentage of packed cell volume”. Figure 1 shows the plot of the collected
dataset together with the corresponding class “Doped” (in red) and “Undoped” (in
yellow).

We apply our method to the doping dataset executing a 5-fold cross-validation,
where in each fold we select 1600 elements, 800 from each class, to form the training
set T S, leaving the remaining 400 as test set. Table 1 shows average percentage
of correctly classified instances varying the parameter t of the Frank’s t-norm used
to realize fuzzy operations. Results contained in Table 1 highlight that the proposed
algorithm has a good robustness with respect to the choice of the parameter t, reaching
the best performance for t = e.

In the rest of this section, the parameter t of the t-norm is fixed to t = e since,
as shown in Example 1, the algorithm presents a good robustness with respect to
the choice of the t-norm to realize fuzzy operations. Moreover, the best results are
obtained for t = e.
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Figure 1: Plot of the doping dataset

t Avg. CCI
0 80.20%± 1.77%
1 79.85%± 2.24%

+∞ 80.25%± 1.25%
e 81.60%± 1.48%

Table 1: Sensitivity analysis for t

We compare our probabilistic fuzzy rule based classifier with Wang-Mendel classi-
fier and with the one discussed in [8]. At this aim we randomly generate four datasets
(namely A, B, C and D) of 3000 examples, divided in three groups of size 1000, each
for a different class label. For each class label, the 1000 examples are generated with
a bivariate normal distribution with mean µ̄, whose marginal distributions are inde-
pendent and with the same standard deviation σ, the latter being fixed for the three
classes. The characteristics of the generated datasets are reported in Table 2, while
the plots of datasets A and C are reported in Figure 2. In [8] also a fifth dataset E
is generated: we decided not to report it since it is not particularly meaningful in a
comparison test, as the classes result to be practically indistinguishable.

Dataset µ̄ of class 1 µ̄ of class 2 µ̄ of class 3 σ
A (10, 10) (10, 30) (30, 10) 9
B (10, 10) (10, 20) (20, 10) 9
C (10, 10) (10, 30) (30, 10) 12
D (10, 10) (10, 20) (20, 10) 12

Table 2: Structure of the generated datasets

For each dataset, we execute a 5-fold cross-validation. So, in each fold we select
2400 elements, 800 from each class, to form the training set T S, leaving the remaining
600 as test set.

The following Table 3 lists the average percentage of correctly classified instances
of our method (CPP), compared with the performance of the Wang-Mendel algorithm
(WM) and that of the de Melo-Lucas-Delgado algorithm (MLD).

According to Table 3, CPP always performs better than WM but its performance
is slightly worse than that of MLD. We conjecture that the better performance of MLD
algorithm is essentially determined by the particular choice of membership functions
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Figure 2: Plots of datasets A and C

Dataset Alg. Avg. CCI Dataset Alg. Avg. CCI

A
WM 62.13%± 13.38%

B
WM 47.97%± 7.55%

MLD 81.10%± 4.59% MLD 67.00%± 2.26%
CPP 77.33%± 1.61% CPP 57.87%± 1.73%

C
WM 59.87%± 6.88%

D
WM 34.97%± 9.07%

MLD 69.13%± 5.58% MLD 60.00%± 3.03%
CPP 65.40%± 0.28% CPP 52.37%± 0.47%

Table 3: Performance of algorithms WD, MLD and CPP

which is done “a priori”: in such a method, indeed, Gaussian membership functions
are chosen and their choice seems to be particularly fitted to the given datasets. Our
algorithm does not require a preliminary assessment of membership functions, thus
is evidently more general and versatile.

6 Conclusion

This paper is a first contribution to design a probabilistic fuzzy rule based classifier in
the setting of coherent conditional probabilities. We feel that the proposal could be of
help when applied to real classification problems, as that one of the doping alert, since
the determination of the rules gives an immediate interpretability of the classification
mechanism. Moreover, as the consequents classification labels are fuzzy and endowed
with probabilities evaluations, a richer information is available with respect to purely
fuzzy classifiers.

Due to space limitations, we only provided a sketch of the proposed algorithm
together with some preliminary experimental results and comparisons. Several aspects
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must be deepened, both from a theoretical and a experimental point of view, and they
will be the subject of future publications.

In particular, the following points have to be considered: estimation techniques of
the various membership functions must be refined; aggregation of the different rules
should be enriched with a stochastic mechanism that could be derived by probabilistic
properties of the various computed conditional probabilities of fuzzy sets; a systematic
sensitivity analysis with respect to the choice of the t-norm parameter is needed, and
a complete empirical study, both on artificial and real data, should be carried on.
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Abstract

We propose an interpretation of fuzzy membership as coherent T -conditional
possibility (where T is a continuous triangular norm) regarded as a function of
the conditioning event (possibilistic likelihood) and we check which operations
between fuzzy sets arise in this framework. Since in the literature an interpreta-
tion of the membership as probabilistic likelihood has already been studied, we
provide a comparison between the possibilistic and the probabilistic frameworks.

1 Introduction

Models and tools for jointly handling uncertainty and vagueness have to be performed
in order to deal with problems involving both these aspects. In fact, incomplete,
linguistic and vague information can coexist in real problems, mainly due to the
presence of several heterogeneous sources of knowledge. This fact generates new
problems in probability and statistics, and so many methods and techniques have
been proposed in literature, which combine probability, statistics and fuzzy methods.

Notice that in order to combine uncertain information with vagueness, we need to
refer to notions of coherence, which guarantee an effective tool for controlling global
consistency and ruling the inferential procedures.

We recall that a general inferential problem can be simply seen as an extension of
an uncertainty measure assessment to other events, maintaining consistency with the
framework of reference.

In the probabilistic framework this problem reduces in the simplest case, i.e., when
the likelihood and the prior distribution are completely assessed on the same finite
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space, to Bayes rule. However, the hypotheses of Bayes theorem are usually not
satisfied and so we need to handle generalized Bayesian inferential procedures whose
result is in general not unique, but consists in an interval of coherent values for any
conditional event.

Aim of this paper is to merge in the context of possibility theory both prior un-
certainty quantified by a possibility measure (for instance obtained as upper envelope
of the extensions of a probability related to the range of a different variable [7]) and
the vagueness expressed by fuzzy sets.

The combination of probabilistic uncertainty and vagueness is possible thanks to
the interpretation, given by Coletti and Scozzafava [5, 6], of the fuzzy membership
as a coherent conditional probability. In [11], an analogous interpretation in terms of
coherent lower and upper conditional probabilities has been given.

Now, following the same line, an interpretation of membership function as coherent
T -conditional possibility (where T is a continuous triangular norm) is provided. The
semantic behind this new interpretation follows the one of [5, 6, 11]: for every x
in the range of a variable X, the value of the membership µϕ(x) of a fuzzy set
related to a property ϕ of X is the measure of how much You believe in the Boolean
event “You claim that X has property ϕ” when X = x. One of the main reason
for interpreting the membership as a possibilistic likelihood resides in the semantic
meaning of membership (see [13]).

First of all we check which operations between fuzzy sets arise under the possi-
bilistic interpretation and then a comparison between possibilistic and probabilistic
memberships and their operations is drawn.

As discussed before, our main aim is to make inference starting from a possibility
measure on the algebra spanned by the events {X = x} and a family of possibilistic
likelihoods (the membership functions). In the possibilistic setting, to handle this
procedure it is necessary, first of all, to check whether possibilistic and fuzzy infor-
mation are globally coherent with respect to the chosen definition of conditioning.
Then the general problem of checking coherence and that of making inference need
to be deepened, in order to find relevant results. Thus, we analyse some updating
rules and we discuss their implications in the inferential procedures, also providing a
comparison.

Furthermore we show how to create a collection of possibilistic fuzzy IF-THEN
rules: in particular we discuss how to compute the possibility associated to these rules
and how to propagate coherent intervals, when either the premise or the consequence
is fuzzy. The latter point relies on a notion of inclusion given in [17].

2 Coherent T -conditional possibilities

We refer to the notion of T -conditional possibility (with T a continuous t-norm)
introduced in [1, 10]. Coherence is well-known in probability theory starting from the
famous characterization given by de Finetti [12]. The same notion has been studied
also in other frameworks and in particular in possibility theory (see [10]) by referring
to the axiomatic definition of T -conditional possibility.
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Theorem 1 Let T be a continuous t-norm, G = {E1|H1, . . . , En|Hn} an arbitrary
set of conditional events, and C0 and B the set of atoms and the algebra spanned by
{E1, H1, . . . , En, Hn}, respectively.
For a real function Π : G → [0, 1], the following statements are equivalent:

a) Π is a coherent T -conditional possibility assessment on G;

b) there exists a sequence of compatible systems SΠ
α (α = 0, . . . , k), with unknowns

xαr ≥ 0 for Cr ∈ Cα,

SΠ
α =





max
Cr⊆Ei∧Hi

xαr = T

(
Π(Ei|Hi), max

Cr⊆Hi
xαr

)

[
for all Ei|Hi ∈ G such that max

Cr⊆Hi
ξα−1
r < 1

]

ξα−1
r = T

(
xαr , max

Cj∈Cα
ξα−1
j

)
if Cr ∈ Cα

max
Cr∈Cα

xr = 1

with α = 0, . . . , k, where ξ̄α (with r-th component ξαr ) is the solution of SΠ
α and

Cα = {Cr ∈ Cα−1 : ξα−1
r < 1}, moreover ξ−1

r = 0 for any Cr ∈ C0.

We recall that any unconditional possibility Π(·) can be considered as a coher-
ent T -conditional possibility setting Π(·) = Π(·|Ω), where Ω denotes the sure event.
Moreover, for T = min or a strict t-norm, every coherent T -conditional possibility
assessment can be extended to any new conditional event and the coherent extension
lays in a closed interval (see [10]).

2.1 Possibilistic likelihood

We recall some results proved in [4]:

Theorem 2 Let L = {Hi}i=1,...,n be a finite partition of Ω and E an event. For
every function f : {E} × L → [0, 1] satisfying condition

(L1) f(E|Hi) = 0 if E ∧Hi = ∅ and f(E|Hi) = 1 if Hi ⊆ E
the following statements hold:

i) f is a coherent conditional probability;

ii) f is a coherent T -conditional possibility (for every t-norm T ).

The above result shows a common property between probabilistic and possibilistic
(point) likelihood, so this allows to regard a probabilistic likelihood as a possibilistic
one and vice versa.

Moreover, it emphasizes that no significant property characterizes likelihood as
point function, so in the sequel we call likelihood function any function f : {E}×L →
[0, 1], with L = {Hi}i=1,...,n, a finite partition of Ω, satisfying condition (L1).
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We consider now a finite class F of likelihood functions fj , each defined on {Ej}×
L, for j = 1, . . . ,m, and we study global coherence taking into account also a “prior”
on L in both in the possibilistic and the probabilistic frameworks.

In what follows recall that events in a family E = {Ej}j=1,...,m are logically inde-
pendent if E∗1 ∧ . . . ∧ E∗m 6= ∅, where E∗j stands either for Ej or Ecj .

Theorem 3 Let L = {Hi}i=1,...,n be a finite partition of Ω, E = {Ej}j=1,...,m a set
of logically independent events, and F = {fj}j=1,...,m a set of likelihood functions on
E ×L. Let p and π be a probability and a possibility distribution on L. The following
conditions hold:

i) the assessment {F , p} is a coherent conditional probability;

ii) the assessment {F , π} is a coherent T -conditional possibility (for every contin-
uous t-norm T ).

3 Fuzzy sets as coherent T -conditional possibilities

Following the interpretation of fuzzy sets in terms of coherent conditional probabili-
ties, we give an interpretation based on coherent T -conditional possibilities.

Let X be a (not necessarily numerical) variable, with range CX , and, for any
x ∈ CX , let us indicate by x the event Ax = {X = x}.

Let ϕ be any property related to the variable X and let us refer to the state of
information of a real (or fictitious) person that will be denoted by “You”.

Let us consider the Boolean event Eϕ = “You claim that X has property ϕ”, then
we can give the following definition of fuzzy set E∗ϕ:

Definition 1 Let X be any variable with range CX , ϕ a related property and Π(Eϕ|x),
for x ∈ CX , a coherent T -conditional possibility assessment. A fuzzy subset E∗ϕ of CX
is a pair

E∗ϕ = {Eϕ , µϕ}, (1)

with µϕ(x) = Π(Eϕ|x) for every x ∈ CX .

Then we can interpret the membership function Π(Eϕ|x), for x ∈ CX , as the
measure (in the possibilistic framework) of Your degree of belief in Eϕ, when X
assumes the different values of its range.

It follows from [10] that the lower or upper envelope of a set of membership
functions related to the same property ϕ and the same X is still a membership
function.

3.1 Operations

By following [5], the binary operations of union and intersection and that of comple-
mentation between fuzzy sets, can be directly obtained by using the rules of coherent
T -conditional possibility and the logical independence between Eϕ and Eψ. Notice
that the events Eϕ and Eψ are “usually” logically independent, in particular they are
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logically independent when ψ = ¬ϕ: indeed, we can claim both “X has the property
ϕ” and “X has the property ¬ϕ′′, or only one of them or finally neither of them.
Similarly, Eϕ and Eψ are logically independent in case ψ is the superlative of ϕ.

Let us denote by ϕ ∨ ψ and ϕ ∧ ψ, respectively, the properties “ϕ or ψ”, “ϕ and
ψ” (note that the symbols ∧ and ∨ do not indicate Boolean operations, since ϕ and
ψ are not Boolean objects) and define:

Eϕ∨ψ = Eϕ ∨ Eψ, (2)

Eϕ∧ψ = Eϕ ∧ Eψ. (3)

Let us consider two properties ϕ and ψ related to the same variable X, such that
Eϕ and Eψ are logically independent, and let us consider the relevant fuzzy subsets
E∗ϕ and E∗ψ on CX .

For any given x in CX , the assessment Π(Eϕ ∧ Eψ|x) = v is coherent if and only
if it takes values in the interval

0 ≤ v ≤ min{Π(Eϕ|x),Π(Eψ|x)}. (4)

The inequality above puts in evidence a first difference between the probabilistic and
the possibilistic interpretations, in fact in the probabilistic setting the two bounds
coincide with the Frechet bounds.

In the probabilistic interpretation, fixed the value for the membership function
of the fuzzy intersection, the value for the membership function of the fuzzy union
is uniquely determined, while in the possibilistic interpretation, independently of the
value of Π(Eϕ ∧ Eψ|x), we get a unique value for the fuzzy union which is

Π(Eϕ ∨ Eψ|x) = max{Π(Eϕ|x),Π(Eψ|x)}. (5)

This allows to define fuzzy union and intersection as follows:

E∗ϕ ∪ E∗ψ = {Eϕ∨ψ, µϕ∨ψ}, (6)

E∗ϕ ∩ E∗ψ = {Eϕ∧ψ, µϕ∧ψ}, (7)

with

µϕ∨ψ(x) = Π(Eϕ ∨ Eψ|x), (8)

µϕ∧ψ(x) = Π(Eϕ ∧ Eψ|x). (9)

Finally, denoting by (E∗ϕ)′ = E∗¬ϕ = (E¬ϕ, µ¬ϕ) the complementary fuzzy set of
E∗ϕ, we have

µ¬ϕ(x) = 1− µϕ(x) = 1−Π(Eϕ|x) = Π(E¬ϕ|x), (10)

which is a (possibilistic) likelihhod and so a coherent T -conditional possibility.
Notice that also in this framework, the relation E¬ϕ 6= (Eϕ)c holds, in fact, while

Eϕ ∨ (Ecϕ) = Ω,
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due to the logical independence of Eϕ and E¬ϕ, we have instead

Eϕ ∨ E¬ϕ ⊆ Ω,

so, if we consider the union of a fuzzy subset and its complement

E∗ϕ ∪ (E∗ϕ)′ = {Eϕ∨¬ϕ, µϕ∨¬ϕ}

we obtain in general a fuzzy subsetset of CX .
For two fuzzy subsets E∗ϕ and E∗ψ, corresponding to the random quantities X and

Y , respectively, the following choice for the membership of conjunction and disjunction
is a coherent T -conditional possibility:

µϕ∨ψ(x, y) = Π(Eϕ ∨ Eψ|Ax ∧Ay), (11)

µϕ∧ψ(x, y) = Π(Eϕ ∧ Eψ|Ax ∧Ay), (12)

with the only constraints

0 ≤ µϕ∧ψ(x, y) ≤ min{µϕ(x), µψ(y)}, (13)

µϕ∨ψ(x, y) = max{µϕ(x), µψ(y)}, (14)

under the assumption Π(Eϕ|Ax ∧Ay) = Π(Eϕ|Ax) and Π(Eψ|Ax ∧Ay) = Π(Eψ|Ay).
Notice that the last constraint can be interpreted as a conditional independence

assumption, which is reasonable in this context.

4 Possibility of “fuzzy events”

For simplicity, we refer to variables X with a finite range. First of all, recall that the
concept of fuzzy event, as introduced by Zadeh, is for us an ordinary event of the kind

Eϕ = “You claim that X has property ϕ”.

As stated in Theorem 3, for every (possibilistic) likelihood Π(E|x) and for every
possibility distribution Π(x), the global assessment is coherent. Then by using our
interpretation,

{µϕ(x),Π(x)}x∈CX
is a coherent T -conditional possibility and so it is coherently extendible to Eϕ.

It is easy to see that the only coherent value for the probability of Eϕ is

Π(Eϕ) = max
x∈CX

T (µϕi(x),Π(x)), (15)

which is a generalization of Sugeno integral [16], where T is the continuous t-norm
used for defining the T -conditional possibility.

This leads to the possibility of a “fuzzy event”, which is the counterpart of Zadeh’s
definition of the probability of a “fuzzy event” [18].

Fuzzy Sets through Likelihood in Probabilistic and Possibilistic Frameworks

42



Now let X = (X1, . . . , Xn) be a vector with range CX, where each component Xh

has range CXh . Let F(CX) be a finite family of fuzzy subsets E∗ϕi = {Eϕi , µϕi}, with
i ∈ I, related to the (possibly coincident) components Xi of X, where the events
{Eϕi}i∈I are assumed to be logically independent.

For every joint possibility distribution Π on the events {X = x} = (X1 =
x1, ..., Xn = xn), the global assessment {µϕi ,Π}i∈I is a coherent T -conditional possi-
bility [4].

Moreover, it is easy to prove that setting

Π(Eϕi) = max
xi∈CXi

T (µϕi(xi),Π(xi)),

Π(Eϕi ∧ Eϕj ) = max
(xi,xj)∈C(Xi,Xj)

T (µϕi∧ϕj (xi, xj),Π(xi, xj)),

for any choice of µϕi∧ϕj in the interval defined by (4), the possibility assessment

{µϕi ,Π}i∈I ∪ {Π(Eϕi),Π(Eϕi ∧ Eϕj )}i,j∈I
is still coherent. Furthermore, the extension to Eϕi ∨ Eϕj is uniquely determined by
(5).

The above assessment Π is a coherent T -conditional possibility, so by using the
extension Theorem [10] it can be extended further to any new conditional event A|B
where A,B, with B 6= ∅, are events of the algebra B spanned by {Eϕi}i∈I∪{Ax}x∈CX .
This extension is not unique in general and, in particular, for the events A|B, with
A = Eϕi and B = Eϕj the coherent extension Π(Eϕi |Eϕj ) is 1 if i = j and for i 6= j
it is a solution of the equation

Π(Eϕi ∧ Eϕj ) = T (x,Π(Eϕj )). (16)

Remark 1 As in the probabilistic framework, the values Π(Eϕi |Eϕj ) computed by
the formula above are coherent only when the events Eϕi and Eϕj are logically inde-
pendent, so, for instance the same formula cannot be used for obtaining the coherent
extension of Π to Eϕi |Eϕi which is necessarily 1.

In the case T is a strict t-norm, equation (16) has not unique solution only in the
case Π(Eϕj ) = 0. We notice that for a strict t-norm T , one has Π(Eϕj ) = 0 if and
only if Π(xj) = 0 for every xj ∈ CXj such that µϕj (xj) > 0.

In this case to obtain a unique extension we need to specify the T -conditional
possibility Π(·|B), where B is the logical sum of the events xj ∈ CXj such that
µϕj (xj) = Π(Eϕj |xj) = 0.

In this case, since 1 = Π(B|B) = max
xj⊆B

Π(xj |B), at least one event xj ⊆ B is

such that Π(xj |B) = 1 and so Π(Eϕi |Eϕj ) is the unique solution (see [10, 2]) of the
equation:

Π(Eϕi ∧ Eϕj |B) = T (x,Π(Eϕj |B)),

where Π(Eϕj |B) = max
xj∈CXj

T (µϕj (xj),Π(xj |B)) and similarly for Π(Eϕi ∧ Eϕj |B).

Analogous considerations hold (mutatis mutandis) in case T is the minimum t-
norm.
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5 Possibilistic fuzzy reasoning

A significant problem in fuzzy literature is managing fuzzy rule based systems which
are essentially composed by a set of IF-THEN rules of the form

“IF A THEN B: with a given degree”,

where either the premise A or the consequence B of the rule can be fuzzy sets [14, 15,
17, 19], and the degree could be interpreted as a possibility (or another uncertainty
measure) evaluation.

A typical example consists in a possibilistic fuzzy IF-THEN classifier which aims
at determining the class of Y in {C1, . . . , Ct} to which a data point x = (x1, . . . , xn)
belongs. Let us stress that elements of {C1, . . . , Ct} can be taken either as crisp or
fuzzy classes on CY . This task can be faced introducing a possibilistic fuzzy IF-THEN
classifier formed by a set of rules of the form:

“IF X IS Eϕj THEN Y IS Ck: with possibility πk|j”.

Notice that the values πk|j could be seen as values of degree of inclusion [9].

Example 1 A well-known Italian factory of vintage scooters launched a new model
called Rétro, for which the customer can choose among a fixed number of combinations
of engine sizes and color configurations, elaborated after a preliminary market survey.
Let us denote with S and M the variables “seat color” and “rear-view mirror color”
whose possible values are

CS = {s1 = “black”, s2 = “brown”, s3 = “beige”},
CM = {m1 = “black”,m2 = “white”,m3 = “metal”}.

Thus consider the vector (S,M) whose range is CS × CM .
Rétro 150cc is produced only with the metal rear-view mirror and not with the

black seat, Rétro 125cc is produced not with the black seat, while Rétro 50cc has no
restriction on combinations.

The marketing division of the factory singled out the variable M as an indicator of
a scooter which is more juvenile or more vintage and aims at determining the impact
of variable S on M . Concerning variable S, the properties l = “light” and d = “dark”
are considered, while for M the properties j = “juvenile” and v = “vintage” are taken
into account together with the following membership functions:

CS s1 s2 s3

µl 0 0.2 1
µd 1 0.8 0

CM m1 m2 m3

µj 1 0.8 0.2
µv 0 0.5 1

The production will start in two months, so a quantification of joint uncertainty
on (S,M) is not available at present moment.

Let E be the variable “engine size” whose set of possible values is

CE = {e1 = “50cc”, e2 = “125cc”, e3 = “150cc”}.
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Since CE exhausts the possible engine sizes of all models of scooter produced by the
factory, a probabilistic quantification of uncertainty on E can be obtained through the
selling frequencies of the last year, obtaining

P (e1) = 60%, P (e2) = P (e3) = 20%.

It is easy to prove that the partition of the sure event determined by (S,M) is
weakly logically independent (see [7]) of the partition determined by E, thus the upper
probability induced by P on the algebra generated by (S,M) is a possibility measure
having the following distribution:

M ↓ S → s1 s2 s3

m1 0.6 0.8 0.8
m2 0.6 0.8 0.8
m3 0.6 1 1

Taking T = min, simple computations allow to determine the following possibilistic
fuzzy IF-THEN rule base linking variable S to variable M :

• IF S IS “light” THEN M IS “juvenile”: Π(Ej |El) = 0.8,

• IF S IS “light” THEN M IS “vintage”: Π(Ev|El) = 1,

• IF S IS “dark” THEN M IS “juvenile”: Π(Ej |Ed) ∈ [0.8, 1],

• IF S IS “dark” THEN M IS “vintage”: Π(Ev|Ed) ∈ [0.8, 1].

More generally, we start from a list of IF-THEN rules (weak implications) forming
a set D of (ordered) pairs (Eϕ, Eψ) of fuzzy subsets, with degree

I(Eψ, Eϕ) = Π(Eϕ|Eψ)

of fuzzy inclusion (of Eψ in Eϕ) equal to 1, and call any such set a Maximum Degree
of Fuzzy Inclusion set, or MDFI-set for short.

Given D, the problem is to find further pairs of fuzzy subsets in F(CX) with
maximum degree of fuzzy inclusion (or MDFI-pairs).

Even if for a coherent assessment on an arbitrary set of conditional events G its
enlargement to a family G′ ⊃ G is generally not unique, for some events we can have a
unique coherent extension which allows to define the important concept of entailment.

A MDFI-set D entails the pair (Eϕ, Eψ) of fuzzy sets with degree belonging to an
interval [π′, π′′] if the coherent value for Π(Eψ|Eϕ) ranges in [π′, π′′]. In particular, the
MDFI-set D strictly entails the pair (Eϕ, Eψ) if the only coherent value for Π(Eψ|Eϕ)
is π′ = π′′ = 1.

In [8, 9] it has been shown that the strict entailment satisfies the inferential rules of
default logic. In general, concerning the IF-THEN rules with possibility belonging to
an interval [π′, π′′], where the extremes are lower and upper T -conditional possibilities,
we could consider a set D including all these rules and check the inferential properties
satisfied by the entailment relation as done in [3, 9].
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Abstract

Coordinates of belief functions on two-element frame of discernment are de-
fined using homomorphisms of Dempster’s semigroup (the algebra of belief func-
tions with Dempster’s rule). Three systems of the coordinates (h-f , h-f0, and
coordinates based on decomposition of belief functions) are analysed with a fo-
cus to their homomorphic properties. Further, ideas of generalisation of the
investigated systems of coordinates to general finite frame of discernment are
presented.

1 Introduction

Belief functions (BFs) are one of the widely used formalisms for uncertainty rep-
resentation and processing that enable representation of incomplete and uncertain
knowledge, belief updating, and combination of evidence. They were originally intro-
duced as a principal notion of the Mathematical Theory of Evidence [14], which is
often call the Dempster-Shafer Theory.

Algebraic analysis of belief functions was originally motivated by creation and
analysis of combinational structure of expert systems in late 80’s [10, 11]. The orig-
inal algebra of belief functions with application of Dempster’s rule of combination
(Dempster’s semigroup) was defined by Hájek and Valdés on two-element frames of
discernment with elements: Hypothesis holds, Hypothesis does not hold [12, 13]. Some
elaborations of the approach were performed by the author in early 90’s.

New interest about algebraic structure related to belief functions come with inves-
tigation of conflicts of belief functions after 2010 [2, 6]. We can mention an update of
older author’s results on morhpisms of Dempster’s semigroup [3] and first results on
generalization of Dempster’s semigroup to three-element frame of discernment [4, 5, 8].

At first necessary preliminaries on belief functions and basic Hájek-Valdés and
author’s results on Dempster’s semigroup are briefly introduced (Sections 2 and 3).
After that, the investigated research is presented in two parts.

The first part of this study combines both the original and new approaches. First
homomorphic h-f coordinates come from original Hájek-Valdés results [12, 13] and
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their modification h-f0 from author’s [3] (Section 4). Using [2] we can define a brand
new homomorphic coordinates of Dempster’s semigroup based on decomposition of
BFs to their unique conflicting and non-conflicting parts (Section 5).

The second part studies issues related to generalization of the topic to three- and
finite general frames of discernment (Section 6). New homomorphisms are considered.
One of the results is, unfortunately, an counter-example against validity of hypothesis
on unique decomposition of a BF to its conflicting and non-conflicting parts [2] in full
generality. Thus the open problem of general validity of the hypothesis is transferred
to the problem of finding a domain of the hypothesis validity.

2 Preliminaries

We assume classic definitions of basic notions from theory of belief functions [14] on
finite frames of discernment Ωn = {ω1, ω2, ..., ωn}, see also [1, 8].

A basic belief assignment (bba) is a mapping m : P(Ω) −→ [0, 1] such that∑
A⊆Ωm(A) = 1; the values of the bba are called basic belief masses (bbm). m(∅) = 0

is usually assumed. A belief function (BF) is a mapping Bel : P(Ω) −→ [0, 1],
Bel(A) =

∑
∅6=X⊆Am(X). A plausibility function Pl(A) =

∑
∅6=A∩X m(X). There

is a unique correspondence among m and corresponding Bel and Pl thus we often
speak about m as of belief function.

A focal element is a subset X of the frame of discernment, such that m(X) > 0.
If all the focal elements are singletons (i.e. one-element subsets of Ω), then we speak
about a Bayesian belief function (BBF); in fact, it is a probability distribution on Ω.
If there are only focal elements such that |X| = 1 or |X| = n we speak about quasi-
Bayesian BF (qBBF). In the case of m(Ω) = 1 we speak about vacuous BF (VBF). Un
is a BF such that m({ωi}) = 1

n for any 1 ≤ i ≤ n. A symmetric BF is a BF, such that
m(X) = m(Y ) for |X| = |Y |, a consonant BF is a BF, such that its focal elements
are nested, (it corresponds to necessity measure), an exclusive BF is a BF, such that
there exists ωi ∈ Ω, such that Pl({ωi}) = 0, otherwise a BF is non-exclusive. In the
case of Pl = Un we speak about a indecicive BF, SPl = {Bel | Pl=Un} is the set of
all indecisive BFs.

Dempster’s (conjunctive) rule of combination ⊕ is given as (m1 ⊕ m2)(A) =∑
X∩Y=AKm1(X)m2(Y ) for A 6= ∅, where K = 1

1−κ , κ =
∑
X∩Y=∅m1(X)m2(Y ),

and (m1 ⊕m2)(∅) = 0, see [14].

Normalized plausibility of singletons1 of Bel is a probability distribution Pl P

such that Pl P (ωi) = Pl({ωi})∑
ω∈Ω Pl({ω})

.

We may represent BFs by enumeration of their m-values, i.e., by (2n−1)-tuples or
by (2n−2)-tuples as m(Ωn) = 1−∑X(Ωn

m(X); thus we have pairs (called d-pairs by
Hájek & Valdés) (a, b) = (m({ω1}),m({ω2})) for BFs on Ω2.

1 Plausibility of singletons is called contour function by Shafer in [14], thus Pl P (Bel) is a
normalization of contour function in fact.
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3 Dempster’s Semigroup of Belief Functions D0.

Hájek-Valdés algebraic structure D0 of non-exclusive d-pairs (i.e., exclusive pairs (0, 1)
and (1, 0) are not included) with Dempster’s rule ⊕ is called Dempster’s semigroup,
D0 = (D0,⊕,−, 0, 0′), where 0 = (0, 0) = V BF , 0′ = ( 1

2 ,
1
2 ) = U2, and −(a, b) =

(b, a), see [13]. In this study we present only several substructures related to our
topic of indecisive BFs: subsemigroup of symmetric BFs S = {(s, s) | 0 ≤ s ≤ 1

2}, and
important subgroup of Bayesian BFs G = ({(a, b) | 0 ≤ a, b < 1, a+ b = 1},⊕,−, 0′),
which is isomorphic to the additive group of reals Re = (Re,+,−, 0), S is isomorphic
to the positive cone Re≥0 of Re extended with ∞ (Re+≥0). Further, we need a
mapping h(a, b) = (a, b) ⊕ 0′ = Pl P (a, b) which is a homomorphic projection of
the entire structure D0 to the group of Bayesian BFs G, i.e., h((a, b) ⊕ (c, d)) =
h(a, b)⊕h(c, d), where h(a, b) is an abbreviation for h((a, b)); and a mapping f(a, b) =
(a, b)⊕−(a, b) which is a homomorphic projection of D0 to the subsemigroup S, see
Figure 1. These structures have been further studied and generalised by the author,
e.g., in [1, 3, 4].

Figure 1: Dempster’s semigroup D0.
Homomorphism h is in this represen-
tation a projection of the triangle rep-
resenting D0 to its hypotenuse G along
the straight lines running through the
point (1, 1). All of the d-pairs lying
on the same ellipse (running through
points (0, 1) and (1, 0)) are mapped by
f to the same f(a, b) ∈ S.

Figure 2: Non-conflicting part (a0, b0)
and conflicting part (s, s) of a BF (a, b)
on a 2-element frame of discernment
Ω2: (a, b) = (a0, b0)⊕ (s, s).

Theorem 1 Any BF (a, b) on a 2-element frame of discernment Ω2 is Dempster’s
sum of its unique non-conflicting part (a0, b0) ∈ S1 ∪ S2 and of its unique conflicting
part (s, s) ∈ S, which does not prefer any element of Ω2, i.e., (a, b) = (a0, b0) ⊕
(s, s), see Figure 2. It holds true that s = b(1−a)

1−2a+b−ab+a2 = b(1−b)
1−a+ab−b2 and (a, b) =

(a−b1−b , 0) ⊕ (s, s) for a ≥ b; and similarly that s = a(1−b)
1+a−2b−ab+b2 = a(1−a)

1−b+ab−a2 and

(a, b) = (0, b−a1−a )⊕ (s, s) for a ≤ b.
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4 h-f Homomorphic Coordinates of D0

Taking homomorphisms h and f we can define bijection λ of D0 into G×S: λ(a, b) =
(h(a, b), f(a, b)); from [12, 13] we have the following theorem:

Theorem 2 (Hájek-Valdés) (i) The mapping λ associating with each d-pair (a, b)
the pair λ(a, b) = (h(a, b), f(a, b)) is one-one mapping of D0 into G× S.
(ii) λ is not onto: in fact, given (g, 1− g) ∈ G and (s, s) ∈ S there is a (a, b) ∈ D0

such that h(a, b) = (g, 1− g) and f(a, b) = (s, s) iff

(1− 2s)/(2− 3s) ≤ g ≤ (1− s)/(2− 3s). (1)

Each d-pair from D0 is uniquely defined by a corresponding pair λ(a, b) = (h(a, b),
f(a, b)), thus h(a, b) and f(a, b)) are coordinates of D0. Both of the singular co-
ordinates are homomorphisms of D0 onto G (or S, respectively), thus we speak
about homomorphic coordinates. Moreover λ is homomorphisms of D0 into (G ×
S,�,�, (0′, 0), (0′, 0′)), where operations � and � are given by ⊕ and − application
coordinate by coordinate on G× S, see Thm. 6.39 in [15].

Similarly to homomorphism f there is homomorphism f0 of D0 onto S [3] such
that f0(a, b)⊕ f0(a, b) = f(a, b), thus f0(a, b) is Dempster’s ’half’ of f(a, b).

All d-pairs from an ellipse going through points (0, 1) and (1, 0) have same f(a, b) =
(s, s). Formally the corresponding part of the ellipse is given by {(d1, d2) | (d1, d2)∈
D0, sd

2
1 + sd2

2 + d1d2 − d1 − d2 + s = 0}, see Lemma 6.33 in [15]. All these d-
pairs have also same f0(a, b) = (s0, s0) which is intersection of the ellipse with S
((s0, s0)⊕ (s0, s0) = (s, s)). Thus homomorphism f0 has more intuitive interpretation
than homomorphism f has.

Analogously to definition of λ we can define bijection λ0 of D0 into G × S using
homomorphisms h and f0: λ0(a, b) = (h(a, b), f0(a, b)). We can easily verify that λ0

has same algebraic properties as λ has. Thus we obtain:

Theorem 3 (i) The mapping λ0 associating with each d-pair (a, b) the pair λ0(a, b) =
(h(a, b), f0(a, b)) is one-one mapping of D0 into G× S.
(ii) λ0 is not onto: in fact, given (g, 1− g) ∈ G and (s, s) ∈ S there is a (a, b) ∈ D0

such that h(a, b) = (g, 1− g), f0(a, b) = (s0, s0), and f(a, b) = (s, s)

iff
1− 2s

2− 3s
≤ g ≤ 1− s

2− 3s
,

iff
1− 4s0 + 4s2

0

2− 6s0 + 5s2
0

≤ g ≤ 1− 2s0 + s2
0

2− 6s0 + 5s2
0

.

Proof. (i) and the first equivalence of (ii) is just verification that f0 has the same
algebraic properties as f has. The second equivalence comes from substitution s =
2s0−3s20
1−2s02 , where (s0, s0)⊕ (s0, s0) = (

2s0−3s20
1−2s02 ,

2s0−3s20
1−2s02 ) = (s, s). �

We have isomorphisms G onto (Re,+,−, 0) and S onto (Re+≥0,+, 0,∞) [12, 13,
15]. Hence isomorphism of D0 into (Re,+,−, 0) × (Re+≥0,+, 0,∞) follows isomor-
phisms λ, λ0. From this we can easily see strength of Bayesisan BFs (absorbing
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property), due to they have f (and f0) coordinates equal to ∞. Analogously we can
see that a ’small’ difference from Bayesian BFs and from exclusive (extremal) BFs
(0, 1) and (1, 0) is greater then relatively same difference deep inside the D0 triangle
or close to 0, see also the following simple example.

Example 1. Let suppose the following simple d-pairs:
(a11, 0) = (0.1, 0), (a21, 0) = (0.97, 0), (a31, 0) = (0.99999, 0),
(a12, 0) = (0.2, 0), (a22, 0) = (0.98, 0), (a32, 0) = (0.999999, 0).
We obtain the following h projections:
h(a11, 0) = (0.5263, 0.4737), h(a12, 0) = (0.5555, 0.4444), which are mapped to (1.668,
∞) and (1.807,∞), thus difference 0.1 of the first component is mapped by isomor-
phism of G≥0′

onto Re≥0 ln( 1+x
1−x ), see [9], to similar difference 0.139;

h(a21, 0) = (0.970874, 0.029126), h(a22, 0) = (0.980392, 0.019608), which are mapped
to (6.080,∞) and (6.658,∞), thus difference 0.01 of the first component is mapped
to greater difference 0.658;
h(a31,0)=(0.99999, 0), h(a32,0)=(0.999999, 0), which are mapped to (17.609,∞) and
(20.931,∞), thus difference 0.000009 of the first component is mapped to significantly
greater difference 3.322.

From the example we see, that we have to be careful when using values close to 1
and analogously, such that sum of all values is close to 1 (i.e., BFs is close to Bayesian
BFs) and that we have to use enough precise computing, as e.g., the at computation
using only 6 decimal digits, 22 is not distinguishable from∞ when d-pairs are mapped
to Re×Re+≥0 (due to 0.9999995 ∼ 21.93157).

This is also related to realizations of user pairs (given by a finite user scale
−N,−N + 1, ...,−1, 0, 1, 2, ...N) in D0, see [10, 11, 12, 13] from the period when
WUPES workshop was established.

5 Coordinates of D0 Based on Conflicting and Non-
Conflicting Parts

We have unique decomposition of a BF on a two-element frame of discernment to
its conflicting and non-conflicting parts: Bel = Bel0 ⊕ BelS). This decomposition
was derived using homomorphic properties of mappings h and f . Moreover any pair
of simple Bel0 and symmetric BelS defines a BF on Ω2 and any BFs on Ω2 is de-
composable. Thus we have a bijection between D0 and S1 ∪ S2 × S, using a one-one
correspondence between S1 and G≥0′

and between S2 and G≤0′
, hence we obtain a

bijection between S1 ∪ S2 and G and the following lemma:

Lemma 1 The mapping κ associating with each d-pair Bel = (a, b) the pair κ(Bel) =
(h(Bel0), BelS) = (h(Bel), BelS), where Bel0 ⊕ BelS = Bel is decomposition of Bel
into its conflicting and non-conflicting parts, is one-one mapping of D0 onto G× S.

The bijection κ is constructed using homomorphic properties of mappings h and
f , is it also homomorphisms itself? Does it hold true that, for Bel′ = Bel′0 ⊕ Bel′S
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and Bel′ = Bel′′0 ⊕ Bel′′S there is Bel = Bel′ ⊕ Bel′′ = Bel0 ⊕ BelS such that
Bel0 = Bel′0⊕Bel′′0 (thus also h(Bel) = h(Bel′)⊕h(Bel′′)) and BelS = Bel′S⊕Bel′′S?
Unfortunately, we can easily find a counter-example.

Example 2. Let us suppose for simplicity two simple d-pairs Bel′ = (0.6, 0) ∈ S1

and Bel′′ = (0, 0.2), thus we have trivial decompositions, where Beli0 = Beli and
BeliS = (0, 0). We have Bel = Bel′ ⊕Bel′′ = (0.6, 0)⊕ (0, 0.2) = ( 6

11 ,
1
11 ) which does

not correspond to non-conflicting part, thus we obtain: Pl = ( 10
11 ,

5
11 ), Bel0=( 5

10 ,0)

and BelS=(
1
11 · 5

11

1−2 6
11 + 1

11− 6
11 · 1

11 + 6
11

6
11

, 5
121−22·6+11−6+36)=( 1

6 ,
1
6 ) 6=(0,0).

This comes from the fact that Bel′ and Bel′′ are conflicting thus internal conflict
is increased; We have Bel′ = (0.6, 0) = (0.5, 0)⊕ (0.2, 0) thus Bel′⊕Bel′′ = (0.5, 0)⊕
(0.2, 0) ⊕ (0, 0.2), where (0.5, 0) = Bel0 and (0.2, 0) ⊕ (0, 0.2) = ( 16

96 ,
16
96 ) = ( 1

6 ,
1
6 )

produces an increase of internal conflict: BelS = Bel′S ⊕ Bel′′S ⊕ (0.2, 0) ⊕ (0, 0.2) =
(0, 0)⊕ (0, 0)⊕ ( 1

6 ,
1
6 ) = (1

6 ,
1
6 ).

We obtain analogous results whenever one of d-pairs is in S1 and the other in S2

and more generally when one of d-pairs is in D≥0
0 \S and the other in D≤0′

0 \S. What
about a situation, when both d-pairs are in the same half of the D0 triangle, e.g.,
Bel′, Bel′′ ∈ D≥0

0 ?
Let us have Bel′ = (a, b), Bel′′ = (c, d), where a ≥ b and c ≥ d. Thus Bel′ =

Bel′0⊕Bel′S = (a
′−b′

1−b′ , 0)⊕ (s′, s′) and analogously Bel′ = (a
′′−b′′
1−b′′ , 0)⊕ (s′′, s′′). Using

this we obtain Bel = Bel′⊕Bel′′ = (a
′−b′

1−b′ , 0)⊕(s′, s′)⊕(a
′′−b′′
1−b′′ , 0)⊕(s′′, s′′) = (a

′−b′
1−b′ +

a′′−b′′
1−b′′ · 1−a

′

1−b′ , 0)⊕(s′, s′)⊕(s′′, s′′). Hence Bel0 = Bel′0⊕Bel′′0 = (a
′−b′

1−b′ + a′′−b′′
1−b′′ · 1−a

′

1−b′ , 0)
and BelS = Bel′S ⊕ Bel′′S = ⊕(s′, s′)⊕ (s′′, s′′). The situation when both d-pairs are
in the left cone of D0 triangle is analogous. Thus the decomposition of a d-pair to
its conflicting and non-conflicting parts does not commute with Dempster’s rule ⊕ on

the entire D0, but it commutes with ⊕ on both the cones of D0: D≥0
0 and D≤0′

0 . Thus
we have homomorphicity of the coordinates based on conflicting and non-conflicting
parts separately on both the cones of D0:

Theorem 4 (i) The mapping κ associating with each d-pair Bel = (a, b) the pair
κ(Bel) = (h(Bel0), BelS) = (h(Bel), BelS), where Bel0 ⊕ BelS = Bel is decomposi-
tion of Bel into its conflicting and non-conflicting parts, is one-one mapping of D0

onto G× S.
(ii) The mapping κ does not commute with Dempster’s rule ⊕ on entire D0, but it

does on both its cones D≥0
0 and D≤0′

0 .

Using the homomorphic coordinates we can generalise the operation of Dempster’s
half from G and S onto entire D0. We derived empirically Dempster’s half for d-pairs
from S in [2], in fact it corresponds to half in reals as S is isomorphic to the positive
cone of the extended additive group of reals Re+≥0 = (Re≥0∪{∞},+, 0), in the same
way it holds for group G, which is isomorphic to the entire additive group of reals
Re.

For general d-pair (a, b) and (a, b) ⊕ (a, b) are always in the same cone, thus also
any d-pair and its Dempster’s half are in the same cone of D0, thus we can use
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the homomorphic properties of mapping κ. Thus for any d-pair Bel = (a, b) we

have h(a, b) ∈ G and BelS ∈ S, thus we have Dempster’s halves ′ 12
′
(h(a, b)) ⊕′

1
2

′
(h(a, b)) = h(a, b), ′ 12

′
(BelS)⊕′ 1

2

′
(BelS) = BelS . Using them we obtain ′ 12

′
(a, b) =

κ−1(′ 12
′
(h(a, b)),′ 1

2

′
(f(a, b))). Geometrically we project (a, b) to G and S (to h(a, b)

and (a, b)S), make Dempster’s halves there and the result is just the intersection of
preimages of separate halves, which is unique in D0 using bijectivity of κ. Thus we
have proved the following lemma:

Lemma 2 For any belief function Bel on a two-element frame there exists its Demp-
ster’s half, i.e., belief function Bel′ such that Bel′ ⊕Bel′′ = Bel.

Alternatively, we can use for a proof also h − f coordinates and verify condition
for preimage. The idea is simple but the formulas are rather complicated.

The relatively simple proof of Dempster’s half existence using coordinates based
on conflicting parts motivates us to show analogously also subtraction on D0, but
it is not possible. Let suppose again BFs Bel′, Bel′′ from D0≥ 0: having h(Bel′) ≤
h(Bel′′) and Bel′S ≥ Bel′′S , we have Bel′S = Bel′′S ⊕ (x, x), where (x, x) ∈ S and

h(Bel′) = h(Bel′′)⊕ (y, 1− y), but (y, 1− y) ∈ G≤0′
due to h(Bel′) ≤ h(Bel′′), thus

h(Bel′) ∈ D≤0′

0 , hence we cannot use homomorphic property of κ which holds on
both the cones of D0 separately. (We need to use strict inequalities for creating of an
counter-example).

We have not such a problem with subtractions on G using h − f coordinates,
but there can arise a problem with non-existence of λ preimage. Let us suppose
Bel′, Bel′′ from D≥0

0 such h(Bel′) ≤ h(Bel′′) and f(Bel′) = f(Bel′) now. In this
case Bel′ ⊕ (x, y) = Bel′′, where f(x, y) = (0, 0), but there is the only λ-preimage
(0, 0) for coordinates ((a, b), (0.0)): for λ−1((a, b), (0.0)) = (0, 0) , thus it must be
h(Bel′) = h(Bel′′), thus also Bel′ = Bel′′. Thus both Bel′ ⊕ Belx = Bel′′ and
Bel′′ ⊕Bely = Bel′ have solution on D0 iff Bel′ = Bel′′.

Fact 1 There is no subtraction for a general couple of BFs either on D0 or on its

cones D≥0
0 , D≤0′

0 .

6 Towards Homomorphic Coordinates on a General
Finite Frame of Discernment

A general case of belief functions on a general finite frame Ωn = {ω1, ω2, ..., ωn} is
more complex. There is both qualitative and quantitative increase of complexity.
BFs on a two-element frame Ω2 are simply representable by pairs from 2-dimensional
structure. All BFs on Ω2 are quasi-Bayesian: there are only singleton focal elements
and the entire frame. Quasi-Bayesian BFs on Ωn are representable by n-tuples from
n-dimensional structure, there is only linear quantitative increase of complexity. For
representation of general BFs on Ωn we need 2n−2-tuples from a 2n−2-dimensional
structure (remaining m-value m(Ωn) may be computed as 1 −∑X(Ωm(X)), thus
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there is exponential increase of quantitative complexity and there is also structural
increase of complexity as the dimension corresponding to a proper subset A of Ωn is
somehow related to the dimensions related to all elements of A, to dimensions related
to all subsets of A, to dimensions related to all supersets of A, and generally somehow
related to all dimensions related all B ⊂ Ωn such that A ∩ B 6= ∅. The dimensions
are not related, they are orthogonal for any couple of disjoint sets B ∩ C = ∅.

Due to the complexity first attempts to generalisation of algebraic structures have
been performed on a three-element frame of discernment Ω3. Bayesian and indecisive
BFs on Ωn have been recently presented in [7].

Let us denote by D+
n the set of all 2n−2-tuples representing BFs on Ωn thus

D+
n = {(d1, d2, ..., dn, d12, ..., d234...n) | ∑X⊂Ωn

dX ≤ 1}, where dX =m(X) such that
X in index of dX is the list of indices of ωi’s contained in X ⊂ Ωn. Further Dn =
{(d1, d2, ..., d23...n) | Pl(ωi) > 0 for all 1 ≤ i ≤ n} is the set of all non-exclusive BFs
(2n−2-tuples), thus Dempster’s combination ⊕ is defined for any couple of tuples
from Dn. Then Dn = (Dn,⊕, 0, Un) is a partial generalisation of D0 as operation ’−’
is still not defined.

All three systems of coordinates presented in the previous sections λ(a, b) =
(h(a, b), f(a, b)), λ0(a, b) = (h(a, b), f0(a, b)), and κ(a, b) = (h(a, b), (a, b)S) have the
h(a, b) as their first component. There is the generalisation of h to BFs on Ωn,
h : Dn −→ Gn, h(Bel) = Bel ⊕ Un = Pl P , see [2]. It is a homomorphic projection
of Dn to Gn, where Gn is group of non-excluding Bayesian BFs [7].

Significantly more complicated is a situation with the second coordinates. We
have not yet a generalisation of the operation ’−’ thus either of homomorphisms f
and f0. There is only generalisation of ’−’ on Bayesian BFs and on some other special
cases. There is a homomorphism fπ which maps Dn to the structure of all symmetric
BFs, but this seems not to be a actual generalisation of f , see [6]. This topic is still
under development.

There is the following hypothesis on decomposition of a general BF, see [2]; exis-
tence of the non-conflicting part was proven in general, existence of conflicting part
only for BFs on Ω2.

Hypothesis 1 We can represent any BF Bel on n-element frame of discernment Ωn
as Dempster’s sum Bel = Bel0 ⊕BelS of non-conflicting consonant BF Bel0 and of
indecisive conflicting BF BelS which has no decisional support, i.e. which does not
prefer any element of Ωn to the others, i.e., Pl P (ωi) = 1

n .

Assuming this hypothesis we can make some investigation of coordinates based
on decomposition of BFs. Having Bel = Bel0 ⊕ BelS , we have again κ(Bel) =
(h(Bel), BelS), where Bayesian h(Bel) uniquely corresponds to consonant Bel0. We
can show that κ(Bel) really determines 2n−2 coordinates in simplex of BFs on Ωn.
In detail, h(Bel) determines n−1 coordinates and remaining 2n−(n+1) coordinates
are determined by BelS :

We have up to n singleton focal elements at h(Bel) in general, resp. just n
singleton focal elements for non-exclusive BFs. This corresponds to n−1 dimensional
structure, because one of the dimensions is redundant: m({ωn})=1−∑n−1

1 m({ωi})
for Bayesian BFs. In figures of D3 this corresponds to the 2-dimensional triangle
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((1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0)) for BFs on Ω3. (this should hold also
for potential generalisation of f -h coordinates).

BelS ∈ SPl = {Bel | Pl = Un} have 2n−1 positive focal elements, but it is
only 2n−(n+1) dimentisons as m(∅) = 0 and m(Ωn) is 1−∑X(Ωm(X) as usually.
And further n−1 focal elements are determined by the others as it should hold that
h(BelS) = Un, thus all singletons should have the same plausibility. We can freely
set m-values for non-singletons (proper subsets of Ωn) and commute Plw({ωi}) =∑
ωi∈X,1<|X|<nm(X) after we can freely set value of one of singletons, let us say

ω1, and compute m({ωj}) = Plw({ω1}) +m({ω1})− Plw({ωj}) and finally compute
m(Ωn).2

Example 3. Let us assume a BFBel on Ω3 given by 6-tuple if itsm values ( 19
38 ,

7
38 ,

4
38 ,

2
38 ,

0, 2
38 ; 4

38 ) where 4
38 is the 7th redundant value ofm(Ω3). We have h(Bel) = (0.5, 0.3, 0.2,

0, 0, 0; 0) and decompositionBel = Bel0⊕BelS = (0.4, 0, 0, 0.2, 0, 0; 0.4)⊕(0.3, 0.2, 0.2,
0, 0, 0.1; 0.2). Thus we have 2 dimensions given by h(Bel)({ω1}) = 0.5 and h(Bel)({ω2})
= 0.3 (the third value of h(Bel) is redundant 1− 0.5− 0.3 = 0.2) and 4 dimen-
sions given by BelS = (0.3, 0.2, 0.2, 0, 0, 0.1; 0.2): mS({ω1, ω2}) = mS({ω1, ω3}) = 0,
mS({ω2, ω3}) = 0.1, and mS({ω1}) = 0.3, 3 other values are redundant, thus com-
puted:
mS({ω2}) = (mS({ω1, ω2})+mS({ω1, ω3})+mS({ω1})−(mS({ω1, ω2})+mS({ω2, ω3})
= (0 + 0 + 0.3) − (0 + 0.1) = 0.3 − 0.1 = 0.2, mS({ω3}) = 0.3 − 0.1 = 0.2 and
m(Ωn) = 1− (0.3 + 0.2 + 0.2 + 0 + 0 + 0.1) = 0.2.

6.1 Homomorphicity of coordinates based on decomposition
of BFs

We have seen that bijection κ is not homomorphism of entire D0 but of its two cones

D≥0
0 , D≤0′

0 , it is caused by appearing of internal conflict of result when two mutually
conflicting consonant non-conflicting parts of conflicting BFs are combined. Analo-
gously conflict appears when two non-conflicting parts with their disjoint least focal
elements are combined. What about a situation where two BFs have non-conflicting
parts with same least focal elements? There is no conflict between them. Thus there
is no conflict among non-conflicting parts all BFs which have same least focal element
of their non-conflicting parts, thus the same element with max contour (plausibility
of singleton). We have n such sets for n singletons. Is mapping κ homomorphism of
such sets? On three element frame such sets correspond to subsimplices Smi where,
e.g., Sm1 = ({(d1, d2, d3, d12, d13, d23) ∈ D3 | Pl({ω1}) ≥ Pl({ω2}), P l({ω3})},⊕, 0},
we can show that is (Sm1,⊕, 0, U3) is subalgebra of D3. Thus algebras of BFs with
maximal contour reached by ωi, let us note that these subalgebras of D0 are out of
scope of [5, 8]. Unfortunately, max contour for the same element is not enough for
homomorphicity of κ:

2 This is just a sketch of an algorithm for generating of a BF Bel ∈ SPl. For a complete algorithm
we should keep some inequalities to obtain all m-values between 0 and 1 summing up to 1 or select the
singleton with maximal Plw value instead of ω1 for free setting of m and finally make normalisation
of the values.
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Example 4. Let us suppose any BFs Bel′ and Bel′′ such that Bel′0 = (0.1, 0, 0,
0.8, 0, 0; 0.1) and Bel′′0 = (0.1, 0, 0, 0, 0.6, 0; 0.3), their non-conflicting parts are mutu-
ally non-conflicting as intersection of all their focal elements is non-empty (equal to
{ω1}), Bel′0⊕Bel′′0 = (0.67, 0, 0, 0.24, 0, 06, 0; 0.03) (as all focal elements are mutually
non-disjoint no normalisation is used), unfortunately the result is not consonant, thus
it is not equal to (Bel′⊕Bel′′)0 = (Bel′0⊕Bel′′0 )0 = (0.73, 0, 0, 0.18, 0, 0; 0.09). Hence
also Bel′S ⊕Bel′′S 6= (Bel′ ⊕Bel′′)S as some internal conflict has arisen at combining
Bel′0 ⊕Bel′′0 thus conflicting part has increased.

Using the example we can see that we need some stronger condition for homomor-
phicity of κ(Bel) = (h(Bel), BelS) resp. of mapping fS such that fS(Bel) = BelS .
Let us suppose BFs such that orderings of ωi’s according their plausibility (resp. con-
tour) values are the same. We can denote it SoX , where X is an code for ordering of
elements according their contour value. E.g., So123

is set of all BFs on Ω3 with max
contour at ω1 and minimal at ω3, So213 is set of all BFs on Ω3 with max contour at ω2

and minimal at ω3, etc. It is possible prove that the (SoX ,⊕, 0, Un) is an subalgebra
of Dn if non-strict ordering is considered, because 0 and U3 and all other symmetric
BFs are in any SoX as any of their elements have max contour and min contour in
the same time. There are n! such subalgebras SoX , as there are n! orderings of n
elements: n elements may be the first, n − 1 elements may be the second, when the
first is already fixed, n− 2 elements may be the third, when the first two are already
fixed, ..., 2 elements may be the last but one, when order of n− 2 elements is already
fixed, and the only element may be the last, when order of all others is already fixed.
Thus for Ω2 we have 2! = 2 orderings of elements, which correspond to two cones

D≥0
0 , D≤0′

0 . We have 3! = 6 subalgebras of D3 of BFs with same ordering of their
contour values.

Lemma 3 (i) The mapping fS assigning to a BF Bel its conflicting part fS(Bel) =
BelS commutes with ⊕ on subalgebras SoX of BFs with fixed order of elements accord-
ing to their contour values. I.e., fS is homomorphism of intersection of its definition
domain with any SoX , thus of the structures (Dom(fS) ∩ SoX ,⊕, 0, Un).
(ii) For any BF from definition domain (Dom(fS) of fS there exits its Dempster’s
half Bel1/2, such that Bel1/2 ⊕ Bel1/2 = Bel, whenever there exists Dempster’s half
on algebra of indecisive BFs SPl.

Proof. (i) Non-conflicting parts of BFs with the same order of contour values have
the same focal elements, thus Bel′0 ⊕ Bel′′0 has the same focal elements as Bel′0 and
Bel”0 (as their focal elements are nested), thus it is consonant hence equal to (Bel′0⊕
Bel′′0 )0 = (Bel′⊕Bel′′)0. Hence also Bel′S⊕Bel′′S = (Bel′⊕Bel′′)S . If order of contour
values is not strict, then sets of focal elements of Bel′0, Bel′′0 , and Bel′0 ⊕ Bel”0 are
subset of the set from the strict case.
(ii) Analogously to two-element frame, any BF and its Dempster’s half are in the
same homomorphic subalgebra, thus we can use homomorphic property of fS . Bel1/2
is an intersection of preimages of Dempster’s halves of BelS (if it exists) and of

h(Bel). (Dempsters’s half on Gn: (
√
d1√

d1+
√
d2+...+

√
dn
,
√
d2∑n

1

√
di
, ...,

√
dn∑n

1

√
di
, 0, 0, ..., 0) ⊕

(
√
d1∑n

1

√
di
,
√
d2∑n

1

√
di
, ...,

√
dn∑n

1

√
di
, 0, 0, ..., 0) = (d1, d2, ..., dn, 0, 0, ..., 0)). �
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Example 4. (cont.) We have Bel′0 ⊕ Bel′′0 and (Bel′0 ⊕ Bel′′0 )0, thus it should be
(0.73,0,0,0.18,0,0; 0.09) ⊕ (x1,x2,x3,x12,x13,x23;x) = (0.67,0,0,0.24,0.06,0; 0.03); from
this we obtain equations: 73

100 (x1+x12+x13+x)+ 18
100 (x1+x13)+ 9

100x1 = 67
100k , 18

100 (x2+
x23)+ 9

100x2 = 0, 9
100x2 = 0, 18

100 (x12 +x)+ 9
100x12 = 24

100k , 9
100x13 = 6

100k , 9
100x23 = 0,

9
100x = 3

100k . Solving these equations we obtain k = 1 and (x1,x2,x3,x12,x13,x23;x) =
(− 2

3 , 0, 0,
2
3 ,

2
3 , 0; 1

3 ).
We have confirmed existence of (Bel′0 ⊕ Bel′′0 )S , on the other hand we see that it is
not a BF according the classic Shafer’s definition, but some generalised one.

Example 5. Let us consider BFs Bel′, Bel′′′ with same order of contour value such
that Bel′0 = (0.1, 0, 0, 0.8, 0, 0; 0.1) and Bel′′′0 = (0.1, 0, 0, 0.6, 0, 0; 0.3). Bel′0⊕Bel′′′0 =
(0.19, 0, 0, 0.78, 0, 0; 0.03), it is consonant thus Bel′0 ⊕Bel′′′0 = (Bel′ ⊕Bel′′′)0. From
Bel′ ⊕ Bel′′′ = Bel′0 ⊕ Bel′′′0 ⊕ Bel′S ⊕ Bel′′′S we obtain also Bel′S ⊕ Bel′′′S = (Bel′ ⊕
Bel′′′)S .

6.2 New open problems

From the previous example we can see, that the Hypothesis 1 does not hold true in
general. Thus instead of question of validity of the hypothesis, we obtain new open
problems: For which set of BFs Hypothesis 1 holds true? What are the generalised
belief functions, which are conflicting parts of BFs out of validity of Hypothesis 1.
For which set of generalised BFs Hypothesis 1 holds true?

7 Conclusion

Three systems of coordinates of belief functions on a two-element frame of discern-
ment were defined and analysed: h-f coordinates are defined using homomorphic
projection of Dempster’s semigroup, unfortunately, there are also coordinates which
do not correspond to any belief functions; h-f0 coordinates have more intuitive in-
terpretation and the same algebraic properties as h-f coordinates have, coordinates
based on the decomposition of belief functions into their unique conflicting and non-
conflicting parts are homomorphic on two cones of Dempster’s semigroup separately,
on the other hand there exists a belief function to any coordinates and vice-versa.

Ideas of generalisation of the presented systems of coordinates to belief functions
on general finite frame of discernment have been analysed and several partial results
relating to generalisations have been presented. Among these results is an example of
a belief function which has not its decomposition into conflicting and non-conflicting
parts in the domain of classical belief functions. Thus open problem of existence of
the decomposition was change to problem of domain of decomposition, and problem
of existence of decomposition into generalised belief functions and a way how belief
functions have to be generalised.
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Abstract

In this work, we study the performance of different algorithms for learn-
ing gene networks from data. We consider representatives of different structure
learning approaches, some of which perform unrestricted searches, such as the
PC algorithm and the Gobnilp method and some of which introduce prior in-
formation on the structure, such as the K2 algorithm. Competing methods
are evaluated both in terms of their predictive accuracy and their ability to
reconstruct the true underlying network. A real data application based on an
experiment performed by the University of Padova is also considered. We also
discuss merits and disadvantages of categorizing gene expression measurements.

1 Introduction

The interest in modelling gene networks has increased in recent years for two reasons.
It is a widely accepted stance that a number of disorders and pathologies are associated
with subtle changes in gene functioning. Better understanding of the mechanism that
governs gene expression is an essential first step towards the development of efficient
and highly specific drugs acting on molecular level. In addition to that, technological
advances seen in the last two decades drastically reduced experimental costs, which
made measurements of biological activity more readily available. This led to a growing
body of experimentally obtained knowledge that is stored, in numerous forms, in
online public databases. One instance is represented by pathway diagrams, which are
elaborate diagrams featuring genes, proteins and other small molecules, showing how
they work together to achieve a particular biological effect. From a technical point of
view, they are networks and can be represented through a graph where genes and their
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connections are, respectively, nodes and edges. Although pathway diagrams represent
our up-to-date knowledge of the cellular processes, we can not always assume that
derived mathematical graphs will be the optimal structure for statistical modelling.
There are a number of reasons to consider them tentative models, see [4], and for this
reason structure learning is an important task in genomics setting.

In this empirical comparison, we consider representatives of different structure
learning approaches, such as the PC algorithm [8], the Gobnilp method [3] and the K2
algorithm [2]. We perform an extensive simulation study in which we study whether
the approaches that include prior information, such as K2, perform better than those
that rely on data only. We also look at the impact of discretization. In addition to a
simulation study, we consider real data from the Drosophila Melanogaster experiment
performed by the University of Padova [4]. In this experiment that focused on a WNT
signalling pathway in a fruit fly, the expression of 12 genes was measured. Figure 5
shows a DAG derived from a WNT pathway diagram, featuring only genes measured
in the experiment.

2 Structure learning algorithms

In this empirical study, we consider a number of variants of the PC algorithm [8], the
K2 algorithm [2] and the exact Gobnilp method [3]. Of the examined approaches, the
K2 algorithm and all modifications of the K2 algorithm considered here, include the
prior information. The prior information is in the form of the topological ordering
of the studied genes. In the simulation study, we specify the topological ordering ac-
cording to the true underlying graph. In the real study, we relied on public databases
of biological knowledge. In particular, we used the WNT pathway of the KEGG
database to construct a DAG for the set of genes under study, from which we, then,
derived a topological ordering. The topological ordering is in general not unique. The
consequences of its non-uniqueness will not be discussed here.

To summarize, in this empirical study, we consider the following options.

PC The PC algorithm using χ2 test of independence at the 5% significance level.

PC20 The PC algorithm using χ2 test of independence at the 20% significance level.

K2 The original K2 algorithm.

K2-BIC A modified K2 algorithm, where the criterion used to score competing
DAGs is BIC, while the search strategy remains the one step greedy search.

G-BIC The Gobnilp algorithm with the BIC scoring criterion.

G-BICm The Gobnilp algorithm with the modified BIC criterion (the penalty term
is multiplied by a factor of 10−3).

G-BICl The Gobnilp algorithm where the modified BIC criterion (the penalty term
is multiplied by 10−9). This implementation efficiently finds the model with
the least number of parameters among all those maximising the log likelihood
function.
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CK2 The CK2 algorithm proposed in [4]. The only algorithm in this study that is
applied to the continuous measurements.

2.1 Categorization of expression measurements

Most structure learning algorithms make use of categorical variables, while gene ex-
pressions are quantitative measurements, usually continuous. In the work that first
introduced the idea of using DAGs for representing gene regulatory networks, [7] con-
sidered both discrete and continuous models. It is clear that the former attenuates the
effect of the technical variability, but might lead to information loss, and is sensitive
to the choice of the categorization procedure. The former incurs no information loss,
but is incapable of capturing non-linear relationships between genes. In particular,
combinatorial relationships (one gene is over-expressed only if a subset of its parents
is over-expressed, but not if at least one of them is under-expressed) can be modeled
only with a discrete Bayesian network. The two approaches thus seem complementary
and we believe that both can help researchers obtain the biologically relevant results,
at least as a means of postulating testable scientific hypothesis.

When the goal of categorization is to obtain categories which are meaningful from
the biological perspective, one would ideally have the control group (a previous ex-
periment) which would serve as a reference for comparison [7]. When control data are
not available, we propose to perform categorization based solely on data at hand. It
is assumed that genes can assume only a few functional states, for example “under-
expressed”, “normal”, and “over-expressed”. The actual measurements depend on
these functional states and the amount of biological variability and technical noise. A
plausible model for such data is a mixture of K normal distributions, each centered
at one of the K functional states

Xi ∼
K∑

k=1

τikN(µik, σ
2
ik), i = 1, . . . , p,

where Xi is an expression of the considered gene, µik and σ2
ik are parameters corre-

sponding to the k-th functional state, τik the probability that an observation belongs
to the k-th component (τik ≥ 0,

∑K
k=1 τik = 1) and p is the number of considered

genes. However, it is not always plausible to assume that all K states are present in
a single experiment, for example, certain genes remain normally expressed in a wide
range of conditions, others can only be downregulated, etc. This led us to propose a
data driven approach to categorization: a number of components, that can vary from
one (corresponding to a gene with only one observed state) to K (all functional states
are present in the data) is estimated from the data for each gene independently. The
assumed model for the i-th gene is thus

Xi ∼
K̂i∑

k=1

τikN(µik, σ
2
ik), i = 1, 2, . . . , p,

where K̂i is the estimated number of components for the i-th gene, τik are, as before,
the weights of individual components, µik, σik are component specific parameters.
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The approach that simultaneously estimates the number of components in the mixture
and parameters pertaining to different components and then classifies each observation
according to the estimated model is called Model Based Clustering and was introduced
by [5]. We used its implementation in the R package mclust [6]. In what follows, we
will denote Yi = (Yi1, . . . , YiK̂i

) the variable obtained from Xi through the proposed
categorization, where Yij = 1, if Xi falls to category j, and zero otherwise.

2.2 Evaluation of predictive accuracy

When evaluating the predictive accuracy of different approaches, we restricted our
attention to a case with small sample size; a situation most relevant for our field of
application. We adopted a “leave-one-out” approach, where in each step the chosen
learning algorithm is applied to the data from which the single observation j has
been removed. In the second step, the removed observation is used to evaluate the
predictive accuracy: prediction of the value of every variable is computed given the
values of all other variables.

To measure the distance between the observed value and the predicted value for
variable Yi fixing all remaining variables to the values observed on the removed obser-
vation j, we use the Brier score, introduced in [1]. If we denote jyi = (jyi1, . . . , jyiK̂i

)
the observed value of variable Yi in the jth observation, j = 1, . . . , n, the Brier score
is defined as

jbi =
1

2

K̂i∑

k=1

(j π̂ik − jyik)2, (1)

where j π̂ik is the predicted probability that Yi falls into the category k. The Brier
score measures the squared distance between the forecast probability distribution and
the observed value. It can assume values between 0 (the perfect forecast) and 1 (the
worst possible forecast).

We measure the predictive accuracy with a scalar B =
∑n
j=1

∑p
i=1 jbi. Obviously,

algorithms having lower score are preferred.
We compare algorithms designed for categorical and continuous data. The learn-

ing algorithms that work with continuous data produce predictions on the continuous
scale. In order to make them comparable with categorical predictions, we combine
discriminant analysis with the proposed categorization procedure. We classify con-
tinuous predictions into one of the gene specific components estimated in the initial
categorization. More precisely, we apply the discriminant analysis to the prediction

jX̂i; the output is the estimated vector of probabilities (j π̂i1, . . . , j π̂iK̂i
) that jX̂i falls

into associated categories. We can then plug this vector in the expression for the
Brier score (1).

3 Simulation study

To attenuate dependence of our conclusions on characteristics of individual graphs, we
randomly generated 10 DAGs on 10 nodes. We achieved this by randomly generating
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Figure 1: Simulation study: mean value of the B score and its 95% confidence interval.

10 adjacency matrices – for each graph we set a sparsity parameter π ∈ (0.3, 0.5)
and fixed the topological ordering. We next sampled an observation from a Bernoulli
variable with the parameter π for each plausible edge (corresponding to the upper
triangular part of the adjacency matrix) to obtain an adjacency matrix uniquely de-
termining the corresponding DAG. When generating observations from a single DAG,
our intention was to mimic the situation in which each gene has two underlying states
(low and high expression), that are then affected and, to a certain level, ”masked”
by some biological and technical variation. We thus generated observations from a
mixture of two multivariate normal distributions with a given graphical structure
(the so-called Gaussian Bayesian networks, each with weight 0.5), where parameters
of each component were randomly sampled from prespecfied intervals. To generate
observations for a single component we adopted the structural equations approach,
in which each variable is a linear function of its parents and a random error. More
precisely, for each of the two components we have

Xi = αi + βT
i pa(Xi) + εi, i = 1, . . . , p,

where εi ∼ N(0, σ2
i ) is the random disturbance, βi is the vector of regression coeffi-

cients giving dependence of Xi on its parents, and αi is an intercept. Both components
were set to have the same matrix of β coefficients, so that the dependence structure
is shared across components, while the intercept and the random fluctuation were
allowed to vary. Before passing these datasets to the algorithms using categorical
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65



variables, we performed categorization as described in 2.1. Namely, we performed
model based clustering, where each variable was allowed to have either two or three
clusters, depending on the model fit. In this situation, we knew that there were two
underlying states–corresponding to two clusters–but we estimated the number of clus-
ters from data so as to approach the conditions of a real study as close as possible.
For each graph, we randomly generated 100 datasets.

We first look at the ability of considered algorithms to reconstruct the underlying
graphical structure from observations. We rely on two measures: PPV that stands for
Positive Predictive Value and is defined as TP/(TP + FP ); and Sensitivity, defined
as TP/(TP + FN), where TP (true positive), FP (false positive), and FN (false
negative) refer to the inferred edges. For each considered sample size and for each of
the 10 DAGs, we generated 100 datasets and applied structure learning algorithms.
The pooled results are shown in Tables 1 and 2 and Figure 2, that shows graphically
how PPV and Sensitivity change with sample size for different approaches. Given
that the results of the approaches of the same type (such as PC and PC20; and
K2 and K2BIC) have nearly identical results, we show one representative per group,
namely PC, GBIC and K2. We see that CK2 gives best results in terms of PPV,
and even more strikingly in terms of sensitivity. CK2 is followed by the other two
(categorical) K2 approaches and Gobnilp methods. On the other hand, PC algorithm
performs poorly in this setting. An interesting question is whether these measures of
performance depend on the density of the true underlying DAGs. Figure 3 shows how
PPV and Sensitivity depend on the number of edges of the DAG used to generate data.
For each of the 10 DAGs, we show the value of PPV and Sensitivity for the largest
sample size n = 500. We see, perhaps not surprisingly, that PPV increases roughly
linearly with the number of edges in the underlying DAG, while sensitivity seems
largely unaffected. As an illustration of the performance of considered approaches in
reconstructing the ”true” DAG, we show one example of a reconstructed network in
Figure 4. Alongside a ”true” DAG used to simulate data there is a DAG inferred by
the CK2 algorithm, from one of the 100 simulated datasets (n = 500).

Next, we look at predictive accuracy of considered algorithms. Here, we restricted
our attention to the smallest sample size (n = 20) for two reasons. It is the situation
most relevant to our field of application, where the number of observations is usually
limited. Furthermore, it gives us the opportunity to compare obtained results to those
in the real application described in Section 4, since the ratio p/n is approximately the
same. Therefore, for each of the 10 DAGs and 100 generated datasets of size n = 20,
we computed the B score following the ”leave-one-out” approach, as described in
2.2. In the end, we performed a random effects meta analysis (assuming that the B
score is approximately normally distributed) to combine results for different graphs.
The mean B score and its 95% confidence interval are shown in Figure 1. CK2
reached the lowest B score, followed by K2 and K2-BIC. Of all Gobnilp methods,
the likelihood one G-BICl leads to the lowest B score. PC variants perform slightly
worse than Gobnilp variants, but the difference is less pronounced than in network
reconstruction.
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Figure 2: Simulation study: Pooled positive predictive accuracy (left) and sensitivity
(right) of considered algorithms for different samples sizes.

10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of edges

P
os

iti
ve

 P
re

di
ct

iv
e 

V
al

ue

PC
K2
Gobnilp
CK2

10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of edges

S
en

si
tiv

ity PC
K2
Gobnilp
CK2

Figure 3: Simulation study: Positive predictive accuracy (left) and sensitivity (right)
as a function of the number of edges of the true underlying DAG, for the 10 randomly
generated DAGs and the sample size n = 500.
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Table 1: Pooled positive predictive value.

n PC PC20 K2 K2-BIC GBIC GBICm GBICl CK2
20 0.36 0.35 0.45 0.45 0.43 0.42 0.40 0.56
30 0.37 0.37 0.45 0.45 0.43 0.41 0.40 0.59
50 0.33 0.34 0.45 0.45 0.44 0.41 0.40 0.60

100 0.28 0.25 0.45 0.45 0.41 0.39 0.40 0.61
500 0.31 0.30 0.46 0.46 0.42 0.40 0.41 0.58

Table 2: Pooled sensitivity.

n PC PC20 K2 K2-BIC GBIC GBICm GBICl CK2
20 0.08 0.09 0.20 0.19 0.21 0.21 0.21 0.47
30 0.09 0.10 0.19 0.19 0.21 0.20 0.21 0.56
50 0.08 0.09 0.20 0.20 0.20 0.21 0.20 0.69

100 0.04 0.04 0.20 0.20 0.19 0.21 0.21 0.83
500 0.06 0.07 0.24 0.24 0.20 0.22 0.22 0.93

4 Drosophila Melanogaster experiment

The experimental data from the Drosophila Melanogaster experiment performed by
the University of Padova [4] consist of 28 observations of 12 genes. All measured
genes belong to the WNT signalling pathway involved in embryonic development.
DAG derived from this pathway is shown in Figure 5. The topological ordering of
this DAG was passed to the methods that include prior information (K2, K2-BIC and
CK2). Other methods rely on data only.

The Figure 6 shows the B score for each of the considered methods. Full (com-
plete) DAG and empty (no arrows) DAG were added for reference. Here, K2 reaches
the minimal B score, followed by the Gobnilp’s likelihood method G-BICl. The K2
algorithm with the BIC score, K2-BIC, together with the remaining Gobnilp meth-
ods, G-BICm and G-BIC, also perform reasonably well with a slightly inferior score
with respect to the leading twosome. On the other hand, the PC algorithm gives
significantly less accurate predictions. The CK2 algorithm, seems to fail in this case.
Its B score is almost comparable to the one of the full graph (Full). It is interesting
to note that of the two methods on categorized variables using the BIC score, K2-BIC
and G-BIC, it is the former that minimizes the B score. This is a little surprising,
since Gobnilp finds globally optimal structures, while K2-BIC uses the ordering of
variables, and thus might suffer from misspecification. In addition to that, K2-BIC
relies on the greedy search, possibly restricting the search space enough to miss the
global optima. In fact, structures found by Gobnilp have a lower BIC criterion (and
thus a better fit to the data), but are inferior when it comes to prediction. This
observation, together with a success of the K2, suggests that possibly the subject
matter knowledge employed to specify the ordering of variables is the reason behind
their good performance. To test this hypothesis, we generated 20 random orderings
and passed them to the K2 algorithm. None of the twenty computed scores is lower
than that that determined by pathway, providing support for the practice of using
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network reconstructed by CK2 from 500 observations.
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Figure 5: Drosophila melanogaster experiment: DAG derived from a diagram repre-
senting WNT signaling pathway in fruit flies.
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Figure 6: Drosophila melanogaster experiment: B score of different algorithms.

the prior information in the form of a topological ordering.
The right plot in Figure 7 shows how the B score deteriorates with the addition

of arrows to the optimal structure found by K2. Here, the B score is a function of the
number of arrows present in the graph. It starts from the K2 structure, containing
15 arrows, and ends with the full graph, containing 66 arrows. Structures in between
are obtained sequentially, by randomly adding a single arrow to the current struc-
ture. Obviously, the order of addition of arrows plays a role, and thus this is only
one possible way in which the score might evolve between the two extreme points.
Nevertheless, the increasing trend of the dependence is informative and independent
of the order of arrow inclusion.

One of the reasons behind the success of the K2 algorithm might also be that it
identifies DAGs with a relatively high number of edges. To examine this possibility,
we computed the average size of the Markov blanket for considered methods. The
results are reported in the Table shown in the left panel of Figure 7. We see that
K2 indeed has a comparatively large average Markov blanket size, but it is second
to the Gobnilp’s likelihood method. The ranking of methods with respect to their
prediction accuracy suggests therefore that the density of the graphs inferred by K2
is not the only reason for its good performance.

5 Discussion

In this work we performed an extensive empirical study of popular structure learning
algorithms in a highly specific setting of gene networks. This area is atypical in that
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Average size

PC 0.98
PC20 1.32
K2 2.64
K2-BIC 2.30
G-BIC 2.15
G-BICm 2.49
G-BICl 2.71
CK2 4.10

Figure 7: Drosophila melanogaster experiment: Average size of the Markov blanket
for different algorithms (left) and B score as a function of the number of edges in the
inferred DAG.

it usually involves a limited number of observations affected by different kinds of
substantial ”noise”, both biological and technical. For this reason, structure learning
in genomics faces a lot of previously unexplored problems and our goal was to better
understand the choices made in practice. In particular, we focused on impact of
categorising gene expression measurements and including vague prior information.
To this end, we analysed a real dataset and performed a simulation study specifically
designed to mimic limitations of real studies.

We found that including prior information in the form of a topological ordering
can significantly improve the performance, both in terms of network reconstruction
and predictive accuracy. This is reflected in the fact that K2 algorithm, in spite
of relying on a heuristic search method, performs either better or equally well as
the exact Gobnilp method not including any prior information. This observation is
especially important with the limited number of observations and was confirmed by
both real and simulated datasets.

Results of the simulation study and the real study coincide to a large extent. The
most striking difference is the performance of the CK2 algorithm, the only considered
algorithm designed for continuous variables. While it performs poorly in the real
study, in the simulation study it gives the best results. One possible explanation
concerns the simulation mechanism: the data generating mechanism specified in the
simulation study might not be a good approximation of the mechanism that gave rise
to measurements in the real study. CK2, relying on continuous measurements, would
be more sensitive to this difference with respect to its competitors using categorized
data. Possible future work would involve investigation of different data generating
mechanisms. It would be highly interesting to generate data from a discrete Bayesian
network and then introduce random fluctuation for each variable independently.

There is a lot of concern regarding the application of structure learning algorithms
in genomics setting. When the goal is to elucidate biological mechanisms governing
gene expression, reflected in the reconstruction of the gene network, we would agree
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71



that this concern is justified. The signal to noise ratio in genomic studies does not
seem to allow for an accurate reconstruction, at least for the time being. From the
prediction perspective, however, the results reported here are encouraging: learned
graphs, that can be considered as rough approximations of the true network, manage
to bring considerable improvement over the procedure that does not assume or look for
any conditional independence relations between genes. This is an important empirical
conclusion that we draw from this study.
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Abstract

In this paper, we continue the investigation of utilization of rules whose con-
clusions are imprecise. We examine classification methods under imprecise rules
and show their usefulness. Although a set of imprecise rules for all possible com-
binations of classes improve the classification accuracy, the number of the rules
becomes very big. Then we try to reduce the number of imprecise rules keeping
the advantage in classification accuracy over the classical approach. Examining
a few criteria to select combinations of classes to which rules are induced, we
find two tendencie: (i) the set of class combinations with high similarity shows
a good performance, and (ii) the set of class combinations reflecting well the
distribution of classes in the data set shows a good performance.

1 Introduction

In the conventional rough set approaches, rules inferring the memberships to single
classes (simply called “precise rules”) have been induced and used to build the clas-
sifier system. However, rules inferring the memberships to unions of multiple classes
(simply called “imprecise rules”) can also be induced based on the rough set model.
We have shown that a classifier system with imprecise rules has an advantage in the
classification accuracy of classification over the conventional classifier system with
precise rules [1, 2]. However, the number of imprecise rules is much more than that
of precise rules because we consider all possible combinations of k classes with fixed
k ∈ (1, p− 1).

In this paper, we try to reduce the number of imprecise rules keeping the classi-
fication accuracy of the classifier with imprecise rules over that of the classifier with
precise rules. We first propose a new classification method using imprecise rules and
demonstrate its advantage over the previous classification method. To reduce the
number of imprecise rules, we select combinations of classes. Because of its simplic-
ity, we restrict ourselves to the cases where only two classes are combined. Namely,
we investigate some criteria (measures) for selecting class pairs. We consider two
conceivable criteria for the selection: one is the similarity of classes and the other is
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the deviation from the class distribution. For the similarity, we would like to know
whether similar classes should be paired or dissimilar classes in order to enhance the
classification accuracy. On the other hand, for the deviation from the class distribu-
tion, we examine whether selected class pairs should reflect the class distribution in
the given data set or not in order to enhance the classification accuracy.

In next section, we briefly review rough set approach and a rule induction method,
i.e., MLEM2 algorithm, and the conventional classification method based on the in-
duced rules. In Section 3, after the idea of inducing imprecise rules is described, two
classification methods based on induced imprecise rules are proposed. Moreover, the
similarity and KL divergence are introduced as measures to select the set of class
combinations. In Section 4, numerical experiments are explained and the results are
shown and discussed. In Section 5, concluding remarks are given together with future
research topics.

2 Rough Set Approach and Rule Induction

Rough set theory [3] provides useful tools for the analysis of decision tables which
is also called datasets. A decision table (dataset) is defined by a four-tuple DT =
〈U,C ∪ {d}, V, f〉, where U is a finite set of objects, C is a finite set of condition
attributes and d is a decision attribute, V =

⋃
a∈C∪{d} Va with attribute value set Va

of attribute a ∈ C ∪ {d} and f : U × C ∪ {d} → V is called an information function
which is a total function. By decision attribute value vdj ∈ Vd, decision class Dj ⊆ U
is defined by Dj = {u ∈ U | f(u, d) = vdj }, j = 1, 2, . . . , p. Using condition attributes
in A ⊆ C, we define equivalence classes [u]A = {x ∈ U | f(x, a) = f(u, a), ∀a ∈ A}.

The lower and upper approximations of an object set X ⊆ U under condition
attribute set A ⊆ C are defined by

A∗(X) = {x ∈ U | [x]A ⊆ X}, (1)

A∗(X) = {x ∈ U | [x]A ∩X 6= ∅}. (2)

Suppose that members of X can be described by condition attributes in A. If [x]A ∩
X 6= ∅ and [x]A∩(U−X) 6= ∅ hold, the membership of x to X or U−X is questionable
because objects described in the same way are classified into two different classes.
Otherwise, the classification is consistent. From these points of view, each element of
A∗(X) can be seen as a consistent member of X while each element of A∗(X) can be
seen as a possible member of X. The pair (A∗(X), A∗(X)) is called the rough set of
X under A ⊆ C.

In rough set approaches, the attribute reduction, i.e., the minimal attribute set
A ⊆ C satisfying A∗(Dj) = C∗(Dj), j = 1, 2, . . . , p, and the minimal rule induction,
i.e., inducing rules inferring the membership to Dj with minimal conditions which can
differ members of C∗(Dj) from non-members, are investigated well. In this paper, we
use minimal rule induction algorithms proposed in the field of rough sets, i.e., LEM2
and MLEM2 algorithms [4]. By those algorithms, we obtain minimal set of rules with
minimal conditions which can explain all objects in lower approximations of X of the
given dataset. LEM2 algorithm and MLEM2 algorithm [4] are different in their forms
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of condition parts of rules: by LEM2 algorithm, we obtain rules of the form of “if
f(u, a1) = v1, f(u, a2) = v2, . . . and f(u, ap) = vp then u ∈ X”, while by MLEM2
algorithm, we obtain rules of the form of “if vL1 ≤ f(u, a1) ≤ vR1 , vL2 ≤ f(u, a2) ≤ vR2 ,
. . . and vLp ≤ f(u, ap) ≤ vRp then u ∈ X”. Namely, MLEM2 algorithm is a generalized
version of LEM2 algorithm to cope with numerical/ordinal condition attributes.

For each class Di we induce rules inferring the membership of Di. Using all those
rules, we build a classifier system. To build the classifier system, we apply the idea
of LERS [4]. The classification of a new object u is made by the following two steps:

1. When the condition attribute values of u match to at least one of the elementary
conditions of the rule, we calculate

S(Di) =
∑

matching rules r for Di

Stren(r)× Spec(r), (3)

where r is called a matching rule if the condition part of r is satisfied. Stren(r)
is the total number of objects in the given dataset correctly classified by rule
r. Spec(r) is the total number of condition attributes in the condition part of
rule r. For convenience, when rules from a particular class Di are not matched
by the object, we define S(Di) = 0. If there exists Dj such that S(Dj) > 0,
the class Di with the largest S(Di) is selected. If a tie occurs, class Di with
smallest index i is selected from tied classes.

2. When the condition attribute values of u do not match totally to any condition
part of rule composing the classifier system. For each Di, we calculate

M(Di) =
∑

partially matching
rules r for Di

Mat f(r)× Stren(r)× Spec(r), (4)

where r is called a partially matching rule if a part of the premise of r is
satisfied. Mat f(r) is the ratio of the number of matched conditions of rule r
to the total number of conditions of rule r. Then the class Di with the largest
M(Di) is selected. If a tie occurs, class Di with smallest index i is selected from
tied classes.

3 Imprecise Rules and Evaluation Measures

3.1 Induction of Imprecise Rules and Classification

In the same way as inducing rules inferring the membership to Di, we can induce
rules inferring the membership to the union of Di’s. Namely, LEM2-based algorithms
can be applied because the union of Di’s is a set of objects. Inducing rules inferring
the membership of the union of Di∪Dj for all pairs (Di, Dj) such that i 6= j, we may
build a classifier because the simultaneous satisfaction of x ∈ Di∪Dj and x ∈ Di∪Dk

(j 6= k) mplies x ∈ Di. Moreover, in the same way, we can build a classifier by induced
rules inferring the membership to

⋃
j=i1,i2,...,il

Dj for all combinations of l classes.
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To do this, we should consider a classification method under rules inferring the
membership to the union of classes. An easiest method is using the MLEM2 classi-
fication method described in the previous section with replacing S(Di) and M(Di)
with the following Ŝ(Di) and M̂(Di), respectively:

Ŝ(Di) =
∑

matching rule r
for Z ⊇ Di

Stren(r)× Spec(r), (5)

M̂(Di) =
∑

partially matching
rules r for Z ⊇ Di

Mat f(r)× Stren(r)× Spec(r), (6)

where Z is a variable showing a union of classes.
Obviously, this classification method is reduced to the LERS classification method

when Z = Di. For the sake of simplicity, this method is called CL-1.
As another one, we propose the following classification method:

(i) we calculate S(Zq) by (3) with substitution of Zq forDi for each Zq =
⋃
j∈{i1,i2,...,il}Dj .

(ii) For each Zq such that S(Zq) = 0, erase all Dj satisfying Dj ⊆ Zq.
(iii) If the remaining class is unique, then we classify the object into that class and

terminate the procedure. If the remaining class is empty, we reset all classes as
remaining classes.

(iv) For each remaining class Di, calculate Ŝ(Di) by (5).

(v) Classes Di with the largest Ŝ(Di) are selected. If it is unique, then we classify
the object into that class and terminate the procedure. Otherwise, for each
remaining class Di, calculate M̂(Di) by (6), and class Di with the largest M̂(Di)
is selected. If a tie occurs, class Di with smallest index i is selected from tied
classes.

This method is called CL-2 in this paper.

3.2 Measures

3.2.1 Similarity between combined classes

We use this similarity measure among classes defined by Kusunoki and Inuiguchi [5].
In numerical experiments, we examine whether the similarity of combined classes in
imprecise rules influences the classification accuracy of the classifier composed. The
similarity is computed in the following two steps:

i) for each attribute a ∈ C, the similarity between two objects x, y ∈ U is defined
by

s(x, y; a) =





Truth(f(x, a) = f(y, a)),
if a is nominal,

max

{
1− |x− y|

3σa
, 0

}
,

if a is numerical,

(7)
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where Truth(proposition) takes 1 if proposition is true and 0 otherwise; σa is
the standard deviation of values of condition attribute a in the dataset. The
similarity between objects x and y is defined as an arithmetic mean of similarities
s(x, y; a) over all attributes a ∈ C, i.e.,

s(x, y) =
1

|C|
∑

a∈C
s(x, y; a), (8)

where |C| is the cardinality of set C.

ii) Then, the similarity between two classes X,Y ⊆ U is defined by

s(X,Y ) =
1

|B(X)||B(Y )|
∑

x∈B(X)

∑

y∈B(Y )

s(x, y), (9)

where B(X) and B(Y ) are A∗(X) and A∗(Y ), respectively.

3.2.2 Distance from the class distribution

In a dataset, the sizes of classes can be different. We may intuitively expect that the
obtained set of rules performs better when the selected unions of classes reflect the
class distribution. From this point of view, we consider the distance from the class
distribution.

Let Oi, i = 1, 2, . . . , u be selected unions Oi of classes to which we induce rules.
Then we define the following appearance ap(Dj) for each class Dj (j = 1, 2, . . . , p):

ap(Dj) = |{Oi | Dj ⊆ Oi, i ∈ {1, 2, . . . , u}}|. (10)

Then we define the relative appearance ra(Dj) by

ra(Dj) =
ap(Dj)
p∑

j=1

ap(Dj)

. (11)

Let rfj be the relative frequency of class Dj in the given dataset (j = 1, 2, . . . , p).
Then the distance from the class distribution is defined by the following KL divergence
from the relative frequency distribution to the relative appearance distribution;

KL(O) =

p∑

j=1

rfj log
rfj

ap(Dj)
, (12)

where O = {Oi, i = 1, 2, . . . , u}.
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Table 1: Five datasets
Dataset |U | |C| |Vd| attribute type class
car (C) 1,728 6 4 ordinal umacc, acc, good, vgood

dermatology (D) 358 34 6 numerical 1, 3, 2, 5, 4, 6

ecoli (E) 336 7 8 numerical
cp, im, pp, imS, om,
omL, imU, imL

glass (G) 214 9 6 numerical 2, 1, 7, 3, 5, 6
zoo (Z) 101 16 7 nominal 1, 2, 4, 7, 6, 3, 5

4 Numerical Experiments

4.1 Outline

We first demonstrate the good performance of the classifier based on the imprecise
rules obtained for all combinations of classes by a numerical experiment using five
datasets. Then we reduce the number of rules by restricting ourselves into cases
when two classes are combined. For those rules, we compute the number of rules,
the classification accuracy, the KL divergence and the similarity, in order to see their
relations. We evaluate the classification accuracy by both CL-1 and CL-2.

4.2 Datasets

In the numerical experiments, we use five datasets obtained from UCI Machine Learn-
ing Repository [6]. The five datasets are shown in Table 1. In Table 1, |U |, |C| and
|Vd| means the number of objects in the given data table, the number of condition
attributes and the number of classes. Decision attribute values are shown in the col-
umn of ‘class’ and labeled by alphabets a, b, c, ... in the order of attribute values
shown in Table 1. The capital alphabets in the parentheses in the column of dataset
shows the abbreviations of the dataset names.

MLEM2 algorithm is applied to all those datasets because MLEM2 algorithm
produces the same results as LEM2 when all condition attributes are nominal.

4.3 10-fold Cross Validation

For the evaluation, we apply the 10-fold cross validation method. Namely we divide
the dataset into 10 subsets and 9 subsets are used for training dataset and the re-
maining subset is used for checking dataset. Changing the combination of 9 subsets,
we obtain 10 different evaluations. We calculate the averages and the standard devi-
ations in each evaluation measure. We execute this procedure 10 times with different
divisions.

4.4 Accuracy Scores of Imprecise Rules

First, we demonstrate the good performance of the classifier with imprecise rules.
Using training data, we induce rules inferring the membership to the union of k
classes by MLEM2 algorithm for all possible combination of k classes. Then by the
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Table 2: Accuracy scores of imprecise rules for all class combinations
A(k) No. Rules CL-1 (%) CL-2 (%)
C(1) 57.22± 1.74 98.67± 0.97 98.67± 0.97
C(2) 128.02± 3.16 98.96± 0.73 99.16± 0.76
C(3) 69.55± 1.37 99.68± 0.49 99.57± 0.54
D(1) 12.09± 1.27 92.32± 4.42 92.32± 4.42
D(2) 61.32± 4.07 94.58± 3.59 95.72∗ ± 3.15
D(3) 103.58± 6.11 96.03± 3.26 96.40± 3.14
D(4) 77.28± 4.45 95.58± 3.69 95.78± 3.67
D(5) 23.84± 1.81 91.87∗ ± 4.75 88.83± 5.73
E(1) 35.89± 2.03 75.52± 6.21 75.52± 6.21
E(2) 220.67± 8.93 83.20± 5.66 83.42± 5.56
E(3) 565.67± 21.48 84.66± 5.64 84.54± 5.75
E(4) 781.36± 28.42 84.87± 5.71 84.84± 5.65
E(5) 617.06± 23.06 83.74± 6.26 83.53± 6.38
E(6) 269.27± 10.50 82.56± 6.26 82.76± 6.27
E(7) 54.09± 2.86 78.38± 6.70 77.17± 6.71
G(1) 25.38± 1.50 63.34± 10.18 68.34± 10.18
G(2) 111.4± 4.33 72.57± 8.81 73.59± 8.77
G(3) 178.35± 5.41 73.44± 9.19 74.28± 9.93
G(4) 130.14± 4.96 71.16± 9.91 72.71± 9.45
G(5) 39.59± 2.18 65.04± 9.96 63.55± 10.79
Z(1) 9.67± 0.55 95.84± 6.63 95.84± 6.63
Z(2) 48.54± 2.10 95.55± 7.15 95.74± 6.33
Z(3) 105.37± 4.25 96.74± 5.45 96.74± 5.45
Z(4) 113.78± 3.74 96.84± 5.22 96.84± 5.22
Z(5) 66.76± 2.69 97.24± 5.07 97.44± 4.97
Z(6) 17.72± 0.66 96.05± 6.51 96.05± 6.51

two classifiers based on induced imprecise rules, all of checking data are classified
and the classification accuracy scores are calculated. The results of this numerical
experiment are shown in Table 2. In Table 2, the average number of induced rules,
the average classification accuracy scores by CL-1 and by CL-2 are shown. Column
A(k) indicates the abbreviation of dataset by A
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Table 3: Three sets of class pairs for each dataset

A
set of pairs

A
set of pairs

A
set of pairs

A
set of pairs

i ii iii i ii iii i ii iii i ii iii
ab ab ac ah ab ah ab bd bf ab ac ae

C
ad ac ad ac ae af bd bf bc ad ag ad
bc bd bc bg bc be

G
ad ad ad be bg bc

cd cd bd E bd gh bf ef ac af Z cf be bg
ad ab ac dg dg dg ec ef de fg fe fg
af ad ab fh dh cg cf ec ec cg fd fd

D
bc ce cd ef ef eh de cd ce
ce cd bf ec cf cd
bd bf de
ef ef ef

Table 4: Relations of classification accuracy to similarity
car C[i] C[ii] C[iii]

No. rules 75.93± 2.21 84.97± 2.31 95.14± 2.48
Accuracy (%) 98.48± 0.83 98.44± 1.04 98.45± 1.06

Similarity 32.45∗23 ± 0.07 31.90∗3 ± 0.07 30.52± 0.05
dermatology D[i] D[ii] D[iii]

No. rules 20.31± 1.39 19.46± 1.38 27.90± 2.44
Accuracy (%) 92.46∗3 ± 4.16 92.20∗3 ± 4.88 90.31± 4.98

Similarity 71.67∗23 ± 7.47 70.77∗3 ± 9.20 70.05± 9.13
ecoli E[i] E[ii] E[iii]

No. rules 47.28± 2.35 65.10± 3.40 70.45± 3.44
Accuracy (%) 80.53∗3 ± 6.59 78.94± 6.70 78.35± 6.44

Similarity 70.48∗23 ± 4.70 64.67∗3 ± 3.84 60.85± 4.74
glass G[i] G[ii] G[iii]

No. rules 35.95± 1.85 43.44± 2.26 48.09± 2.74
Accuracy (%) 65.62± 11.10 64.55± 9.41 64.55± 10.95

Similarity 69.85∗23 ± 0.39 68.66∗3 ± 0.48 64.06± 0.48
zoo Z[i] Z[ii] Z[iii]

No. rules 11.77± 0.53 16.72± 0.51 15.94± 0.40
Accuracy (%) 81.27± 11.35 95.35∗1 ± 7.57 96.04∗1 ± 7.04

Similarity 62.08∗23 ± 0.51 58.02∗3 ± 0.51 53.54± 0.48

and the number of classes composing the union by k. Each entry in the other columns
is composed of the average av and the standard deviation st in the form of av ± st.
Because we have two classification accuracy scores for each case, we compare those,
namely, we compare two classification methods CL-1 and CL-2. Larger average of
classification accuracy scores between CL-1 and Cl-2 is underlined. Moreover, asterisk
∗ is attached to the better classification accuracy if there is a significant difference by
the paired t-test with significance level α = 0.05.

As shown in Table 2, the classification accuracy sometimes attains its largest value
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around the middle value of k. We observe that the classifier with imprecise rules often
performs better than the classifier with precise rules (when k = 1). Moreover, we
observe that classification method CL-2 is slightly better than CL-1.

4.5 Relations to Similarity

In the previous subsection, we showed the good performance of the classifier with
imprecise rules for all possible combination of k classes except a few datasets with
k = n. However, the number of imprecise rules is much more than that of precise
rules. Therefore, imprecise rules are not always very efficient in rule induction and
rule applications. We examine whether the good performances are kept by reducing
the number of rules by restricting combinations of k classes.

In this subsection, we examine whether similarity degree works to select a set of
class combinations to which we can induce imprecise rules of good performance. In
the numerical experiment, we set k = 2 and we prepare three sets of class pairs for
each dataset. The number of pairs in each set is set to be the minimum subject
to the induced rules can correctly classify all given objects in training dataset. For
example, when there are four classes, the minimally requested combinations is four
while the number of all possible combinations is six. This is because each class must
belong to at least two different combinations. Three sets of class pairs for each dataset
are shown in Table 3. The columns of “A” in Table 3 show abbreviated names of
datasets. We note that the KL divergence values are the same in the three sets of
pairs.

Through this experiment, we would like to seek good pairs for obtaining a smaller
set of imprecise rules which performs well. For this purpose we compute the similarity
degrees of classes as well as numbers of rules. The obtained results are shown in
Table 4.

Numerical results are shown in Table 4. In rows where full names of datasets are
written, settings are shown by the abbreviations of dataset names with the set of
class pairs in the square brackets. A generic entry of this table is composed of the
average av and the standard deviation st in the form of av ± st. Mark ∗23 means
the value is significantly different from the cases of sets ii and iii by the paired t-test
with significance level α = 0.05 (we mark only better values). In this experiment,
classification accuracy scores of CL-1 and CL-2 become same, then we only show them
in rows of “Accuracy”. The largest classification accuracy score and largest similarity
degree are underlined in each dataset.

As shown in Table 4, the numbers of rules are reduced from those in the case
of k = 2 in Table 2. Nevertheless, the numbers of rules are more than those in the
case of k = 1 in Table 2. All classification accuracy scores in Table 4 are worse
than those of k = 2 in Table 2 except Z[iii]. However, classification accuracy scores of
D[i], E[i], E[ii], E[iii] and Z[iii] are better than those of k = 1 in Table 2. Except for
dataset ‘zoo’, the larger the similarity degree, the better the classification accuracy
score. Condition attributes in dataset ‘zoo’ are nominal, while those in other datasets
are numerical or ordinal. This may be caused by the fact dataset ‘zoo’ shows the
opposite tendency to the other datasets. Therefore, the similarity degree may be a
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measure to select a set of class pairs (class combinations) to induce imprecise rules
with good performance if condition attributes are numerical or ordinal.

4.6 Relations to KL Divergence

In this section, we examine whether KL divergence from the class distribution works
well to select a set of class combinations to which we can induce imprecise rules
of good performance. In the previous experiment, sets of minimal number of class
pairs are considered. In the experiment described in this subsection, a few sets with
different numbers of class pairs are considered. Here again we consider only imprecise
rules with k = 2. For each number of class pairs, we prepare two sets of class pairs.
Those two set of class pairs take a very different KL divergence values. Comparing
classification accuracy scores between those two sets, we observe the influence of KL
divergence values.

Three different numbers of class pairs are prepared except dataset ‘car’. Because
dataset ‘car’ has four classes, we consider sets of five class pairs only. For each of those
sets of class pairs, we calculate the number of rules, classification accuracy scores and
KL divergence value. The results of this numerical experiment is shown in Table 5.
To show a setting composed of the dataset, the number of class pairs and two sets
of different KL divergence values, we use a combined notation of the abbreviation
of dataset name, a number and ‘L (large) or S (small)’ in Table 5. For example,
‘D[13-L]’ implies dataset ‘dermatology’ and 13 class pairs with larger KL divergence
value. Similarly, ‘G[11-S]’ implies dataset ‘glass’ and 11 class pairs with smaller KL
divergence value. In the column of KL divergence, we show the class pairs missing
in the set of class pairs in the parentheses. Those with ‘+’ shows the additionally
missing class pairs from the set of class pairs described two rows above in Table 5.
In columns of ‘CL-1’ and ‘CL-2’ of Table 5, we show the average (av) and standard
deviation (st) of classification accuracy scores for each setting in the form of av ± st.
The average and standard deviation of numbers of rules is shown in the column of ‘No.
rules’. We compare two settings with large (L) and small (S) KL divergence values,
and underline the better average of classification accuracy scores. Asterisk ∗ means
the value is significantly better from the other by the paired t-test with significance
level α = 0.05.

As shown in Table 5, all classification accuracy scores in Table 5 are worse than
those of k = 2 in Table 2 except Z[15-S]. However, classification accuracy scores of
C[5-2], D[13-L], D[13-S], D[11-L], D[9-S], Z[18-S], Z[15-S] and all settings in datasets
‘ecoli’ and ‘glass’ are better than those of k = 1 in Table 2. In many cases, we observe
that the smaller KL divergence values, the better the classification accuracy scores. In
dataset ‘zoo’ and in the setting of 9 class pairs of dataset ‘dermatology’, we obtained
opposite results. However, in the case of dataset ‘zoo’, there is no significance differ-
ence in classification accuracy scores. On the contrary, the result in the setting of 9
class pairs of dataset ‘dermatology’ significantly opposes to the above observation. To
sum up, there is some tendency that the set of class pairs with smaller KL divergence
score may result in a better classification accuracy score.
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Table 5: Comparison between class pair sets with different KL divergence values
Setting No. rules CL-1 (%) CL-2 (%) KL divergence

C[5-L] 111.59±2.64 98.84∗±0.80 98.85∗±0.77 0.5766(cd)
C[5-S] 111.57±2.90 98.22±1.11 98.07±1.09 1.0708(ab)

D[13-L] 53.26±3.74 94.56±3.66 94.64±3.58 0.0750(df,ef)
D[13-S] 52.57±3.59 94.38±3.55 95.03±3.12 0.2884(ab,ac)
D[11-L] 43.27±2.99 94.02∗±3.75 94.02∗±3.60 0.0342(+cf,de)
D[11-S] 44.66±2.95 92.23±4.02 92.71±3.93 0.4230(+ad,bc)
D[9-L] 32.35±1.81 90.45±4.43 90.45±4.43 0.0578(+bc,cd)
D[9-S] 33.57±2.37 92.54∗±3.90 92.93∗±3.77 0.4062(+bd,de)

E[25-L] 215.73±8.91 83.17±5.64 83.18±5.59 0.6793(fg,fh,gh)
E[25-S] 186.17±7.54 82.97±5.76 82.90±5.83 1.0912(ab,ac,ad)
E[21-L] 193.74±8.29 82.81±5.56 82.78±5.54 0.5288(+cf,dh,eg,eh)
E[21-S] 140.55±5.71 81.84±6.12 81.84±6.12 1.2494(+ae,bc,bf,de)
E[17-L] 158.84±7.87 82.93∗±5.38 82.87∗±5.39 0.4237(+bg,bh,cg,df)
E[17-S] 100.90±4.19 80.79±6.64 80.79±6.64 1.3943(+af,be,cd,cg)

G[13-L] 103.43±4.12 72.16∗±9.07 72.21∗±8.56 0.2781(df,ef)
G[13-S] 90.84±3.80 68.14±10.60 68.24±10.78 0.6126(ab,ac)
G[11-L] 95.52±3.88 71.19∗±9.02 71.20∗±8.69 0.1635(+cf,de)
G[11-S] 70.03±3.10 61.91±10.83 62.05±10.84 0.7969(+ad,bc)
G[9-L] 85.89±3.78 69.42∗±9.68 69.47∗±9.48 0.1175(+bd,ce)
G[9-S] 54.20±2.58 59.73±11.88 59.73±11.88 0.8306(+be,cd)

Z[18-L] 42.54±2.08 95.25±7.44 95.25±7.44 0.3418(df,eg,fg)
Z[18-S] 40.65±1.98 95.95±6.67 95.54±6.81 0.7607(ab,ac,ad)
Z[15-L] 35.84±1.64 95.16±7.55 95.16±7.55 0.2425(+cg,ef,cd)
Z[15-S] 32.69±1.97 95.95±6.37 96.14±5.95 0.9693(+bc,ac,bd)
Z[12-L] 30.27±1.21 95.15±7.58 95.15±7.58 0.1533(+bg,bf,de)
Z[12-S] 25.79±1.70 95.15±6.89 95.15±6.89 0.7976(+cf,eg,df)

5 Concluding Remarks

In this paper, we first demonstrated the good performance of the classifiers with im-
precise by comparing them to the classifiers with precise rules. However, the number
of imprecise rules is much more than that of precise rules. Then we tried to reduce
the number of imprecise rules keeping its high classification accuracy. To select class
combinations to which we induce imprecise rules, we proposed two measures, similar-
ity and KL divergence to class distribution. By the numerical experiments restricting
ourselves into pairing classes, we could not observe any strong relations but two ten-
dencies: (i) it would be better to select similar classes than dissimilar classes and (ii)
it would be better to select class pairs so that the selected pairs of classes match the
class distribution, i.e., small KL divergence would be better.

Except a few cases, in the numerical experiments performed in Subsections 4.5 and
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4.6, we could not obtain better classification accuracy scores than the case of k = 2
in Table 2. This fact implies that it is very difficult to keep the high classification
accuracy score against reducing the number of induced rules. However, we could
obtain better classification accuracy scores than the classification scores by the usual
MLEM2 rules (the case of k = 1 in Table 2) in the numerical experiments performed
in Subsections 4.5 and 4.6.

We should continue the investigation for the improvement of the usage of the
imprecise rules. For example, we should execute a similar experiments without re-
stricting ourselves into pairing classes and examine the selection by KL divergence
value together with similarity degree. Moreover, datasets like ‘zoo’, the tendencies
were not observed. Then we should further investigate the properties of datasets
which show the observed tendencies.
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Abstract

The task of the rule set acquisition from data consists in the question which
of empirical implications (association rules) existing in data are to be inserted
into the resulting rule set, and with which weights. Our algorithm based on
correction principle generates and tests implications in the sequence according
to the complexity or frequency of the left-hand side. If the confidence of the
implication in data significantly differs from the composed weight (value ob-
tained when composing weights of all sub-rules of the implication which have
been inserted into the rule base already) then this implication is added to the
rule base with a weight correcting the composed weight to the confidence of the
implication in data.

In the contribution, we discuss possible using  Lukasiewicz’s composition
function in this method. We focus on situations when composed weights and
confidences are strongly opposite. We solve this by adding to the rule set not
only correcting rules, but also special turning rules. Obtained results serve as
a basis for modifications of the algorithm for the automatic rule set acquisition
from categorical data using  Lukasiewicz’s composition function.

1 Introduction

The task of the rule base acquisition from data consists in the question which of
empirical implications (association rules) existing in data are to be inserted into the
resulting rule set, and with which weights. The (one-level) rule set contains for each
goal (class) C a set of weighted rules leading from combinations of values of input
attributes to this goal. Rules are given in the form of implications

[A1 ∧ . . . ∧Ak =⇒ C; r] (1)

where Ai are standing for values of different attributes, and r is a weight (degree).
The set of rules are used by some inference mechanism for uncertainty processing in
rule-based systems to obtain estimations of probabilities of C for every combinations
of values of input attributes. Our aim is to pick up from data as small as possible
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number of ”important” rules satisfying the request of the accordance of the resulting
estimations with the data for those combinations of values of input attributes which
are existing in the data. We hope these rules are ”pieces of knowledge” derived from
data and we would like to eventually combine them with expert rules. For this reason,
we try to apply the inference mechanism based on  Lukasiewicz’s fuzzy logic with
evaluated syntax Ev L (see [6, 10]) which has some advantages, namely connected to
the simplicity of combining uncertainties using only operations of limited addition and
subtraction of weights. All computations with weights are so clearly understandable
for experts.

At first, in Section 2, our general method for rule set acquisition from data is
recalled. An algorithm based on correction principle generates and tests implications
in the sequence according to the complexity or frequency of the left-hand side. If the
confidence of the implication in data significantly differs from the composed weight
(value obtained when composing weights of all sub-rules of the implication which have
been inserted into the rule base already) then this implication is added to the rule base
with a weight correcting the composed weight to the confidence of the implication in
data.

In the next section 3, we discuss  Lukasiewicz’s composition operation and focus
on situations when composed weights and confidences are strongly opposite. We solve
this by adding to the rule set not only correcting rules, but also special turning rules.

Obtained results serve as a basis for modifications of the algorithm for the au-
tomatic rule set acquisition from categorical data using  Lukasiewicz’s composition
function (section 4).

2 Method for rule set acquisition from data

We assume to have an observational categorical data set of an extent of m objects and
n attributes (variables, features) at our disposal. These data are supposed to be in the
form of a data matrix. Rows correspond to objects, columns correspond to attributes.
Values of attributes (attribute - value pairs) describe different propositions (categories
of objects) Ai.

Rule sets generated from data will be in our approach treated as sets of rules in
the form of empirical implications α =⇒ C, where α is a conjunction of propositions
A1 ∧ . . . ∧Ak and C is a fixed proposition – a given goal (class) C.

Let FD(α) be the frequency of α in data D, i.e. the number of objects, which fulfil
α in data D. For positive FD(α), the empirical conditional probability PD(C|α) of
the implication α =⇒ C in data D (called in data-mining terminology confidence) is:

PD(C|α) =
FD(α ∧ C)

FD(α)
. (2)

The task of the rule set acquisition from the data consists in the question which
of empirical implications existing in data are to be inserted into the resulting rule set,
and with which weights. It depends not only on the data but also
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• on the requirement of the accuracy with which the resulting rule set is to be in
accordance with the data, and

• on the chosen inference mechanism which is to be used for processing the re-
sulting rule set.

The accuracy of the rule set is controlled in the data D by a statistical test T
of hypothesis that the conditional probability P (C|α) is equal to the weight inferred
from the rule set using all rules satisfied by α.

The rule set is constructed by our original algorithm [9, 2] in a way analogous to the
creating of an axiomatic theory. Here the state of axioms is given to the most simple
statements so that all the other known statements of the domain could be inferred
from them (the requirement of completeness). At the same time the redundancy is
removed; statements derivable from other axioms are going not to be axioms (the
requirement of independence).

The algorithm generates and tests empirical implications in the sequence according
to the complexity or frequency of the left-hand side so the most reliable implications
are generated first. This process starts with the ”empty rule” with the weight equal
to the relative frequency of the goal C in the data and stops after testing all existing
implications. The algorithm generates every implication only once, and at the moment
of testing some implication, all its sub-implications have been already processed.

During testing, the empirical conditional probability PD(C|α) is computed. If
it significantly differs from the composed weight (value obtained when composing
weights of all sub-rules of the implication α =⇒ C) which have been inserted into the
rule base already, then this implication is added to the rule set. Our first choice of a
composition operation (see [9, 2, 1]) was the well-known Prospector pseudo-bayesian
operation [3]:

x⊕P y =
x ∗ y

x ∗ y + (1− x) ∗ (1− y)

working on the unit interval [0, 1]. The operation should be used with respect to the
syntactical dependencies among the rules by the application of the Möbius transform
(according to the correction principle suggested by Hájek in [4]).

The original algorithm of the presented type was developed and implemented in the
system ESOD (Expert System from Observational Data) [9], and nowadays is used
in the system KEX (Knowledge EXplorer) with Prospector composition operation
and usual statistical test. Several parameters can be used in the system to constrain
the search space of implications, e.g. minimal required frequency of left-hand side.
Satisfying results of testing this algorithm on several data sets were publish in [1].
Experiences with different data show that, typically, the acquired rule set consists
of several percent of the number of all generated empirical implications and has a
prediction ability better or comparable with other well known data-mining methods.

Let us underline that the described algorithm for automatic rule set acquisition
from categorical data is general in the way that each composition function can serve
as a basis for a modification of the algorithm. Now, we propose an application of the
composition function derived from  Lukasiewicz fuzzy logic with evaluated syntax Ev L
despite of its non-probabilistic character. It is motivated namely by the simplicity of
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this composition function based on limited addition and subtraction of weights which
is clearly understandable for experts.

3  Lukasiewicz’s composition and turning rules

As a result of some theoretical considerations, an inference mechanism for uncertainty
processing in rule-based systems based on complete  Lukasiewicz’s fuzzy logic with
evaluated syntax Ev L introduced by J. Pavelka (see [11], [12]) has been designed. It
has been implemented previously in the System of Automatic Consultations (SAK),
see [6, 10], nowadays in its follower New Expert System (NEST).

It uses several combination functions (for a general theory of combination functions
see [4, 5]) which evaluate weights of formulas in the interval [−1,+1]. The composition
x⊕L y using  Lukasiewicz’s disjunction can be written as follows:

x⊕L y =





min(1, x+ y) for x, y > 0
max(−1, x+ y) for x, y < 0
x+ y for x · y < 0

(3)

An advantage of this operation is that the composition of weights is very simple: it
is only the limited sum of weights. On the other hand, there are some problems
arising when we try to apply this operation inside our method for automatic rule
set acquisition from categorical data - namely the problem which is connected to
situations when composed weights and confidences are strongly opposite. It means
the difference between the required weight r based on confidence in data and the
composed weight w is bigger than 1 so it is not possible to reach the weight r by
any correcting weight r′ from [−1,+1]. To solve this problem, we propose the idea of
”turning rules”.

First of all, let us describe the idea of turning rules on the simplest case: Let us
consider a rule of the form

[A1 ∧A2 =⇒ C; r]

with the required weight r. Let q = r1 ⊕L r2 be the weight composed by the
 Lukasiewicz’s operator from weights of sub-rules

[A1 =⇒ C; r1]

[A2 =⇒ C; r2]

If q differs from r and |r − q| < 1 then the rule in question is inserted to the rule set
with the corrected weight r′ = r− q. As the result, the sequential composition of the
weights r1, r2, r

′ gives the assumed weight r.
On the other hand, if |r−q| > 1 then it is not possible to reach the assumed weight

r by any correcting weight r′ from [−1,+1]. To solve this problem, the rule in question
is inserted to the knowledge base two times: first as a turning rule with the weight
t = sgn(r− q), and second as a correcting rule with the weight r′ = r− q− sgn(r− q).
As the result, the sequential composition of the weights r1, r2, t, r

′ gives the required
weight r.
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More general, the rule base will have in our case three sets of rules:
TR+ is the set of turning rules with the weight 1,
TR− is the set of turning rules with the weight −1,
CR is the set of correcting rules with weights from [−1,+1].
The general composition function based on an application of  Lukasiewicz’s com-

position operation (3) will be defined in the interval [−1, 1] by the function GLOB∗.
It is an adoption of the function GLOB (see [6, 10]) for working with both correcting
and turning rules. The function GLOB initially realizes composition of rules with
weights w1, ..., wn with the same conclusion C

GLOB([α1 =⇒ C; w1], ..., [αn =⇒ C; wn]) =

= [C; min(1,
∑
wi>0 wi) + max(−1,

∑
wi<0 wi) ]

The function GLOB∗ is defined in such a way that GLOB is applied sequentially
according to lengths of rules. Let Si be the subset of all rules of the length i. Let us
define partial compositions:

ti = GLOB(Si ∩ (TR+ ∪ TR−)), ci = GLOB(Si ∩ CR). (4)

Then we apply the composition operation x ⊕L y (3) for the sequence of values
t1, c1, t2, c2, ... (from the left) to obtain the resulting composed weight.

4 Modified algorithm using  Lukasiewicz’s composi-
tion

The algorithm starts with the ”empty rule” representing the relative frequency v0 of
C in the data D.

The ”empty rule” is inserted to the rule set with the transformed weight w0 =
2v0 − 1.

The algorithm generates and tests empirical implications in the sequence according
to the complexity or frequency of the left-hand side. Each implication α =⇒ C is the
candidate for a rule which is going to be included to the arising rule set.

During testing, the empirical conditional probability v = PD(C|α) (confidence)
is computed. Then the algorithm compares the candidate implication α =⇒ C to
existing rules. It composes (by the adopted function GLOB∗ in the interval [−1,+1])
weights of all sub-rules of the implication α =⇒ C which have been inserted into
the rule set already. For this, partial compositions t1, c1, t2, c2, ... of the weights of
turning, and correcting sub-rules, respectively, are calculated according their lengths
and finally these weights are sequentially added by the composition operator (3) to
the initial weight w0. Let us denote the resulting composed weight by q.

If the empirical conditional probability v = PD(C|α) of the candidate implication
α =⇒ C in the data D significantly differs from the estimation of its conditional
probability obtained as the transformed value q+1

2 of the composed weight q (i.e. the

hypothesis P (C|α) = q+1
2 is rejected by the given statistical test T in the data D)
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then this implication is added to the rule set. The computation of the correcting
weight follows.

The empirical conditional probability v of the rule is transformed to the interval
[−1,+1] using formula w = 2v− 1. If |w− q| < 1 then the rule in question is inserted
to the rule set with the corrected weight w′ = w − q. As the result, the composition
of the weights q, w′ gives the weight w.

On the other hand, if |w − q| > 1 then the rule in question is inserted to the rule
set two times: first as a turning rule with the weight t = sgn(w− q), and second as a
correcting rule with the weight w′ = w− q− sgn(w− q). As the result, the sequential
composition of the weights q, t, w′ gives the weight w.

Clearly, the modified algorithm has the following property which certifies that the
resulting set of rules with the used composition function represents the data according
the chosen statistical test:

Let a data matrix D, a goal C (some attribute - value pair or their combination),
and a statistical test T be given. Let KB be the set of rules constructed by described
algorithm. Let A1, . . . , Ak be values of some different input attributes, and

[α1 =⇒ C; w1], ..., [αn =⇒ C; wn] (5)

be all rules included in KB which are satisfied by A1, . . . , Ak. Let w∗ be the composed
weight

w∗ = GLOB∗([α1 =⇒ C; w1], ..., [αn =⇒ C; wn]) (6)

and p∗ = w∗+1
2 be its transformation to the interval [0, 1].

Then the hypothesis that the conditional probability P (C|A1 ∧ . . . ∧Ak) is equal
to p∗ is not rejected by the test T in the data D.

5 Conclusion

We discussed possible applications of  Lukasiewicz’s composition operation and the
correction principle during our hierarchical construction of the rule base from data.
More complex rules are added into the rule set only when the confidence of the rule in
data significantly differs from the composed weight (value obtained when composing
weights of all sub-rules of the implication which have been inserted into the rule base
already). At this moment, a weight correcting the composed weight to the requested
one is calculated. We proposed an addition of turning rules to the rule base in
situations when composed and required weights are strongly opposite.

The resulting algorithm for automatic rule set acquisition from categorical data
using  Lukasiewicz’s composition operation would be further elaborated and tested.
We hope the presented approach can serve as a possibility to compose expert and data
based knowledge in a common rule set using the same and simply understandable
weights structure.
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Abstract

The contributions throws a critical light on the application of Adams’ p-
validity in reasoning research. It investigates properties of p-valid inferences if
the probabilities of the premises are point probabilities and not—as in the work
of Adams and the related literature—interval probabilities with upper bounds
equal one. Recently p-validity has been used as “a new standard” to evaluate
human probability judgments. Judgments are classified as falling or not falling
into “p-valid intervals” with upper bounds one. As in these experiments the
probability assessments of the premises are point probabilities and not lower
bounds of intervals with upper bounds one, this leads to classify incoherent and
overconfident judgments as rational.

1 Introduction

For more than a millennium philosophers compared human reasoning with logical
principles. In the last century psychologists developed new theories and methods but
continued the comparison with the standards of classical logic. In the last decade,
however, psychologists switched the perspective from classical logic to probability so
that the old standards were not applicable any more. This included one of the most
important standards of classical logic, the validity of inference rules:

If A = {A1, . . . , An} denotes a set of premises and B be a conclusion,
then an inference rule is valid, A |= B, iff it is impossible for all premises
in A to be true and the conclusion B to be false.

Looking for a similar standard that is applicable in the probabilistic approach psychol-
ogists hit on Adams’ p-validity [1, 2, 3, 6, 5]. P-validity allows to classify probabilistic
inference rules as “p-valid” or “p-nonvalid” analog to “valid” and “nonvalid” in classi-
cal logic. Adams introduced p-validity in probability logic as a surrogate for validity in
classical logic. P-validity functions as a substitute, an “Ersatz”, when “... ’probable’
and ’improbable’ are substituted for ’true’ and ’false’.” [3, p.1]
In addition, when p-validity is combined with the interpretation of the probability of
conditionals as conditional probabilities, P (if A then B) = P (B|A), it has the nice
property that it classifies the probabilistic versions of some classically valid but psy-
chologically nonintuitive inference rules as p-nonvalid. The nonintuitive paradoxes
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of the material implication, contraposition, or strengthening the antecedent are valid
but p-nonvalid. Moreover, the set of p-valid inference rules [2, p.277, Definition 6]
corresponds to the rules of system P [13, 17], a well known system of nonmonotonic
logic. Would human reasoning be closer to such a system than to a system of classical
logic [23]? P-validity has been discussed in the psychological literature, for example,
in [21, 14, 23]. Recently it has been claimed to be a “new standard” to evaluate the
rationality of probability judgments in human reasoning [25, 10]. The present contri-
butions throws a critical light on the application of p-validity in reasoning research.

2 P-validity

Consider an inference with the premises A = {A1, . . . , An} and the conclusion B.
Assume that interval probabilities P (A1) ∈ [α′1, 1], . . . , P (An) ∈ [α′n, 1] are assessed
for the premises. Let the lower bounds (α′1, . . . , α

′
n) of the assessment be coherent,

that is, avoid sure loss. Following Adams, call the 1-complement of the probability
of an event E its “uncertainty”, u(E) = 1 − P (E). Adams [5, p.38] introduced
the following uncertainty-sum criterion to define probabilistically valid or “p-valid”
inferences:

Definition 1 (P-validity) “The uncertainty of the conclusion of a [probabilisti-
cally] valid inference cannot exceed the sum of the uncertainties of its premises” , that
is,

u(B) ≤
n∑

i=1

u(Ai) or more explicitely u(B) ∈
[

0,min

{
1,

n∑

i=1

(1− α′i)
}]

, (1)

where n denotes the number of premises and α′i the lower probability of the ith

premise. A definition that is more explicit about the bounds is given in Adams’
earlier papers [6, p.436] and in his 1975 book. Slightly reformulated it reads:

Definition 2 (Probability preservation) The premise set A1, . . . , An probabilis-
tically entails the conclusion B with P (B) ∈ [γ′, 1] iff for all interval probabilities of
the conclusion [γ′, 1] there exists a coherent interval assessment [α′, 1] of the premises
such that if P (Ai) ∈ [α′, 1] for all Ai, then P (B) ∈ [γ′, 1].

Often, when referring to the uncertainty-sum criterion, the literature is silent about
the upper probability bounds of the premises. They are implicitly assumed to be all
equal to 1. This may be obvious in a logical context. It led however to serious mis-
understandings in the research on human reasoning. The uncertainty-sum criterion
lures the understanding that the uncertainties are 1-complements of point probabil-
ities while they actually are 1-complements of bounds of probability intervals [13].
As a consequence, what is called the “uncertainty” of the conclusions is actually the
upper bound of an interval with lower bound equal to zero, [0, u(B)′′].
Definition 1 does not generally lead to coherent probabilities of the conclusion. Con-
sider the following example:
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Example 1 (Or-Introduction) From P (A1) ∈ [α′1, 1] and P (A2) ∈ [α′2, 1] we infer
the coherent probability interval P (A1 ∨ A2) ∈ [max{α′1, α′2}, 1] which corresponds
to the uncertainty interval u(B) ∈ [0,min{α′1, α′2}]. The uncertainty-sum criterion,
however, leads to the uncertainty interval [0,min{2− (α′1 +α′2), 1}], the same bounds
as for and-introduction.

The uncertainty-sum criterion in Definition 1 is insensitive to the logical form of the
conclusion. Adams [6] was well aware of this point and introduced an improved but
less well-known definition. It involves the essentialness of the premises for the specific
conclusion at hand. A premise Ai is essential if its removal from the set of premises
makes the inference invalid. The degree of essentialness is denoted by e(Ai) or by ei
for short.

Definition 3 (Probabilistic entailment) The premise set A = {A1, . . . , An} prob-
abilistically entails the conclusion B with P (B) ∈ [γ′, 1] iff for all interval probabili-
ties of the conclusion [γ′, 1] there exists a coherent interval assessment [α′i, 1] of the
premises such that if P (Ai) = α′i ∈ [α′i, 1] for all Ai, then 1

γ ∈
[

max

{
0, 1 +

n∑

i=1

eiαi −
n∑

i=1

ei

}
, 1

]
. (2)

If a premise Ai is not a member of any essential subset of A then its essentialness ei
is 0. Otherwise a premise belongs to one or more sets of essential premises. If the
cardinality of the set with the smallest number of such premises to which Ai belongs
is k, then ei = 1/k.
The unweighted uncertainty-sum criteria in Definitions 1 and 2 are only coherent for
inference forms in which each of the premises is essential with ei = 1. This holds,
e.g., for the MP, the MT, or the axioms of System P, but it does not hold generally.
Essentialness has not been discussed in the psychological literature at all. But also
in well-known philosophical sources [7, p. 131] it is not clear that the premises are
interval probabilities and essentialness is not mentioned.
We have yet not given any justification for the p-validity formula. Why becomes the
probability of the conjunction of the premises a surrogate of logical validity? Adams
distinguishes formulas with and without conditionals. Conditional-free formulas are
called “factual” formulas by Adams [3]. Probabilities in inference forms containing
factual formulas only show a parallel to classical logic. In classical logic the conjunc-
tion of the premises of a valid argument implies its consequence:

If {A1, . . . , An} |= B, then

n∧

i=1

Ai → B, (3)

where |= denotes entailment and → denotes material implication. The uncertainty-
sum criterion with ei = 1, i = 1, . . . , n, is nothing else than the lower bound of
the probability of a conjunction re-written in terms of 1-complements. Therefore

1For a proof see Theorem 3.5 in [22]. The Theorem omits the “max” and the 0, associated with
the possibility of negative values.
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all classically valid inference forms containing only factual formulas are p-valid by
the uncertainty-sum criterion. If ei = 1 for all Ai, i = 1, . . . , n, the lower probability
bound resulting from the probability of the conjunction of the premises is coherent. If
not all ei = 1 the weighting formula must be applied, otherwise the lower probability
bounds are incoherent.

2.1 Premises with point probabilities

In every-day life interval assessments with upper probabilities 1 are unrealistic. Simi-
larly, in a psychological experiment the participants would have to assess lower bounds
and allow all upper bounds to be equal to 1. That is, each assessment would admit
very high probabilities, including certainty. In the experiments of Singmann et al. [25]
and of Evans et al. [10], for example, the participants did not assess intervals with up-
per probabilities equal to 1. The participants were asked to assess point probabilities,
one judgment one number. The definition of p-validity becomes:

Definition 4 (Conjunction) A logically valid inference form in which each premise
Ai, i = 1, . . . , n, is essential with ei = 1 and which is conditional-free is p-valid iff
the minimal probability of its conclusion, γ′ = P (B), is equal to or greater than the
lower bound of the probability of the conjunction of its premises,

γ′ = P ′(
n∧

i=1

Ai) ≥ max

{
0,

n∑

i=1

αi − (n− 1)

}
. (4)

γ′ is the coherent lower bound of the probability of the conjunction of a set of propo-
sitions when no assumptions about their dependence or independence are made.
What about upper bounds of the conclusions if the assessment of the premises is a
point probability? Assuming ei = 1, i = 1, . . . , n and conditional-free premises, the
upper bound is obtained from the conjunction of the premises:

γ′′ = P ′′(
n∧

i=1

Ai) ≤ min{α1, . . . , αn} . (5)

Because of the conjugacy property

The upper bound of an interval probability is equivalent to 1 minus the
lower bound of its complement, P ′′(A) = 1− P ′(¬A) .

p-validity may equally well be defined in terms of upper probabilities:

Definition 5 (Upper bounds) A logically valid inference rule is p-valid iff the
upper probability of its conclusion, γ′′(B), is less 1 minus the lower bound of the
complement of its conclusion, that is, if γ′′(B) ≤ 1− γ′(¬B).

Because of the gap between γ′′ and 1 p-validity not only protects against too low but
also against too high probability judgments.
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2.2 Premises containing conditionals

What if the premises contain conditionals and the probability of the conditionals are
taken as conditional probabilities? To build the conjunction of the premises cannot
be right here because the conditionals are “conditional events” of the form E|H
and conditional events are not ordinary propositions. The conjunction of conditional
events does not follow the same principles as the conjunction of ordinary propositions.

The problem dissolves if we interpret the conditionals in the premises as material
implications. Material implications belong to the realm of “ordinary” propositional
calculus. What at first appears as an inconsistency—the conjunction of conditionals
entails the conclusion—turns out to be the crucial point of Adams’ introduction of
conditional probabilities in probability logic. In p-valid arguments conditional event
interpretation leads to higher probabilities of the conclusions than material implica-
tions interpretation.

If conditionals are interpreted as material implications, then de Finetti’s Fundamental
Theorem applies. Numerical solutions are found by linear or fractional programming
[19, p.100 ff.], linear programming for conclusions without conditional events and
fractional programming for conclusions with conditional events. Conditionals with
zero probabilities of the conditioning event are important for improved algorithms in
complex inferences. Several nested linear systems are analysed, each system corre-
sponding to a “zero layer” [9].

To repeat, the p-validity bound is obtained if conditionals are interpreted as material
implications and if the coherent lower probability of the conjunction of the premises
is less than the lower bound for the conditional event interpretation.

Reasoning research has extensively studied the human interpretation of conditionals.
A clear dominance of the conditional event interpretation was found in [11]. Con-
ditionals are not interpreted as material implications. P-validity may be seen as a
relation between two interpretations of conditionals, material implication and condi-
tional event.

In the following sections we write β| or γ| to denote the probability of a conditional
event and β→ or γ→ etc. to denote the probability of a material implication.

If P (A) = αA and P (B) = αB, then the probability of material implication
P (A→ B) = γ→ is in the interval

γ→ ∈ [max{1− αA, αB},min{1, 1− αA + αB}]. (6)

Because P (A→ B) = 1−P (A∧¬B) the minimum of γ→ is obtained if the probability
of the conjunction of A and ¬B is maximal, P (A∧¬B) = min{αA, 1−αB} so that its
1-complement is γ′→ = max{1− αA, αB}. The maximum is obtained if P (A ∧ ¬B) is
minimized, i.e., if P (A∧¬B) = max{0, αA + (1−αB)− 1} so that the 1-complement
is γ′′→ = min{1, 1− αA + αB}. If the conditional is interpreted as a conditional event
we have:

If P (A) = αA and P (B) = αB, then the probability of the conditional
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event P (B|A) = γ| is in the interval

γ| ∈
[
max

{
0,
αA + αB − 1

αA

}
,min

{
1,
αB
αA

}]
, if αA > 0 (7)

and γ| ∈ [0, 1] if αA = 0.

For 0 < αA ≤ 1 the interval is obtained from P (B|A) = P (A ∧ B)/P (A) and the
bounds of the conjunction are P (A ∧B) ∈ [max{0, αA + αB − 1},min{αA, αB}].
We illustrate the relationship between p-valid and p-nonvalid inferences on one hand
and the interpretation of conditionals on the other hand by an elementary example.

Example 2 (Modus Ponens) From P (A) = αA, P (A→ B) = β→ infer the p-validity
bound γ′→ = max{0, αA + β→ − 1}. The probabilities of the premises are required to
be coherent, i.e., β→ ≥ αA. We have the linear system

x1 + x2 = αA

x1 + x3 + x4 = β→, and

4∑

i=1

xi = 1, xi ≥ 0, i = 1, . . . , 4 ,

where x1 = P (A ∧ B), x2 = P (A ∧ ¬B), x3 = P (¬A ∧ B), and x4 = P (¬A ∧ ¬B);
The objective function is γ′→ = x1 + x3 which obtains its minimum for x3 = 0, so
that γ′→ = x1 = P (A ∧ (A→ B)), the lower probability of the conjunction of the two
premises, which is max{0, αA + β→ − 1}. For the conditional event interpretation we
obtain γ| ∈ [αAβ|, 1− αA + αAβ|].

In the coherence approach it is completely “legal” to work with the zero probabil-
ity αA = 0 leading to γ| ∈ [0, 1]. The solution—compare the Theorem of Total
Probability—requires only the sum of two products, no ratios. In the relevant axiom
of the coherence approach P ((A ∧ B)|H) = P (A|H)P (B|(A ∧H)) (see e.g. [9]) the
conditional probabilities are primitive. In the Kolmogorov approach, however, the
conditional probabilities are defined by the ratio of absolute probabilities. To take
P (B|A) = 1 if P (A) = 0, as Adams does, leads to P (B|A) + P (¬B|A) = 2. To say
that P (B|A) is undefined or illegal if P (A) = 0 implies to illegalize also P (B|A) if
P (A) = 1. Oaksford and Chater [21] assume that minor premises in MP, MT, DA,
and AC, always have probability 1. However, if an MP with P (A) = 1 is fine, then a
DA is undefined (and neither p-valid nor p-nonvalid) and vice versa.
Singmann et al. [25] and Evans et al. [10] employ the lower bound max{0, αA+β?−1}
to evaluate the probability judgments of the participants in their experiments. The
question mark indicates the unclear interpretation of the conditional. This lower
bound is the coherent lower probability for the conjunction of the premises where
conditionals are material conditionals, i.e., β? is a actually β→. In the experiments the
upper probability used to evaluate the judgments is 1. The assessments of the premises
were, however, not intervals with upper bound 1 but point probabilities. Therefore
the upper bounds of the probability of the conclusions cannot be 1. If, however, in a
psychological investigation p-validity “intervals” are determined it would be consistent
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to determine the upper bounds with the material implication interpretation, that is, to
work with γ′′→ and not with γ′′? = 1. That way the two interpretations of conditionals
might empirically be compared.
Adams’ uncertainty-sum criterion does not apply to logically nonvalid inferences. In a
psychological context, however, we may find an interpretation of the conditional which
makes the inference rule valid. Let’s take as an example DA. Here the equivalence
interpretation leads to a valid argument form.

Example 3 (Denying the Antecedent) In classical logic DA is invalid, {A→ B,¬A} 6|=
¬B. The uncertainty-sum criterion leads to the lower probability max{0, α¬A+β?−1}
(? for the unknown interpretation). This formula is used by Singmann et al. [25] and
Evans et al. [10]. But the result is different from both, from γ′→ and from γ′| . As the
DA is nonvalid the conjunction of its premises does not entail its conclusion. If the
conditional A→ B is interpreted as an equivalence, that is as A↔ B, then the lower
probability of the conclusion is equal to max{0, α¬A + β↔ − 1}. This biconditional
makes the DA logically valid and p-valid.

3 Correlated events

In a psychological context the judgment of correlation is often of similar importance
as the judgment of probability. In an inference rule correlations may appear at two
locations: at the premises and at the conclusion.
The 2× 2 correlation ψ between the two binary events A and B is,

ψ =
x1x4 − x2x3√

αA(1− αA)αB(1− αB)
, (8)

where x1 = P (A ∧ B), x2 = P (A ∧ ¬B), x3 = P (¬A ∧ B), and x4 = P (¬A ∧ ¬B);
αA and αB constrain the value of ψ; lower and upper bounds are obtained from (8)
and the four conjunction probabilities x1 ∈ [max{0, αA + αB − 1},min{αA, αB}],
x2 = αA − x1, x3 = αB − x1, and x4 = 1− (x1 + x2 + x3).

3.1 Correlation in the conclusion

The probability of a single if A then B sentence carries little or no information about
the correlation between the two events. From the material implication P (A→ B) =

β→ we infer ψ ∈ [−1, β→/2
1−β→/2 ] and from the conditional event P (B|A) = β| we can

only infer the vacuous interval ψ ∈ [0, 1]. This changes of course when premises are
added.
From the premises of the rules we infer the lower and upper correlations for the mate-
rial implication interpretation, [ψ′→, ψ

′′
→], and for the conditional event interpretation,

[ψ′|, ψ
′′
| ], of the conditional in the premises. The results are obtained with the help of

the lower and upper probabilities of the conclusions, i.e., P (B), P (¬A), P (¬B), and
P (A) for MP, MT, DA, and AC, respectively. They allow to determine x1, x2, x3, and
x4 which are required to determine ψ by Formula 8.
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The Figures 1 and 2 show two numerical examples. The probabilities of the minor
premises P (A), P (¬B), P (¬A), and P (B) are fixed at α = 0.5. The probability of the
major premise, β = P ( if A then B), is represented along the X-axis. The continuous
lines show the results for the conditional event interpretation, the dashed lines those
for the material conditional.
For MP and DA the results for the material implication interpretation are identical
because of the symmetry of α and 1 − α around .5. For all four inferences the
upper correlation increases from ψ→ = 0 approximately linearly up to ψ→ = 1.
At P (A → B) = .5 the correlation must be negative that is, the upper bound,
ψ′′→ ≤ 0. The least informative rule is the AC with the widest intervals for ψ→.
For the conditional event interpretation the MP, the MT and the AC infer positive
correlations with ψ′| ≥ 0. The DA is very noninformative.
Inferences about the correlation allow to state qualitative properties like “always posi-
tive”, “always negative”, and “noninformative”. The conditional event interpretation
is more intuitive than the material implication interpretation. For the MP and the
AC the conditional event interpretation uniformly dominates the material implication
interpretation, ψ′| ≥ ψ′→ and ψ′′| ≥ ψ′′→.
The distinction between p-valid and p-nonvalid inferences rules does not identify
strong or weak conclusions about correlations.
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MP α = 0.5

, 0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.0
0.5

1.0

MT α = 0.5

Figure 1: Left: MP, ψ on the Y-axis, α = P (A) = .5 and β = P ( if A then B)
on the X-axis. Right: MT, α = P (¬B) = .5. Line: Material implication. Dashed:
Conditional event interpretation.

3.2 Correlation in the premises

Experiments on human reasoning often investigate inferences with content-lean ma-
terial, like “If there is an A on one side of the blackboard, then there is a B on the
other side.”. Such a conditional does not carry information about the dependence or
independence of the involved events. If however content-rich material is presented,
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Figure 2: Left: DA, ψ on the Y-axis, α = P (¬A) = .5 and β = P ( if A then B) on the
X-axis. Right: AC, α = P (B) = .5. Line: Material implication. Dashed: Conditional
event interpretation.

then the participants have background knowledge that will enter the inference pro-
cess. Especially if-then sentences in the premises will activate beliefs about causal
and correlational dependencies. Similarly, in every-day arguments events are usually
supposed to be correlated.
A first anchor is independence. It is plausible to suppose that in every-day con-
versation we understand “if A then B” as “P (B|A) > P (B)”. If in a psychological
experiment the participants assess point probabilities P (A) and P (B|A) in an MP and
the participants believe that A and B are independent, then their conclusion should
be P (B) = P (B|A). More generally, With some backward-engineering it is easy to
infer an underlying correlation. For the MP with conditional event interpretation we
apply formula 8 with

x1 = αβ| x2 = α(1− β|) (9)

x3 = γ − x1 x4 = 1− γ − x2 (10)

The same may be done for MT, DA, and AC. In all these cases the judgment of point
probabilities reveals the perceived correlation between A and B.

4 Distributions instead of intervals

The interval assessment of the premise probabilities raises the question of coherence.
Usually not all combinations of point probabilities, each one belonging to its according
interval, are jointly coherent. To handle coherence for interval probabilities Gilio
introduced the concept of generalized coherence (g-coherence) [12], [8, Definition 2].

Definition 6 (g-coherence) The vector of lower bounds (α′i, . . . , α
′
n) is g-coherent
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iff there exists a precise coherent assessment (αi, . . . , αn) such that (αi ∈ [α′i, α
′′
i ], . . . , αn ∈

[α′n, α
′′
n]).

As conjugacy holds, P (E)′′ = 1−P (¬E)′, the upper bounds need not be included in
the definition.
The lower and upper bounds of the premise probabilities αi span an n-dimensional
hypercube with the volume

∏n
i=1(α′′i − α′i). Coherence defines a convex polyeder

within the hypercube. Each point in the polyeder corresponds to a vector of a coherent
point probability. G-coherence requires the polyeder not to be empty. The ratio of
the volume of the polyeder and the hypercube is a measure of the degree of coherence
for a given pair of vectors of lower and upper probabilities.
If we treat the αi as random variables, introduce rectangular density functions on the
[α′i, α

′′
i ] intervals, f(αi) = 1/(α′′i −α′i), and if we assume that the αi are stochastically

independent, then volumes in the hypercube correspond to a probability measure.
The volume of the coherent subspace measures the (second order) probability of being
coherent.
It is however more general to replace the rectangular by more flexible distributions, to
replace the intervals [α′i, α

′′
i ] by the full range of the unit interval [0, 1], and to replace

the independence assumption by an appropriate measure of probabilistic dependence
[15]. The resulting structure is a vine structure [18]. It is characterized as follows:

1. The imprecise uncertainty of the n premises is modeled by a multivariate prob-
ability density on the simplex [0, 1]n.

2. The (marginal) uncertainty of each premise is described by an appropriate prob-
ability density, e.g., a beta distribution.

3. The pairwise (unconditional and conditional) stochastic dependencies are char-
acterized by copulas. Regular vines allow a pairwise decomposition of the joint
distributions.

4. Practical numerical analyses are performed by stochastic simulation.

The architecture corresponds to a stochastic response model. An individual represents
his or her uncertainty by a distribution and when asked for a probability judgment
responds with a random number generated by the distribution [15].

5 Discussion

All classically valid inference forms of propositional calculus which are conditional-free
are p-valid. Of those containing conditionals a subset is p-nonvalid, most typically
the paradoxes of the material implication, but also strengthening the antecedent,
transitivity, contraposition, or-to-if (from “A∨B” infer “if ¬A then ‘B”). Psycholog-
ically the p-nonvalid rules are just those which are nonintuitive (except for transitiv-
ity!). The p-valid rules correspond to the rules of System P [17, 13, 23], a prominent
system of nonmonotonic logic and attractive for modeling human reasoning. More-
over, the two kinds of interpretation of conditionals—conditional event and material
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implication— are the decisive criterion to distinguish p-valid from p-nonvalid rules.
The nonintuitive rules are filtered out by the stronger conditional event interpreta-
tion. This is the reason why Adams used conditional probabilities for the probability
of conditionals. Both, p-validity and conditional probabilities, go hand in hand.

Recent psychological studies [10, 25] used p-validity to evaluate human judgments as
falling into “p-valid” intervals or not. The intervals are claimed to be a new stan-
dard of rationality. These studies do not see that Adams assigns interval probabilities
with upper probabilities equal to 1 to the premises, that is, not point probabili-
ties as in the judgments of the participants in the experiments. For inference rules
like the MP or the MT, where all premises have degrees of essentialness equal to 1,
Adams’ uncertainty-sum is identical to the lower probability of the conjunction of
the premises if the conditionals are interpreted as material conditionals. If the infer-
ences are not content-lean but involve causal knowledge, background knowledge about
correlations narrows down the intervals of the probability of the conclusion, leading
to point probabilities in the case of precise correlations. Psychologically it is highly
plausible to abandon both, models with point probabilities and models with interval
probabilities, and to replace them with models in which imprecision is represented by
continuous probability density functions. The strict classification as “coherent” and
“non-coherent” dissolves and is replaced by distributions on degrees of coherence.

The coherence approach has an elegant method to establish the bridge between clas-
sical logic and probability. It does necessarily start from a Boolean algebra. If the
premises are logically dependent this is directly taken into account by removing im-
possible constituents, those that are forbidden by the logical dependence right at the
beginning of any analysis [9].

Adams distinguishes different kinds of probability preservation, among them certainty
preservation [4]. “A is a strict [certainty preserving] consequence of S ... if and only
if for all probability functions P ... if P (B) = 1 for all B in S, then P (A) = 1.”
[2, p. 274] McGee [20] observes that this criterion falls back to material implication:
“The strictly valid inferences are not those described by Adams’ theory, but those
described by the orthodox theory, which treats the English conditional as the material
conditional. This raises an ugly suspicion. The failures of the classical valid modes of
inference appear only when we are reasoning from premises that are less than certain
... to a conclusion that is also less than certain.” [20, p.189] This is a consequence
of Adams’ conception of conditional probability as defined by P ( if A then B) as
P (A ∧B)/P (B) if P (B) 6= 0 and as 1 if P (B) = 0, i.e., he “...assigns the conditional
the probability 1 when the conditional probability is undefined” [20, p. 190]. McGee
proposed to employ Popper functions, but zero probabilities are directly addressed in
the coherence approach.

P-nonvalid rules may lead to informative and important probabilities of the conclusion—
if the judgments are coherent. The distinction between p-valid and p-nonvalid rules
does not touch the entailment relation based on coherence. In probabilistic inference
coherence is the gold standard. In models of human reasoning p-validity is a relict of
classical logic.
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Diagnostic problem without marginals

Otakar Křıž
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Abstract

An algorithm (Symptom Proximity) is suggested for solving discrete diag-
nostic problem. It is based on probabilistic approach to decision-making un-
der uncertainty, however, it does not use knowledge integration from marginal
distributions.

1 Introduction

1.1 The layout of the paper

1. There are historical reminiscences explaining the position of the suggested method
in a broader context in subsection 1.2.

2. Basic notions are defined including the formulation of the diagnostic problem
and describing the role of the statistical file F in subsection 1.3.

3. The essential features of the algorithm SP are laid down in section 2.

4. SP is described in a symbolic programming language in section 3.

5. On the basis of this description, computational complexity CSP of SP in terms
of ”length” l = |F| of the file F and of its ”width” n = | {ξ1, ξ2, · · · ξn} | is
estimated and verified experimentally for different values of l and w in section
4.

6. ”Discernment power” of SP (i.e. absolute values or percentage of wrong classi-
fications ) is tested for different ”apertures” ( sets of symptom variables whose
values are disclosed to SP as evidence). Testing is performed both via method
”leave one out” as well as on all data. The results are compared with a simple
marginal-based algorithm under the same testing conditions in section 5.

7. Features of SP sorted as ”pros” and ”cons” are summarized in section 6 .
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1.2 Historical background

Firat attempts for machine-assisted decision-making under uncertainty are marked by
rule-based expert systems Mycin and Prospector in early eighties. Weights in rules
were interpreted as conditional probabilities. But the way the rules were combined
was not probabilistic ones. The same held for systems with fuzzy number approach.
At that time, Albert Perez in [9]) raised the requirement that partial knowledge should
be ”integrated” intensionally i.e. using the concept of theoretical joint distribution
P . Knowledge was understood as probability or conditional probability elicited either
from experts or observed from experiments. The best way to keep it, at least partially,
complete and homogenous was to assume that it comes in form of less-dimensional
distributions that were supposed to be marginals of the theoretical joint P . Thanks to
smaller sizes, marginals could be estimated from available data. The main effort in the
subsequent research was concentrated on the way how to assemble effective approxi-
mations of the joint P . The formulation of the task was known as marginal problem
already in [4] and its specific solution was suggested even before in [2]. Different
models, connected with names like Lauritzen, Spiegelhalter, Dempster, Shafer, Pearl,
Dawid, were studied with assumptions about conditional independence of variables
appearing in P that helped to integrate the marginals. At present, there exist profes-
sional software packages (e.g. Hugin) supporting the decision-making on commercial
basis. As, beside different algorithms, even the selection of proper marginals may be
a problem of its own (see e.g. [7] and [8]), this paper tries to study an alternative to
the marginal approach.

1.3 Basic notions

Let (Ω,X , P ) be a probabilistic space,
η = ξ0, ξ1, ξ2, . . . ξn be finite sets and

ξr : (Ω,X , P ) −→ (ξr, 2
ξr ) for r = 0, 1, 2, · · ·n be measurable functions.

Though the topic is defined in a formal way, the names of objects in the universe
of discussion (e.g. diagnosis, symptoms etc.) are taken from the field of medicine to
give them a semantical interpretation and ease up understanding of basic notions and
character of their interaction.

The mutual behaviour of all random variables η, ξ1, ξ2 · · · ξn is described by a
theoretical joint probability distribution Pη ξ1ξ2···ξn .

Decision making under uncertainty with probabilistic background can be inter-
preted as the diagnostic problem with the following formulation:

Diagnostic problem: Find the diagnosis d(s1, s2 · · · sn) ∈ η that is the most
probable (according to the Pηξ1,ξ2···ξn ) on the set

{ω ∈ Ω | ξ1(ω) = s1 & ξ2(ω) = s2 & · · · ξn(ω) = sn}

for a given (i.e. observed) arbitrary combination (s1, s2 · · · sn) of values of symptom
variables from the cartesian product ξ1 × ξ2 × . . . ξn.
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If we wish to predict the values of diagnostic variable η, the conditional probability
Pη|ξ1ξ2...ξn (derivable from Pη ξ1ξ2...ξn) should be used instead of Pη ξ1ξ2...ξn .

Optimal decision: The value of diagnosis d from η that should be selected if the
values of symptom variables are (s1, s2 · · · sn) to keep the wrong classification of d as
low as possible), called Bayes solution, is for each (s1, s2 · · · sn) ∈ ξ1 × ξ2 × . . . ξn
given by the formula

dopt(s1, s2 · · · sn) = argmax
d∈η

Pη |ξ1ξ2...ξn(d|s1, s2 · · · sn) (1)

So far the theory. Unfortunately, in the ”real world”, we are never given the
theoretical distribution Pηξ1ξ2···ξn in full and directly. To compensate for this, we
expect to have some indirect information about Pηξ1ξ2···ξn that will be called knowledge
base and denoted by K. It is done by postulating a set of conditions that we believe
the theoretical Pηξ1ξ2···ξn fulfills.

Marginal problem: Using the concept of marginal problem, see [4], knowledge
base K is given as a set of ”low-dimensional” distributions ( e.g. number of variables
in the distribution does not exceed e.g. 10. ), postulated as theoretical marginal
distributions of the Pηξ1,ξ2...ξn . Beside the marginals, there are usually made assump-
tions about conditional independence holding between groups of random variables. It
is interesting that the topic was so attractive that it was addressed in several waves,
usually after 20 years. Original and interesting ideas were not just the product of the
last two decades but go back much deeper. See e.g. [2], [4],[3], [1]. Instead of the un-
known Pηξ1ξ2···ξn , we try to construct (from the marginals) its suitable approximation

P̂ηξ1ξ2···ξn that could play its role in the formula (1).
If existence of marginals is postulated, it is natural to ask where do they come

from. Therefore, another notion should be specified.
Statistical file F: Let (ω1, ω2, · · ·ωs) be a sequence, where individual ωi ∈ Ω

denote realizations of a random selection from Ω, then the sequence

(η(ωl), ξ1(ωl), ξ2(ωl) · · · ξn(ωl))
s
l=1

of points in cartesian product η × ξ1 × ξ2 × . . . ξn is a statistical file F of size s (i.e.
s = |F|) and (F)r is the r-th member of F .

There exists a taciturn assumption that decision making about a concrete case
(patient) should be very fast (about 1 sec/pers.). On the other hand, longer time
(e.g. hours of CPU time) devoted to selecting and populating the marginals (in the
learning phase ) is tolerable. This may be one of the reasons why ”marginal approach”
is the standard way.

However, using marginals for ”integrating” P̂ηξ1ξ2···ξn and its subsequent condi-
tioning need not be mandatory for solving the diagnostic problem.

2 Basic idea of SP algorithm

An algorithm, called SP (Symptom proximity), tries to construct necessary condi-
tional probabilities directly from available statistical data file F . Basic idea of SP
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can be explained by an assumption ”Patients with similar smptoms should have a
similar diagnosis”. Hence, the name of the algorithms SP interpretes the similarity
as a proximity in the sense of a very natural metrics.

Proximity metrics ρ :

ρ : Ξ×Ξ −→ R (u,v) 7−→ n−
n∑

i=1

δ( (u)i, (v)i)

where δ(·, ·) is the Kronecker function and (u)i is the i-th component of the sequence
u

The mapping ρ is a metrics (i.e. reflexivity, symmetry, triangular inequality) on
Ξ that can be used for defining equivalence classes on Ξ. For each v ∈ Ξ, there exist
n+ 1 sets C0(v), C1(v), · · ·Cn+1(v), where Ck(v) = {u ∈ Ξ | ρ(u,v) = k}.

The next step is to estimate P (Ck(v)). It can be done, in a natural way, using
available data ( i.e. the statistical file F).

P (Ck(v)) =

|F|∑

j=1

δ(ρ(((F)j)Ξ,v), k)/|F|

where (F)j is the j-th vector from file F i.e. (F)j ∈ η×Ξ. Similarly, ((F)j)Ξ is that
part of the j-th vector (F)j that corresponds to symptom variables i.e. ((F)j)Ξ ∈ Ξ.
We are interested in the set Ck(v) with smallest k but at the same time such that
P (Ck(v)) > 0. Let us denote this optimal k as k0.

Finally, the conditional probability of η can be defined on Ck0(v)

P (η|Ck0(v)) (d|v) = 1/(|F| · P (Ck0(v))

|F|∑

j=1

δ(ρ(((F)j)Ξ,v), k0) · δ(((F)j)η, d)

If v = (s1, s2, · · · sn) ∈ Ξ, we may approximate the conditional probability
Pη |ξ1ξ2...ξn(d|s1, s2 · · · sn) appearing in formula(1) by the P (η|Ck0(v)) (d|v) so that
Pη |ξ1ξ2...ξn(d|s1, s2 · · · sn) = P (η|Ck0(v)) (d|v) and formula (1) can be applied as the
decision rule in the SP algorithm.

The algorithm SP is presented in a symbolic programming language in section 3.
The complexity of the algorithm SP will be defined, in section 4, as a function of
size |F| of the data file F and as a function of number n of symptom variables. The
complexity is verified on real data by measuring time required for making decision for
one person.

The decision quality (or discernment power) is dealt with in section 5. In principle,
it is the number of wrong classification what is measured. However, it may defined
more formally:

Let L ⊂ F , f ∈ F ,v ∈ Ξ. Further, let SP(L,v) ∈ η denote decision of SP
when evidence (about a patient) is v and algorithm SP has the ”learning” file at his
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disposal. Then, ”discernment power” of SP can be measured by percentage of wrong
classification either as

100


1− 1/|F|

|F|∑

j=1

δ(SP(F , ((F)j)Ξ), ((F)j)η)




or with the formula

100


1− 1/|F|

|F|∑

j=1

δ(SP(F\(F)j , ((F)j)Ξ), ((F)j)η)




.
This second approach is referred to as ”Leave one out” technique.

The results will be compared with one simple algorithm using the ”marginal ap-
proach” in section 5.

3 Description of SP in a symbolic language

SP algorithm can be used in different roles. It may be a simple ”one-shot” decision-
making, repeated decision-making for different apertures, using SP in a general test-
ing scheme or it may be required for specific testing via ”Leave one out” technique.

Instead of using one highly parameterized form of SP algorithm, it seems better,
from didactical reasons, to use several stand-alone modifications. However, only the
most simple version, under the name function SP , will be presented in this paper.
Specific modifications built on its basis ( and entitled SPL and SPA) will be mentioned
in other sections.

The following symbolic description is kept as simple as possible.
First, though the variables have their specific denotation reflecting their semantics,

they are coded as integers or arrays of integers to make SP faster.
Second, tests and resulting exceptions in inconsistent situations such as |L| =

0 or |η| = 0 are omitted! Function SP returns the value dopt(t) for each t =
(s1, s2 · · · sn) ∈ ξ1 × ξ2 × . . . ξn

1 function SP (t)
2 read L −→ L(0− n, 1− |L|)
3 for j = 1, |η|
4 for i = 1, n
5 LD(i, j) = 0
6 next i
7 next j
8 maxcount = 0
9 for l = 1, |L|

10 count = 0
11 for j = 1, n
12 if L(j, l) = t(j) then
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13 count = count+ 1
14 endif
15 next j
16 if maxcount < count then
17 maxcount = count
18 endif
19 d = L(0, l)
20 LD(count, d) = LD(count, d) + 1
21 next l
22 max = 0; dopt = 0
23 for j = 1, |η|
24 val = LD(maxcount, j)
25 if max < val then
26 max = val
27 dopt = j
28 endif
29 next j
30 SP = dopt
31 end

Comments to the code of SP :

l.1 expresses that SP is a function SP : Ξ −→ η i.e. accepts as argument the
vector t and returns the optimal diagnosis dopt.

l.2 learning file L is stored in an array L. The value ”0” in first dimension is for
values of η.

l.3 - l.7 sets zero values to the array LD (level distance) where metrics will be
stored in the sequel.

l.9 - l.21 For each l ∈ L, number of symptom variables with coinciding values
(symptoms) is calculated in the variable count. Increasing LD(count, η(l)) by one
increases chances of diagnosis η(l) to become optimal dopt if the decision should take
place at the level count.

l.16 - l.18 stores in maxcount the up-to-now achieved maximal number of coin-
cidences.

l.23 - l.30 finds in LD(maxcount,j) such diagnosis dj that would, on the level
maxcount, define the winning dignosis dopt. Naturally, if the number of cases from
L is small (and that would result in objections from statistical point of view), it
is possible to perform search for optimal diagnosis on a level count smaller than
maxcount that would have more objects than level maxcount. Or even, it is possible
to sum LD(ct, j) for ct = count to maxcount in an array D(1-|η|) and search for
dopt in this array. (However, this modification of SP is not available in the presented
version.)

The link of the code with previous formal description may be made more clear
if we realize that the value in LD(maxcount, j) is proportional to the probability
P (Cmaxcount(t)) for the diagnosis j. Variable maxcount corresponds to k0.
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4 Computational complexity

It should be mentioned that experimenting with algorithms was performed on a sta-
tistical file F , from the field of rheumatology with 1089 patients. Diagnosis variable
η contained 4 diagnosis and there were 34 symptom variables whose ranges had car-
dinalities from 2 to 9. That way, no generation of artificial examples was necessary.
Nevertheless, this choice has no influence on the substance of SP .

Complexity CSP of SP algorithm can be mesured with respect to the number of
symptom variables n, number |L| of objects in the learning file L and with respect to
the number |η| of diagnoses i.e. CSP = C(n, |L|, |η|). Due to the simple structure of
SP , CSP can be estimated directly:

l.2 c1 ∗ n ∗ |L|
l.3 - l.7 c2 ∗ n ∗ |η|
l.9 - l.15 ˙ c3 ∗ |L| ∗ (n+ c4)
l.23 - l.29 c5 ∗ |η|
———————————————————————-
CSP = n [(c1 + c3)|L|+ c2|η|] + c3c4|L|+ c5|η|

The assumption of linearity (c1, c2 · · ·) is a bit simplifiction and valid only for small
ranges of n, |L|, |η|. If the ranges are greater, then effects like ”paging” of memory, the
way files are stored in a concrete file system (e.g. FAT 32 or NTFS ) and variables
used for storing the ”coding” numbers may come in play. E.g. values of η are stored
in variables of type integer*1 and therefore should not exceed 255.

Therefore, instead of looking for explicit values for c1, · · · c5, direct measurements
are documented in Table 1 where length |L| of L varies from 1000 to 20000 and
in Table 2 where width n of L varies from 35 to 300. Corresponding files L (e.g.
L(70, 1089) or L(35, 20000)) were generated from original L (i.e. L(35, 1089) ) by
repeating respective rows and columns. In the Tables 1 and 2, column Tread contains
time necessary to read L. Column Ttotal increases with square power of |L| as it is the
time necessary for |L| decisions. When Ttotal is divided by |L|, then the times in col-
umn Tdecision are always below 1 sec and therefore completely acceptable. Based both
on analysis and direct measurements, complexity of SP is not a problem. Therefore,
the limiting factor for better discernment power of SP is an externality i.e. experts
should provide bigger data in form of L.

5 Decision-making quality

Though the following example is very simple, it may reveal interesting facts when
comparing SP and the decision-making algorithm A4( from [5] and mentioned in [6])
that can serve as a simple representative of marginal-based algorithms. Let knowledge
base KB consist of 3 marginals i.e. KB = {m1,m2,m3}.
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m Tread Ttotal Tdecision

1000 31 msec 1 sec 10 msec

2000 60 msec 2 sec 20 msec

5000 156 msec 25 sec 50 msec

10000 343 msec 100 sec 100 msec

20000 687 msec 400 sec 200 msec

Table 1: Computational time dependence on length m = |F| of file F

n Tread Ttotal Tdecision

35 31 msec 0.546 sec 0.5 msec

70 31 msec 1.046 sec 0.9 msec

105 47 msec 1.516 sec 1.3 msec

140 45 msec 1.968 sec 1.8 msec

200 78 msec 2.78 sec 2.59 msec

300 109 msec 4.07 sec 3.78 msec

Table 2: Computational time dependence on width n of file F
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The ”testing environment” provides an easy way to manipulate with ”inputs” to
the decision-making algorithm.

First, it makes possible to remove marginals from KB and second, not all symptom
variables, from n possible ones, need to be revealed as ”evidences” to decision making-
algorithm SP or A4.

Then, the expression {m1,m3}∩ {ξ1− ξ33} (in column ”marginals ∩ variables” of
Table 3) stands for situation s2 where KB consists only of marginals {m1,m3} and
values of all 33 symptom variables {ξ1− ξ33} are submitted as ”evidences” to the SP
and A4. (Naturally, {m1,m3} has impact only on A4, whereas {ξ1 − ξ33} influences
both SP and A4 ). Column ”active variables” in Table 3 contains symptom variables
whose values have influence on A4 as result of both conditions. Column ”active space”
is product of their ranges. As all symptom variables here are dichotomical ones, the
values are like 4, 16, 32.

Let further, the above mentioned marginals describe, beside the implicitly sup-
posed diagnosis variable η, behavior of the following sets of symptom variables:

m1 = {ξ25, ξ33}, m2 = {ξ26, ξ32}, m3 = {ξ27, ξ33}

Even this denotation is a little simplified. E.g. m1 = Pηξ25ξ32 is not enough as it
should be also mentioned what data was used for populating the marginal m1. This
can be expressed by adding the source. E.g. m1 = Pηξ25ξ32(L) stands for the marginal
filled from the data set L. This denotation would do for the column A4A, but not
for calculating the values for column A4L. Then, in fact, there are 1089 different
marginals m1(L\t) = Pηξ25ξ32(L\t). Those marginals will be populated from 1089
different data files L\t) that have to be created just for the purpose.

The ”A” (in column A4A containing calculation of wrong classifications) stresses
that all data was used both for learning and testing i.e. L = T . The ”L” (in column
A4L) has the meaning that the method ”Leave one out” was used for the calculation.

It can be observed in Table 4 that L-values are higher than corresponding A-
values. In general, SP is slightly better than A4, but not always
e.g. A4L(s8) = 423 < SPL(s8) = 431. On the basis of other similar experiments,
it looks like that advantages of SP may be more prominent but only for A-testing.
Especially for KB with more marginals and when values of all symptom variables
are known. As far as ”Leave one out” method is concerned and not with full-sized
evidence, no decisive conclusions can be drawn, so far. However, it seems that SP
does quite well and could be used along with other recommended methods.

6 Conclusion

Among positive features of marginal-less SP algorithm, the following ones can be
mentioned :
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situations marginals ∩ variables active variables active space

s1 {m1,m2,m3} ∩ {ξ1 − ξ33} ξ25, ξ26, ξ27, ξ32, ξ33 32

s2 {m1,m3} ∩ {ξ1 − ξ33} ξ25, ξ27, ξ33 8

s3 {m2} ∩ {ξ1 − ξ33} ξ26, ξ33 4

s4 {m1} ∩ {ξ1 − ξ33} ξ25, ξ33 4

s5 {m3} ∩ {ξ1 − ξ33} ξ27, ξ33 4

s6 {m2,m3} ∩ {ξ1 − ξ33} ξ26, ξ27, ξ32, ξ33 16

s7 {m1,m2,m3} ∩ {ξ1 − ξ32} ξ25, ξ26, ξ27, ξ32 16

s8 {m1,m2,m3} ∩ {ξ33} ξ33 2

Table 3: Different testing situations

situations SPL SPA A4L A4A

s1 421 415 427 421

s2 462 460 463 462

s3 538 538 538 538

s4 464 464 464 464

s5 463 461 463 461

s6 431 420 423 422

s7 537 530 539 539

s8 464 464 464 464

Table 4: Comparing wrong classifications for SP and A4
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1. The presented algorithm SP is sufficiently fast i.e. decisions are made within
seconds.

2. SP has good discernment power when the tested case t was included in the
learning file L and values of all symptom variables (from L ) are given as input
evidence.

3. It is easy to add new cases ( or remove old ones if considered as obsolete) to the
learning file L. In marginal-based approach, it is necessary to recalculate the
marginals.

4. Problems associated with selection of marginals are avoided (by definition !)
and only symptom variables are necessary. In general, values of all symptom
variables (present in the learning file L ) should be provided as evidences.

5. Testing via ”Leave one out” technique is extremely easy with a small modifi-
cation in the presented code of SP . It takes approximately the same time as
testing on the all data (i.e. when L = T ). Marginal-based algorithm require for
”Leave one out” a lot of time for splitting the data file (|F|) times !) and filling
the marginals for each split.

SP has several drawbacks as well:

1. SP can be applied only to nominal variables (i.e. not continuous, not cardinal
and even not to ordinal).

2. As the only testing criterion is number of wrong classifications, SP is not proper
choice for risk analysis.

3. With decreasing number of symptoms (evidences), discernment power of SP
drops as well. (It is similar to marginal-based algorithms, as well.)

4. It is not possible to add additional knowledge about structure of P . All is based
on input data file L only.

With respect to above mentioned arguments, SP can be recommended for decision-
making on nominal symptom variables and when only a sufficient learning data file is
available. It can serve as an alternative to well established marginal-based algorithms
for decision-making under uncertainty.
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Abstract

We study the problem of single-fault troubleshooting with dependent actions.
We propose an integer linear programming formulation for the problem. This
can be used to solve the problem directly or to compute lower bounds of optima
using linear programming relaxation. We present an optimal dynamic program-
ming algorithm, and three greedy algorithms for computing upper bounds of
optima.

1 Introduction

We study single-fault troubleshooting with dependent actions [Heckerman et al., 1995,
Jensen et al., 2001]. The problem is NP-hard [Vomlelová and Vomlel, 2003], and it is
a straightforward generalization of min-sum set cover and pipelined-set cover [Feige
et al., 2004, Munagala et al., 2005]. These are combinatorial problems relevant in
several areas other than automated repair.

We propose an integer linear programming formulation for the troubleshooting
problem, and give several classes of additional valid inequalities. This can be used
to solve the problem directly using a general purpose solver, or to compute lower
bounds of optima by linear programming relaxation. We also describe several greedy
algorithms for computing upper bounds of optima. We test the resulting lower and
upper bounds in computational experiments.

Problem statement The troubleshooting problem studied in this paper may be
stated as follows:

� A piece of equipment is faulty and the task is to construct a repair strategy
with the least expected cost.

∗This work was supported by the Czech Science Foundation through grant 13-20012S.
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� There are m mutually exclusive possible causes of the failure called faults. The
faults are not directly observable. The equipment failure is caused by exactly
one of the faults. Each fault Fi has nonzero probability of occurrence P (Fi),
and

∑m
i=1 P (Fi) = 1.

� There are n repair steps available, called actions, that can possibly remedy
the failure. When performed, each action Aj can succeed or fail to fix the
system failure, and it has a fixed cost c(Aj) and a conditional probability of
success P (Aj | Fi) ≥ 0 for each fault Fi. In terms of probability, the actions are
conditionally independent given the faults. It is assumed that an action that
has failed once will fail again if performed. Hence, it is assumed that each action
is performed at most once.

� The challenge is to find a suitable permutation of the actions A1, . . . , An, and
use the permutation as a repair strategy: the actions are performed in the
prescribed order until some of the actions succeeds (i.e. the equipment failure is
repaired) or all the actions with nonzero probability of success have been used.

Let us denote by ¬A the event that action A has failed and denote by

ej =

j∧

k=1

¬Aπ(k) , (1)

the information (called evidence) that the first j actions in permutation π have failed.
Now, for a permutation of actions π we define

EC(π) =

n∑

i=1

c(Aπ(i)) · P (ei−1) (2)

ECR(π) = EC(π)−
∑

i=1,...,n
P (Aπ(i)|ei−1)=0

c(Aπ(i)) · P (ei−1) , (3)

where EC is the expected cost of π, and ECR is the expected cost of repair of π,
which is the expected cost of π where the actions with zero probability of success are
skipped.

Our task is to find a permutation of actions minimizing the ECR. For some
problems, a sequence minimizing EC minimizes also ECR. However, this is not a
general rule as shown by Example 1.

Example 1. We exhibit a troubleshooting problem where there are permutations π1
and π2 such that permutation π1 minimizes ECR and ECR(π1) < ECR(π2), permu-
tation π2 minimizes EC and EC(π1) > EC(π2). In the problem we have two faults
and two actions and the parameters are

A1 A2

c(A) 4 7
F1 F2

P (F ) 1/2 1/2

F1 F2

P (A1 | F ) 1 0
P (A2 | F ) 1 1/2
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Let π1 = 〈A2, A1〉 and π2 = 〈A1, A2〉. The expected costs are:

π2 π1
EC 7.5 8
ECR 7.5 7

Special cases When the outcomes of actions are deterministic, i.e. the probability
P (A succeeds | F is present) is either zero or one for all combinations of action A and
fault F , then the problem reduces to the pipelined set cover problem Munagala et al.
[2005]. When it is further assumed that all the action cost and fault probabilities
are uniform, the problem is equivalent to the min-sum set cover problem Feige et al.
[2004].

Contribution and structure of the paper The main contribution of the paper
is an integer linear programming formulation for single fault troubleshooting with
dependent actions. The formulation is useful in two ways:

1. The formulation can be used for solving the troubleshooting problem directly
with any general purpose integer programming solver.

2. Even if the integer program at hand is too hard to solve to optimality, we may
nonetheless use it to compute lower bounds of optima by linear programming
relaxation. These bounds may be used in special purpose branch & bound
algorithms for troubleshooting (such as the algorithm given by Vomlelová and
Vomlel [2003]).

The integer linear programming formulation is described in Section 5. In Section 4 we
describe three simple greedy algorithms for solving the problem. These algorithms are
useful because: the search for an optimal permutation of actions by branch & bound
algorithms is often greatly facilitated by having a good upper bound of the optimum.
The paper concludes with discussion of computational experience in Section 6.

2 Notation

The set of all faults is F = {F1, . . . , Fm}, the set of all actions is A = {A1, . . . , An}.
For an action A, the set of all faults that can be repaired by action A is F(A);
similarly, A(F ) is the set of actions that may repair fault F :

F(A) = {F ∈ F : P (A | F ) > 0} ,

A(F ) = {A ∈ A : P (A | F ) > 0} .

Let π be a permutation of the actions. With the notation just introduced and using
the assumptions of mutually exclusive faults and conditional independence of actions
given faults, the expected cost may be written as

EC(π) =
∑

A∈A
c(A) ·

∑

F∈F
P (F ) ·

∏

B∈A(F )
π(B)<π(A)

P (¬B|F ) . (4)
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When we perform an action A and the action fails, we nevertheless obtain some
information. In particular, the marginal probability distribution P (F) changes to
P (F | ¬A). As mentioned above, we call this information evidence. For consistency,
we define e0, the void initial evidence that we have before any of the actions has been
executed. We define

A(e) = {A ∈ A : P (A | e) > 0} .

It is assumed that once failed action will fail again if performed. In terms of proba-
bility, P (A | ¬A) is zero, and hence the set A(e) does not contain any of the actions
that are included in e.

3 Dynamic programming

A dynamic programming approach to troubleshooting was first proposed by Vomlelová
and Vomlel [2003]. The problem studied in this paper can be solved by dynamic
programming using recurrence

ECR?(e) = min
A∈A(e)

[
c′(A | e) + P (¬A | e) · ECR?(e ∧ ¬A)

]
, (5)

where

c′(A | e) =

{
0 if P (¬A | e) = 1

c(A) otherwise
.

Now, ECR?(e0) is the optimal expected cost of the troubleshooting problem.

4 Greedy algorithms

Greedy polynomial-time algorithms may be used to construct permutations of actions
that are not guaranteed to be optimal but experience shows that very often they are
optimal or “nearly optimal”. We shall describe three such algorithms in this section.

Algorithm Updating P/C Perhaps the most natural greedy algorithm is one
called Updating P/C [Jensen et al., 2001] At ith step, i = 1, . . . , n, the algorithm
selects an action A ∈ A(ei−1) maximizing the ratio

P (A | ei−1)

c(A)
.

For problems where EC and ECR are minimized by the same permutation, Kaplan
et al. [2005] proved that Updating P/C has a guaranteed approximation factor: it
never returns a sequence with expected cost greater than four times the optimum.
By the complexity-theoretic results of Feige et al. [2004], that is most likely the best
guaranteed approximation factor possible.
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Algorithm DP-greedy Another greedy algorithm is motivated by the dynamic
programming recurrence (5). We shall call the algorithm DP-greedy. At ith step,
the algorithm selects an action A ∈ A(ei−1) minimizing

c(A) + P (¬A | ei−1) · ẼC(ei−1 ∧ ¬A) ,

where ẼC(e) denotes an estimate of the expected cost of optimal sequence of the
remaining actions from A(e). The estimate is computed by the Updating P/C
algorithm. Although seemingly different, algorithm DP-greedy is equivalent to a
greedy algorithm proposed by Langseth and Jensen [2001].1

Algorithm I-greedy The last greedy algorithm uses an information-theoretic cri-
terion for selection of the hopefully best action given evidence e. We call it I-greedy.
It is inspired by the ID3 algorithm [Quinlan, 1986]. Let H(F | e) be the Shannon
entropy of marginal distribution P (F | e), that is

H(F | e) =
∑

F∈F
P (F | e) · log

1

P (F | e)
,

and let I(A | e) be the information gain of performing action A, i.e. the expected
decrease of H(F | e) induced by performing A:

I(A | e) = H(F | e)−
[
P (A | e) ·H(F | e ∧A) + P (¬A | e) ·H(F | e ∧ ¬A)

]
.

Given evidence e, it seems desirable to select an action maximizing I(A | e)/c(A). How-
ever, we do not want the selection criterion to be biased towards actions with high
entropy H(F | e ∧ A) since we are not interested in the entropy of P (F) in the case
that A suceeds. To this end, we assume H(F | e ∧A) to be zero for all A and e, and
we select at each step an action A ∈ A(ei−1) maximizing

H(F | e)− P (¬A | ei−1) ·H(F | ei−1 ∧ ¬A)

c(A)
. (6)

5 Integer linear programming formulation

We shall formulate an integer linear program encoding the troubleshooting problem.
For background information about integer programming we refer to [Wolsey, 1998].
For linear programming, the classic reference is [Dantzig, 1998].

To encode a permutation of actions from the set A, we use binary variables dA,B
for every pair of distinct actions A,B ∈ A. Given a permutation π of the actions, we
have dA,B = 1 if action A precedes action B in the permutation π, otherwise dA,B = 0.
Variables dA,B should encode a linear ordering relation on A. That means that the
relation is asymmetric and transitive To enforce the requirement of asymmetry, we
introduce equation (7) for each ordered pair of distinct actions A,B. To enforce the

1The proof is to be found in [Ĺın, 2015].
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requirement of transitivity, we add inequality (8) for every ordered triple of pairwise
distict actions A,B,C.

dA,B = 1− dB,A . (7)

dA,B + dB,C ≤ dA,C + 1 . (8)

We now proceed to formulate the expected cost of action sequence as a linear
function. For simplicity, we begin by EC and turn to ECR later. Assuming that a
fixed permutation π is encoded by variables dA,B introduced above, we can write (4)
as: ∑

A∈A
c(A) ·

∑

F∈F
P (F ) ·

∏

B∈A(F )\{A}
dB,A=1

P (¬B | F ) . (9)

(Whenever the product in (9) is taken over an empty set of factors, we assume that
the product equals one. That is

∏
B∈∅ P (¬B | F ) = 1.) Minimizing (4) is equivalent

to minimizing (9) subject to the constraints (7) and (8). To express (9) as a linear
function, we introduce a binary variable xF,A,B for each fixed combination of fault F ,
action A and a set of actions B ⊆ A(F ) \ {A}. The value of xF,A,B is defined as

xF,A,B =
(∏

B∈B
dB,A

)
·
( ∏

B∈A(F )\B
B 6=A

dA,B

)
. (10)

In words, variable xF,A,B equals one if and only if all the actions B ∈ B precede action
A, and all the remaining actions from A(F ) are preceded by A. Associated to each
variable xF,A,B is a coefficient

QF,A,B = c(A) · P (F ) ·
∏

B∈B
P (¬B | F ) .

For B = ∅, we have QF,A,B = c(A) ·P (F ). For any fixed fault F and action A, exactly
one of the variables xF,A,B equals one. With this observation, we may replace the
nonlinear objective (9) by a linear function

EC =
∑

A∈A

∑

F∈F

∑

B⊆A(F )
B63A

QF,A,B · xF,A,B . (11)

The number of summands in (11) is exponential in the size of sets A(F ). However,
we can assume that in practical applications, the size |A(F )| is bounded from above
by a reasonably small constant.

To express definition (10) in terms of linear inequalities, we observe that the
definition implies for each fixed combination F,A,B:

xF,A,B ≥ 1 +
∑

B∈B
(dB,A − 1) +

∑

B∈A(F )\B
B 6=A

(dA,B − 1). (12)
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Bounding the variables xF,A,B from above is not necessary since all the coefficients
in (11) are nonegative. In case that A(F ) \ {A} is an empty set, we have xF,A,∅ = 1.
To summarize, for minimization of EC we have a minimization linear program with
objective function (11) and constraints (12), (7), (8).

To minimize ECR rather than EC, we need to add to the formulation additional
variables and constraints. We say that an action Ai is dominated in permutation π if
its success probability P (Aπ(i) | ei−1) is zero. In the linear model, we define additional
variable wF,A,B with coefficient ‘−QF,A,B’ whenever the following conditions hold:

1. (∀G ∈ F(A))(∃B ∈ A(G)\{A}) P (B | F ) = 1, i.e. action A can be dominated,
and

2. (∀B ∈ B) P (B | F ) < 1, i.e. the coefficient QF,A,B is nonzero,

We do not create variables wF,A,B where B = ∅ and A ∈ A(F ) since B = ∅ means that
action A is not preceded by any action B ∈ A(F ) and hence A cannot be dominated.
Each variable wF,A,B has to equal one if and only if the corresponding variable xF,A,B
equals one, and the action A is dominated. To express this requirement by linear
inequalities, we observe that only upper bound for the w-variables is needed (since
the coefficients of w are negative), and it is sufficient to introduce linear constraints

wF,A,B ≤ xF,A,B (13)

(∀G ∈ F(A)) wF,A,B ≤
∑

B∈D(A,G)

dB,A (14)

where
D(A,G) = {B ∈ A(G) \ {A} : P (B | G) = 1} .

The linear objective function is then

ECR =
∑

xF,A,B

QF,A,B · xF,A,B −
∑

wF,A,B

QF,A,B · wF,A,B . (15)

5.1 Classes of additional valid inequalities

Linear programming relaxation is obtained from the integer program by replacing
the integrality requirement dA,B ∈ {0, 1} by 0 ≤ dA,B ≤ 1 for all the d-variables
and likewise for all the x- and w-variables. In general, objective value of linear
programming relaxation is a lower bound of the objective value of the minimization
integer program. To make the bound as tight as possible, we may add to the linear
model additional valid inequalities. That is, inequalities that are satisfied by all
feasible integer solutions.

The first class of valid inequalities is based on the observation that for any fixed
combination of a fault F and an action A, exactly one of the variables xF,A,B equals
one, i.e.

∑

B⊆A(F )\{A}
xF,A,B = 1 . (16)
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By (13), each equality (16) induces a corresponding inequality over the w-variables:
∑

B
wF,A,B ≤ 1 . (17)

where the left hand sum is taken over all the w-variables (if any) with appropriate
indices F and A.

Another class of valid inequalities is based on observing that given fault F and
a fixed permutation of actions, there is exactly one action A ∈ A(F ) that is not
preceded by any other action B ∈ A(F ). That is, for every fault F we have:

∑

A∈A(F )

xF,A,∅ = 1 . (18)

We observe that if action B precedes action A, and action A precedes all the
actions from A(F ), then also action B precedes all the actions from A(F ). Hence,
for any fixed combination of fault F and distinct actions A and B we have:

xF,A,∅ + dB,A ≤ xF,B,∅ + 1 . (19)

Another idea for valid inequalities is based on the fact that if an action is domi-
nated in optimal sequence, then so should be its successors. Therefore, for all distinct
actions A and B neither of which belongs to A(F ), we have

wF,A,∅ + dA,B ≤ wF,B,∅ + 1 . (20)

For any fixed triple F,A,B, a combination of (10) and (13) yields inequalities

wF,A,B ≤ dB,A for every B ∈ B (21)

wF,A,B ≤ dA,B for every B ∈ A(F ) \ B \ {A} . (22)

Another class of valid inequalities that we devise is inspired by a heuristic function
due to Vomlelová and Vomlel [2003]. For any given fault F we can find a permutation
πF of all the actions minimizing

z(π) =
∑

A∈A
c(A) ·

∏

B∈A
π(B)<π(A)

P (¬B | F ) .

The minimizing permutation πF is found by ordering the actions inA so that the ratios
P (A | F )/cA are nonincreasing. With this observation, we can construct constraints (23)
for each fault F :

∑

A∈A

∑

B
QF,A,B · xF,A,B −

∑

A∈A(F )

∑

B
QF,A,B · wF,A,B ≥ P (F ) · z(πF ) . (23)

The heuristic function of Vomlelová and Vomlel [2003] can be expressed by a single
inequality:

∑

xF,A,B

QF,A,B · xF,A,B −
∑

wF,A,B

QF,A,B · wF,A,B ≥
∑

F∈F
P (F ) · z(πF ) . (24)

The sums in (24) are taken over all the x- and w-variables that exist in the linear
programming formulation.
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Fixing partial order of actions in advance In some cases, we can fix a partial
order of some of the actions before starting to search for an optimal sequence, thereby
reducing the number of sequences that need to be considered. In particular, we may
use the following proposition.2

Proposition 1. Let s be an optimal sequence of actions. Let there be two distinct
actions A and B in s such that:

� the sets F(A) and F(B) are disjoint,

� there is no action C with set F(C) insersecting F(A) ∪ F(B).

Further, assume that action A precedes action B in sequence s (the two actions are
not necessarily adjacent). Then P (A)/c(A) ≥ P (B)/c(B).

We may use Proposition 1 to construct a partial ordering of actions satisfying the
conditions stated in the proposition. Once such an ordering is constructed, we may
fix the corresponding precedence variables dA,B to appropriate values.

Cutting planes procedure The basic integer programming formulation contains
inequalities (12),(7),(8), (13) and (14). The formulation may be strenghtened by
adding additional valid equalities and inequalities mentioned above. However for
computational reasons, we do not add them all at once, but rather in an iterative
fashion. The additional constraints are conventionally called cutting planes. The
procedure of adding cutting planes can be outlined as follows:

1. Construct the initial integer programming formulation and compute its relax-
ation by replacing the integrality requirements v ∈ {0, 1} by 0 ≤ v ≤ 1 for every
variable v of the formulation.
Let X denote the obtained linear programming formulation, and let x denote
its solution vector found by linear programming.

2. For each class of valid inequalities or equalities3 listed in Section 5.1:

(a) Investigate whether some inequalities of the class are violated by the cur-
rent solution vector x.

(b) Add the violated inequalities to X and solve by linear programming.

(c) If the addition of violated inequalities lead to increase in the objective
value, keep the inequalities in X. Otherwise, remove them.

(d) Remove from the formulation cutting planes that are satisfied but have
nonzero slack value.

3. Repeat the previous step until the objective value does not increase, or the
number of iterations exceeds some predetermined parameter, or x is an integral
vector.

A more detailed description of the procedure is to appear in [Ĺın, 2015].

2Proposition 1 is a straightforward generalization of a theorem proved by Jensen et al. [2001].
The proof is to be found in [Ĺın, 2015].

3In the following, we say just “inequalities” instead of “inequalities or equalities”.
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6 Computational experience

In this last section we collect results of a small computational study. The algorithms
described in the paper were run on nine problems. One of the problems was generated,
the other were extracted from real world troubleshooting models. Full details of the
models cannot be given for confidentiality reasons, so we provide only some basic
characteristics in Table 1. More details can be provided upon request.

c(A) P (F ) P (A | F ) 6= 0
prob. |A| µ σ |F| µ σ % µ σ
P1 25 6,840 3,923 26 0,038 0,037 8,800 0,886 0,125
P2 13 24,231 30,868 12 0,083 0,055 9,600 0,941 0,066
P3 7 10,429 11,588 6 0,167 0,158 23,800 0,898 0,175
P4 13 28,154 31,945 13 0,077 0,093 15,380 0,950 0,050
P5 10 1,000 0,000 10 0,100 0,000 27,000 0,929 0,051
P6 14 83,000 264,406 13 0,077 0,056 24,720 0,931 0,092
P7 20 10,900 7,840 26 0,039 0,033 6,920 0,930 0,200
P8 13 34,690 40,400 12 0,083 0,078 20,510 0,963 0,092
P9 11 26,450 35,708 11 0,091 0,118 15,700 0,935 0,068

Table 1: For each problem, we give the number of actions |A| and number of faults
|F|. We also give mean µ and standard deviation σ for action costs c(A) and fault
probabilities P (F ). For probability distribution P (A | F) we give the percentage (%),
mean and standard deviation of nonzero entries.

We investigate tightness of the upper bounds computed by greedy algorithms
DP-greedy,Updating P/C and I-greedy. The tightness is measured by ratio
of the upper bound to the optimal ECR. The optima are computed by dynamic
programming and/or by solving the integer programming formulation. The results
are in Table 2. In the same table are ratios of lower bounds to optimal ECR. The
lower bounds are computed by the heuristic function of Vomlelová and Vomlel [2003]
(column “heur.”), by linear programming relaxation without cutting planes (column
“LP”) and by linear programming relaxation with cutting planes involved (column
“LP w. cuts”). In Table 3 we give similar results for the lower bounds when EC is
optimized rather than ECR.

We see that the greedy algorithms provide solutions that are always either optimal
or very close to optimal. The algorithm DP-greedy performs very well and finds an
optimal solution in most cases4. As far as the lower bounds are concerned, adding
cutting planes to the basic linear programming formulation leads to a tighter bound
in most cases. In general, lower bounds computed by the cutting planes procedure are
the strongest. In some cases however, they are no better than the bounds provided by
the simple heuristic proposed by Vomlelová and Vomlel [2003]. We also note that the
linear programming relaxation provides tighter bounds when optimizing EC rather
than ECR.

4Without providing a proof that the solution is in fact optimal.
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prob. DP-gr. Upd. P/C I-gr. heur. LP LP w. cuts
P1 1,000 1,000 1,003 0,590 0,408 0,624
P2 1,005 1,006 1,018 0,563 0,973 0,990
P3 1,000 1,000 1,000 0,867 0,796 0,867
P4 1,000 1,000 1,024 0,619 0,742 0,861
P5 1,000 1,047 1,047 0,436 0,379 0,574
P6 1,000 1,000 1,022 0,856 0,882 0,886
P7 1,001 1,010 1,014 0,648 0,909 0,918
P8 1,000 1,000 1,000 0,630 0,334 0,630
P9 1,000 1,000 1,019 0,699 0,861 0,923

Table 2: Tightness of upper and lower bounds of ECR. In the columns on the left
are ratios upper bounds to optimal ECR. In the columns on the right are ratios of
lower bounds to optimal ECR.

prob heur. LP LP w. cuts
P1 0,577 0,564 0,829
P2 0,563 0,973 0,990
P3 0,818 0,787 0,950
P4 0,619 0,742 0,861
P5 0,436 0,379 0,574
P6 0,856 0,918 0,996
P7 0,609 0,983 0,983
P8 0,619 0,539 0,828
P9 0,699 0,861 0,923

Table 3: Tightness of lower bounds of EC: ratios of lower bounds to optimal EC.
The meaning of column names is as in Table 2.
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Abstract

We investigate the representation of hierarchical models in terms of marginals
of other hierarchical models with smaller interactions. We focus on binary vari-
ables and marginals of pairwise interaction models whose hidden variables are
conditionally independent given the visible variables. In this case the prob-
lem is equivalent to the representation of linear subspaces of polynomials by
feedforward neural networks with soft-plus computational units. We show that
any binary hierarchical model with M pure higher order interactions can be
expressed as the marginal of a pairwise interaction model with ∼ 1

2
M hidden

binary variables.

1 Introduction

Consider a finite set V of random variables. A hierarchical log-linear model is a set
of joint probability distributions that can be written as products of interaction po-
tentials, as p(x) =

∏
Λ ψΛ(x), where ψΛ(x) = ψΛ(xΛ) only depends on the subset Λ

of variables and where the product runs over a fixed family of sets Λ. By introducing
hidden variables, it is possible to express the same probability distributions in terms
of potentials which involve only small sets of variables, as p(x) =

∑
y

∏
λ ψλ(x, y),

with small sets λ. Using small interactions is a central idea in the context of connec-
tionistic models, where the sets λ are often restricted to have cardinality two. Due to
the simplicity of their local characteristics, these models are particularly well suited
for Gibbs sampling [1]. The representation, or explanation, of complex interactions
among observed variables in terms of hidden variables is also related to the study of
common ancestors [7].

We are interested in sufficient and necessary conditions on the number of hidden
variables, their values, and the interaction structures under which a given hierarchical
model can be represented as the visible marginal of another hierarchical model with
hidden variables. In this work, we focus on binary visible and hidden variables. For
the hierarchical models with hidden variables, we restrict our attention to models
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involving only pairwise interactions and whose hidden variables are conditionally in-
dependent given the visible variables (that is, there are no interactions among the
hidden variables). The free energy function of such a model is a sum of soft-plus
computational units x 7→ log(1+exp(

∑
i∈V wixi+c)). On the other hand, the energy

function of a fully observable hierarchical model with binary variables is a polyno-
mial, with the monomials corresponding to the pure interactions. Observing that any
function that depends on binary variables can be expressed as a polynomial, the task
is then to characterize the polynomials computable by a soft-plus unit.

Using this approach, Younes [8] showed that a hierarchical model with N binary
variables and a total of M pure higher order interactions (among three or more vari-
ables) can be represented as the visible marginal of a pairwise interaction model with
M hidden binary variables. In Younes’ construction, each pure interaction between a
set of visible variables of the original model is modeled by one hidden binary variable
that interacts pairwise with each of the involved visible variables. In fact this re-
placement can be accomplished without increasing the number of model parameters,
by imposing linear constraints on the coupling strengths of the hidden variable [8].
In this work, we investigate ways of squeezing more degrees of freedom out of each
hidden variable. An indication that this should be possible is the fact that the full
interaction model, for which M = 2N −

(
N
2

)
−N − 1, can be modeled with 2N−1 − 1

hidden variables [4]. Indeed, by controlling two polynomial coefficients at the time,
we show that in general ∼ 1

2M hidden variables are sufficient.

A special case of hierarchical models with hidden variables are mixtures of hi-
erarchical models. The smallest mixtures of hierarchical models that contain other
hierarchical models have been studied in [3]. For the necessary conditions, the idea
there is to compare the possible support sets of the limit distributions of both models.
For the sufficient conditions, the idea is to find a small S-set covering of the set of
elementary events. An S-set of a probability model is a set of elementary events such
that every distribution supported in that set is a limit distribution from the model.
Mixture models are closely related to tree models. The geometry of binary tree models
was studied in [9] in terms of moments and cumulants via Möbius inversions.

This paper is organized as follows. Section 2 introduces hierarchical models, for-
malizes and motivates the problem in the light of previous results. Section 3 pursues
a characterization of the polynomials that can be represented by soft-plus units. Sec-
tion 4 applies the obtained characterization to study the representation of hierarchical
models in terms of pairwise interaction models, especially restricted Boltzmann ma-
chines. Section 5 discusses open problems.

2 Preliminaries

This section introduces hierarchical models with and without hidden variables, for-
malizes the problem and presents motivating prior results.
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2.1 Hierarchical Models

Consider a finite set V of variables with joint states x = (xi)i∈V ∈ X = ×i∈V Xi. For
a given set S ⊆ 2V of subsets of V let

VX,S :=

{
f(x) =

∑

Λ∈S
fΛ(x) : fΛ(x) = fΛ(xΛ)

}
.

This is the linear subspace of RX spanned by functions fΛ that only depend on sets
of variables Λ ∈ S. The hierarchical model of probability distributions on X with
interactions S is the set

EX,S :=

{
p(x) =

1

Z(f)
exp(f(x)) : f ∈ VX,S

}
, (1)

where Z(f) =
∑
x′∈X exp(f(x′)) is a normalizing factor. The energy function of a

probability distribution from EX,S is given by

E(x) =
∑

Λ∈S
fΛ(x). (2)

For convenience, in all what follows we assume that S is a simplicial complex,
meaning that A ∈ S implies B ∈ S for all B ⊆ A. Furthermore, we assume that the
union of elements of S equals V . In the case of binary variables the energy can be
written as a polynomial, as

E(x) =
∑

Λ∈S
JΛ

∏

i∈Λ

xi.

Here, JΛ ∈ R, Λ ∈ S, are the interaction weights that parametrize the model.

2.2 Hierarchical Models with Hidden Variables

Consider an additional set H of variables, with joint states y = (yj)j∈H ∈ Y =
×j∈HYj . For a simplicial complex T ⊆ 2V ∪H , let VX×Y,T ⊆ RX×Y be the linear
subspace of functions of the form g(x, y) =

∑
λ∈T gλ(x, y), gλ(x, y) = gλ((x, y)λ).

The marginal on X of the hierarchical model EX×Y,T is the set

MX×Y,T :=



p(x) =

1

Z(g)

∑

y∈Y
exp(g(x, y)) : g ∈ VX×Y,T



 , (3)

where Z(g) =
∑
x′∈X,y′∈Y exp(g(x′, y′)) is a normalizing factor. The free energy of a

probability distribution from MX×Y,T is given by

F (x) = log
∑

y∈Y
exp

(∑

λ∈T
gλ(x, y)

)
. (4)
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If there are no interactions between hidden variables, i.e. if |λ ∩ H| ≤ 1, then this
rewrites to

F (x) =
∑

λ:λ∩H=∅
gλ(x) +

∑

j∈H
log

∑

yj∈Yj

exp
( ∑

λ∈T :j∈λ
gλ(x, yi)

)
. (5)

Particularly interesting are the models with full bipartite interactions between the
set of visible variables and the set of hidden variables, T = {λ ⊆ V ∪H : |λ ∩ V | ≤
1, |λ ∩H| ≤ 1}, called restricted Boltzmann machines.

In the case of binary visible variables (and arbitrary interactions), the free energy
can be written as a polynomial, as

F (x) =
∑

B⊆V
KB

∏

i∈B
xi,

where the coefficients can be computed from Möbius inversion formula as

KB =
∑

C⊆B
(−1)|B\C| log

∑

y∈Y
exp

(∑

λ∈T
gλ((1C , 0V \C), y)

)
, B ⊆ V. (6)

Here (1C , 0V \C) ∈ {0, 1}V is the vector with value 1 in the entries i ∈ C and value 0
in the entries i 6∈ C.

In most cases the marginal of a hierarchical model is itself not a hierarchical model.
However, one may ask which hierarchical models are contained in the marginal of a
hierarchical model.

2.3 Problem and Previous Results

To represent a hierarchical model in terms of the marginal of another hierarchical
model, we need to represent (1) in terms of (3). Equivalently, we need to represent
(2) in terms of (4). Given a set of visible variables V and a simplicial complex
S ⊆ 2V , what conditions on the set of hidden variables H and the simplicial complex
T ⊆ 2V ∪H are sufficient and necessary in order for any function E of the form (2) to
be representable in terms of some function F of the form (4)? We would like to arrive
at a result that generalizes the following.

• A restricted Boltzmann machine with |H| hidden binary variables can approx-
imate any probability distribution from any binary hierarchical model ES with
|S \

(
V
1

)
| − 1 ≤ |H| arbitrarily well. See [8].

• The restricted Boltzmann machine with |H| = 2|V |−1−1 hidden binary variables
can approximate any probability distribution on {0, 1}V arbitrarily well. See [4].

• Every probability distribution on {0, 1}V can be approximated arbitrarily well
by some mixture of k fully factorizing probability distributions if and only if
k ≥ 2|V |−1. See [3].
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f(s) = log(1 + exp(s))

Figure 1: Illustration of a soft-plus computational unit. The possible inputs, corre-
sponding to the vertices of a cube, are mapped to the real line by an affine map, and
then the soft-plus non-linearity s 7→ log(1 + exp(s)) is applied.

Our Theorem 5 below improves the first item and almost recovers the second item
for the special case of approximating the set of all probability distributions. The third
item is an example of a tight bound, providing sufficient and necessary conditions.
The set of mixtures of k fully factorizing probability distributions corresponds to the
hierarchical model with one k-valued hidden variable that interacts pairwise with each
visible variable.

3 Soft-plus Polynomials

Consider the functions of the form φ : {0, 1}V → R; x 7→ log(1 + exp(w>x + c)),
parametrized by w ∈ RV and c ∈ R. This corresponds to the free energy added by
one hidden binary variable interacting pairwise with each visible binary variable; see
Equation (5). We regard φ as a soft-plus computational unit, which integrates an
input vector x into a scalar via x 7→ w>x+ c, and applies the soft-plus non-linearity
s 7→ log(1+exp(s)). See Figure 1. What polynomials can be represented in this way?
Following Equation (6), the polynomial coefficients of φ are given by

KB(w, c) =
∑

C⊆B
(−1)|B\C| log

(
1 + exp

(∑

i∈C
wi + c

))
, B ∈ 2V .

This is an alternating sum of the values of the soft-plus unit on the input vectors with
supp(x) ⊆ B.

The monomials of partial degree one are partially ordered by inclusion, as illus-
trated in Figure 2. We focus on the description of the possible values of the highest
degree coefficients of the polynomials that can be represented by a soft-plus unit. For
example, Younes has shown that a soft-plus unit can represent a polynomial with an
arbitrary leading coefficient:
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Proposition 1 (Lemma 1 in [8]). Let B ⊆ V and wi = 0 for i 6∈ B. Then, for any
JB ∈ R, there is a choice of wB ∈ RB and c ∈ R such that KB = JB.

Our goal is to show that we can actually choose the parameters in such a way that
we can freely model two of the highest degree coefficients.

Let us first discuss the restrictions on the maximal degree, meaning that for some
B ⊆ V we require KC = 0 for all C 6⊆ B. We call a pair (B,B′) an edge pair or a
covering pair when B ⊃ B′ and there is no set C with B ) C ) B′.

Proposition 2. Let (B,B′) be an edge pair with B′ = B \ {m}. Fixing wB′ ∈ RB′
,

c ∈ R and wV \B = 0 ∈ RV \B, the equation KB = 0 is satisfied either for at most |B′|
or for all values of wm. A trivial solution is wm = 0.

Proof. Observe that

KB(w, c) = KB(wB , c) = KB′(wB′ , c+ wm)−KB′(wB′ , c).

Hence KB = 0 if and only if KB′(wB′ , c + wm) = KB′(wB′ , c). This has a trivial
solution wm = 0. To prove the upper bound on the number of solutions, let us write
KB′(wB′ , c) = r. We have

KB′(wB′ , c+ wm) =
∑

C⊆B′

(−1)|B
′\C| log(1 + exp(

∑

i∈C
wi + c+ wm))

= log(
∏

C⊆B′

(1 + w̃mc̃
∏

i∈C
w̃i)

(−1)|B
′\C|

).

Here we use the abbreviation r̃ = er. Keep in mind that this is always positive. Now,
KB′(wB′ , c+ wm) = r if and only if

∏

C⊆B′

(1 + w̃mc̃
∏

i∈C
w̃i)

(−1)|B
′\C|

= r̃,

or, equivalently,

∏

C⊆B′ :
B′\C even

(1 + w̃mc̃
∏

i∈C
w̃i) − r̃

∏

C⊆B′ :
B′\C odd

(1 + w̃mc̃
∏

i∈C
w̃i) = 0.

This is a polynomial of degree at most |B′| in w̃m.

The idea of Younes’ proof of Proposition 1 is to choose all non-zero wi of equal mag-
nitude. In order to simplify the Möbius inversion formula, we choose the parameters w
and c in such a way that the function φ has many zeros. Clearly this can only be done
in an approximate way, since the soft-plus function is strictly positive. Nevertheless,
these approximations can be made arbitrarily accurate, as log(1 + exp(s)) ≤ exp(s)
is arbitrarily close to zero for sufficiently large negative values of s.

The next lemma shows that the two highest degree coefficients can be modeled
jointly by a soft-plus unit, at least in part. When the maximum degree |B| is at
most 3, the two coefficients are restricted by an inequality, but when |B| ≥ 4, there
are no such restrictions. The result is illustrated in Figure 2.
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K{1,2,3}

K{1,2,3,4}

K{1,2}

K{1,2,3}

K{1}

K{1,2}

K∅

K{1}

∅

{1} {2} {3} {4}

{1, 2} {1, 3} {2, 3} {1, 4} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

Figure 2: Illustration of Lemma 3. Depicted is for each edge pair (B,B′) the set of
all (KB ,KB′) ∈ R2 for which there are some KC ∈ R, C 6= B,B′, such that the
polynomial

∑
C⊆BKC

∏
i∈C xi can be approximated arbitrarily well by a function of

the form log(1 + exp(
∑
i∈B wixi + c)).
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Lemma 3. Consider an edge pair (B,B′). Let wi = 0 for i 6∈ B. Then, depending on
|B′|, for any ε > 0 there is a choice of wB and c such that ‖(KB ,KB′)−(JB , JB′)‖ ≤ ε
if and only if

JB′ ≥ 0 ∧ JB ≥ −JB′ , for |B′| = 0

JB′ ≥ 0 ∧ JB ≥ −JB′ or JB′ ≤ 0 ∧ JB ≤ −JB′ , for |B′| = 1

JB′ ≥ 0 ∧ JB ≥ −JB′ or JB′ ≤ 0 ∧ JB ≤ −JB′ , for |B′| = 2

(JB , JB′) ∈ R2, for |B′| ≥ 3.

Proof. Let B′ = B \ {m}. The realizable edge coefficients satisfy

KB′(wB′ , c) =
∑

C⊆B′

(−1)|B
′\C| log(1 + exp(

∑

i∈C
wi + c))

and
KB(wB , c) = KB′(wB′ , c+ wm)−KB′(wB′ , c).

Using this structure, we now proceed with the proof of the individual cases.

The case |B′| = 0. We omit this simple exercise.

The case |B′| = 1. The if statement is as follows. The elements of the set {0, 1}B
are the vertices of the |B|-dimensional unit cube. We call two vectors x, x′ ∈ {0, 1}B
adjacent if they differ in exactly one entry, in which case they are the vertices of an
edge of the cube.

The weights wB and c can be chosen such that the affine map {0, 1}B → R; xB 7→
w>BxB + c maps two adjacent vectors to any arbitrary values and all other vectors to
large negative values. The soft-plus function is monotonically increasing, taking value
zero at minus infinity and plus infinity at plus infinity. Hence, for any s, s′ ∈ R+, one
finds weights w and c such that

φ(x) =





s, (xB′ , xm) = (1, . . . , 1, 1)
s′, (xB′ , xm) = (1, . . . , 1, 0)
≈ 0, otherwise

,

or, alternatively, such that

φ(x) =





s, (xB′ , xm) = (1, . . . , 1, 0, 1)
s′, (xB′ , xm) = (1, . . . , 1, 0, 0)
≈ 0, otherwise

.

This leads to KB ≈ (s − s′) and KB′ ≈ s′ or, alternatively, KB ≈ −(s − s′) and
KB′ ≈ −s′. The approximation can be made arbitrarily precise.

The only if statement is as follows. Denote the soft-plus function by f : R →
R+; s 7→ log(1 + exp(s)). We have that KB′(wB′ , c) = f(wB′ + c) − f(c) and
KB′(wB′ , c + wm) = f(wB′ + c + wm) − f(c + wm) are either both positive or both
negative, depending on the sign of wB′ . If both are positive, then KB(wB , c) =
KB′(wB′ , c+wm)−KB′(wB′ , c) ≥ −KB′(wB′ , c), and similarly in the case that both
are negative.
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The case |B′| = 2. The if statement follows from the previous case |B′| = 1. Indeed,
consider an edge pair (C,C ′) with an element more than the edge pair (B,B′), such
that B = C\{n} and B′ = C ′\{n}. Then, for any wB and c, choosing wn large enough
one obtains an arbitrarily accurate approximation KC((wB , wn), c−wn) ≈ KB(wB , c)
and KC′((wB′ , wn), c− wn) ≈ KB′(wB′ , c).

For the only if statement we use a similar argument as previously. We have
KB′(wB′ , c) = f(w1 + w2 + c) + f(c) − f(c + w1) − f(c + w2). By convexity of f ,
this is non-negative if and only if either w1, w2 ≥ 0 or w1, w2 ≤ 0. In other words,
this is non-negative if and only if w1 · w2 ≥ 0. Under either of these conditions,
KB′(wB′ , c + wm) is also non-negative. Similarly, KB′(wB′ , c) is non-positive if and
only if w1 · w2 ≤ 0. In this case, KB′(wB′ , c + wm) is also non-positive. Now the
statement follows as in the case |B′| = 1.

The case |B′| ≥ 3. We need to show that all edge pairs are representable. Consider
first JB′ ≥ 0. We choose weights of the form wB′ = ω1B′ . Then KB′(wB′ , c) = f(3ω+
c)−3f(2ω+c)+3f(ω+c)−f(c). We can choose ω and c such that 3ω+c = f−1(JB′)
while 2ω + c, ωc, c take very large negative values. This yields KB′ ≈ JB′ .

Note that the derivative of the soft-plus function is f ′(s) = 1/(1 + exp(−s)),
the logistic function. Choosing ω large enough from the beginning, the function
wm 7→ KB′(wB′ , c+wm) is monotonically increasing in the interval wm ∈ [0, ω/2] and
surpasses the value 1

5ω. On the other hand, when wm is large enough, depending on
ω and c, we have that 2ω+c+wm ≥ 5

12 (3ω+c+wm) and f(2ω+c+wm) ≥ 5
12f(3ω+

c+wm). In this case f(3ω+ c+wm)− 3f(2ω+ c+wm) ≤ − 1
4 (3ω+ c+wm) ≤ − 1

4ω.
At the same time, ω+c+wm and c+wm are smaller than − 1

12ω and so f(ω+c+wm)
and f(c+ wm) are very small in absolute value.

By the mean value theorem, depending on wm, KB′(wB′ , c+wm) takes any value
in the interval [− 1

5ω,
1
5ω], where ω is arbitrarily large. In turn, we can obtain KB =

KB′(w′B , c+ wm)−KB′(wB′ , c) ≈ JB for any JB ∈ R.

For JB′ ≤ 0 the proof is analogous after label switching for one variable.

It is also possible to control two maximal coefficients of the same degree:

Proposition 4. Let B,B′ ⊂ V with |B| = |B′| = 2 and |B ∪B′| = 3. Let wi = 0 for
i 6∈ B ∪B′. Then for any (JB , JB′) ∈ R2 and ε > 0 there is a choice of wB∪B′ and c
such that ‖(KB ,KB′)− (JB , JB′)‖ ≤ ε and |KC | ≤ ε for C 6∈ B and for C 6∈ B′.

Proof. Denote the soft-plus function by f : R → R+; s 7→ log(1 + exp(s)). We will
use the facts that f(s) ≈ 0 when s � −1 and f(s) ≈ s when s � 1. In fact, note
that f(s) ≤ exp(s) and f(s)− s = log(1 + exp(s))− log(exp(s)) ≤ exp(−s).

Without loss of generality let B = {1, 2} and B′ = {2, 3}. Consider weights
w1 = J{1,2}, w2 = 2ω, w3 = J{1,3}, and c = −ω, for some ω. Then

K{1,2,3}
= f(w1 + w2 + w3 + c)− f(w1 + w2 + c)− f(w2 + w3 + c)− f(w1 + w3 + c)

+ f(w1 + c) + f(w2 + c) + f(w3 + c)− f(c)
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= f(J{1,2} + J{1,3} + ω)− f(J{1,2} + ω)− f(J{1,3} + ω)

− f(J{1,2} + J{1,3} − ω) + f(J{1,2} − ω) + f(ω) + f(J{1,3} − ω)− f(−ω).

Choosing ω � |J{1,2}|+ |J{1,3}| we get

K{1,2,3} ≈(J{1,2} + J{1,3} + ω)− (J{1,2} + ω)− (J{1,3} + ω) + (ω) = 0.

Similarly we get

K{1,3} =f(w1 + w3 + c)− f(w1 + c)− f(w3 + c)− f(c)

=f(J{1,2} + J{1,3} − ω)− f(J{1,2} − ω)− f(J{1,3} − ω) + f(−ω) ≈ 0

On the other hand,

K{1,2} =f(w1 + w2 + c)− f(w1 + c)− f(w2 + c) + f(c)

=f(J{1,2} + ω)− f(J{1,2} − ω)− f(ω) + f(−ω) ≈ J{1,2}.

Similarly, K{2,3} ≈ J{2,3}.

The intuition behind Proposition 4 is fairly simple. Consider the model with
three binary visible variables, each interacting pairwise with the same hidden binary
variable. This is the set of distributions of the form

p(x1, x2, x3) =
∑

y∈{0,1}
q(x1|y)r(x2|y)s(x3|y)t(y).

Fixing r(x2|y) = δx2,y, one obtains the set of distributions of the form

p(x1, x2, x3) = q(x1|x2)s(x3|x2)t(x2),

which correspond to the hierarchical model of three binary visible variables with
pairwise interactions between the second and the first and between the second and
the third.

It is natural to ask whether it is also possible to control other pairs of coefficients
KB ,KB′ of the same degree |B| = |B′|. In another direction, we would like to control
triples of coefficients. In the analysis presented above, we ignore many of the degrees
of freedom by moving many values of the soft-plus unit to zero. On the other hand,
our analysis shows that, if |B| = 3 and wi = 0 for i /∈ B, then, despite having
|B|+ 1 = 4 parameters wi, i ∈ B and c to vary, we can only determine the two largest
polynomial coefficients up to a certain inequality. We expect that the same is true
in general: If we want to freely control k polynomial coefficients, we need strictly
more than k parameters. Otherwise, the possible tuples of polynomial coefficients are
restricted by some inequalities. The situation is well known in mixture models, which
may require many more parameters to eliminate the corresponding inequalities than
would be expected from näıve parameter counting [3].
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4 Conditionally Independent Hidden Variables

In the case of a bipartite graph between V and H with all variables binary, the
hierarchical model (or its visible marginal) is called a restricted Boltzmann machine,
denoted RBMV,H . The free energy takes the form

F (x) =
∑

j∈H
log

(
1 + exp

(∑

i∈V
wjixi + cj

))
+
∑

i∈V
bixi.

This is the sum of an arbitrary degree-one polynomial, with coefficients bi, i ∈ V
(biases of the visible variables), and H independent soft-plus units, with parameters
wji, j ∈ H, i ∈ V (coupling strengths), cj , j ∈ H (biases of the hidden variables).
We can use each soft-plus unit to model a group of coefficients of a given polynomial,
as explained in Section 3, starting at the highest degrees. In view of Lemma 3 and
Proposition 4, the problem of representing a polynomial can be reduced to covering
the appearing monomials by pairs of coefficients that can be jointly controlled. If we
can find a disjoint covering, then it suffices to add H = 1

2 |{C ∈ S : |C| ≥ 2}| hidden
variables. However, it may not always be possible to choose a disjoint covering. So
in general, we are led to the following technical theorem:

Theorem 5. Consider a hierarchical model ES on {0, 1}V . Then every distribution
from ES can be approximated arbitrarily well by distributions from RBMV,H whenever
|H| ≥ N + M , where N is the minimal number of pairs (B,B′) with B ⊃ B′, |B| =
|B′| + 1, |B′| ≥ 3, that cover {C ∈ S : |C| ≥ 3} and M is minimal number of pairs
(B,B′) with |B| = |B′| = 2, |B ∩B′| = 1, that cover {C ∈ S : |C| = 2}.

The problem of finding a minimal covering is combinatorial. For the k-interaction
model, where S = {Λ ⊆ V : |Λ| ≤ k}, we have the following upper bound:

Corollary 6. Let 3 ≤ k ≤ |V |. Then every distribution from the k-interaction model
can be approximated arbitrarily well by distributions from RBMV,H whenever

|H| ≥
k∑

j=2

(|V | − 1

j

)
+

1

2

(|V |
2

)
.

If k = 2, then |H| ≥ 1
2

(|V |
2

)
is sufficient.

Proof. The set 2V of subsets of V can be identified with the set {0, 1}V of their
indicator functions. The set 2V is partially ordered by inclusion. The corresponding
Hasse diagram has the same edges as the binary cube {0, 1}V . The diagram has levels
corresponding to the cardinality of its elements. Consider the set of edges of the form
((0, x2, . . . , xV ), (1, x2, . . . , xV )). At level j there are

(|V |−1
j

)
such edges going upwards

and
(|V |−1
j−1

)
going downwards. Hence

∑min{k,|V |−1}
j=2

(|V |
j

)
edges cover all elements of

cardinality 3 ≤ |B| ≤ k. By Lemma 3, each of the corresponding coefficient pairs can
be modeled with one hidden variable.
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On the other hand, there are
(|V |

2

)
cardinality-two subsets of V . This set can

be divided into b 1
2

(|V |
2

)
c pairs of overlapping sets plus possibly one more set. By

Proposition 4 each of the corresponding coefficient pairs, or an individual coefficient,
can be modeled with one hidden variable.

We can also consider models that include interactions among the visible variables
other than just the biases. In this case we only need to cover the interaction sets from
S that are not already included in T . In Theorem 5 one just replaces S by S \T . We
note the following special case:

Corollary 7. Each distribution from the k-interaction model can be approximated ar-
bitrarily well by distributions from a pairwise interaction model with |H| = ∑k

j=2

(|V |−1
j

)

hidden binary variables.

Proof. The arguments are exactly as in the proof of Corollary 6, except that here
we consider an approximating model with full pairwise interactions among its visible
variables.

Remark 8. In general an RBM contains many more distributions than just the
interaction models indicated in the corollary. For instance, an RBM with |H| ≥ K
hidden variables can approximate any distribution with support of cardinality K
arbitrarily well. On the other hand, every distribution with support of cardinality
K is contained in the closure of the k-interaction model if and only if 2k − 1 ≥ K,
see [2]. Using the corollary we would need |H| ≥∑k

j=2

(|V |−1
j

)
+ 1

2

(|V |
2

)
to represent

this model. This can be much larger than 2k − 1 when |V | − 1 is larger than k.

We present a few examples illustrating our results.

Example 9 (RBM3,1). The restricted Boltzmann machine with |V | = 3 visible vari-
ables and |H| = 1 hidden variables is the same as the 2-mixture of product distri-
butions of three binary variables, which is also known as the tripod tree model. It
has 7 parameters and the same dimension. What is the largest hierarchical model
contained in this model?

It contains any hierarchical model with a single pairwise interaction. This can
be explained from our results as follows. The degree-two coefficient can be modeled
with one soft-plus unit (Proposition 1), whereas the linear coefficients can be modeled
with the biases of the visible variables. An alternative way to see this is that the 2-
mixture of product distributions of two binary variables is equal to the set of all joint
distributions of two binary variables.

It contains each of the three hierarchical models with two pairwise interactions.
Two degree-two coefficients with one shared variable can be jointly modeled by one
soft-plus unit (Proposition 4), whereas the linear coefficients can be modeled with the
biases of the visible variables.

It does not contain the hierarchical model with three pairwise interactions, which is
known as the no three way interaction model. One way of proving this is by comparing
the possible support sets of the two models, as proposed in [3]: The support set of
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a mixture of two product distributions is a union of two cylinder sets. On the other
hand, the possible support sets of a hierarchical model correspond to the faces of its
marginal polytope. The marginal polytope of the no three way interaction model
is the cyclic polytope C(8, 6), which has N = 8 vertices and dimension d = 6 (see,
e.g., [3, Lemma 18]). This is a neighborly polytope, meaning that every d/2 = 3 or
less vertices form a face, or that every subset of {0, 1}3 of cardinality d/2 = 3 is the
support set of a distribution in the closure of the model.1The claim then follows from
the fact that the set {(100), (010), (001)} is not a union of two cylinder sets.

Example 10 (RBM3,2). This model contains the no three way interaction model.
Two of the quadratic coefficients can be jointly modeled by one soft-plus unit (Propo-
sition 4). The remaining quadratic coefficient can be modeled by one soft-plus unit
(Proposition 1). The linear coefficients can be modeled with the biases of the visible
variables.

It does not contain the full interaction model. This can be deduced from analyzing
the possible support sets of the distributions in the closure of the RBM model. For
details on this interesting subject we refer the reader to [6].

Example 11 (RBM3,3). This model is a universal approximator; see [4]. This ob-
servation can be recovered from our results as follows. Two degree-two coefficients
can be jointly modeled with one soft-plus unit (Proposition 4). The degree-three and
the remaining degree-two coefficients can each be modeled with one soft-plus unit
(Proposition 1). Finally the linear coefficients can be modeled with the biases of the
visible variables.

Example 12 (RBM4,7). This model is a universal approximator; see [4]. Our results
recover observation this as follows. The 6 quadratic coefficients can be grouped into
3 pairs with a shared variable in each pair. By Proposition 4 these can be modeled
with 3 soft-plus units. By Lemma 3 the quartic and one cubic coefficients can be
modeled with one soft-plus unit. By Proposition 1 the remaining 3 cubic coefficients
can be modeled with one soft-plus unit each.

5 Conclusions

We have studied what kind of interactions can appear when marginalizing over a hid-
den variable that is connected by pair-interactions with all visible variables. We have
focused on controlling two interactions at a time. The examples at the end of Section 4
show that our analysis gives tight results in many cases. These results generalize and
improve the analysis from [4] and [8], respectively. They can also be easily extended to
improve previous considerations for conditional probability distributions [5]. On the
other hand, many questions are still open at this point, and a full characterization of
soft-plus polynomials and the necessary number of hidden variables is missing. Many
other questions are left open:

1More generally, in [2] it is shown that if k + 1 is the smallest cardinality of a non-face of S, then
the marginal polytope of ES is 2k − 1 neighborly, meaning that any 2k − 1 or fewer of its vertices
define a face.
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It would be interesting to look at non-binary hidden variables. This corresponds
to analyzing the hierarchical models that can be represented by mixture models.
In the case of binary hidden variables, the partial factorization leads to soft-plus
units, whereas in the case of larger hidden variables, it will lead straight to a shifted
logarithm of denormalized mixtures. Similarly, it would be interesting to take a look
at non-binary visible variables. In this case state vectors cannot be identified with
subsets of units. This means that the correspondence between function values and
polynomial coefficients is not as direct.

Some of the general considerations presented here can be applied to obtain simple
results on the representation of hierarchical models in terms of hierarchical models
with hidden variables and more than pairwise interactions, even though the case of
pairwise interactions is the more interesting one from the perspective of distributed
networks and efficient Gibbs sampling. Another interesting direction are models where
the hidden variables are not conditionally independent given the visible variables,
e.g. models involving several layers of hidden variables like the deep Boltzmann ma-
chines. This case is more challenging, since the free energy does not decompose into
independent terms.
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Abstract

A mode of a probability vector is an elementary event that has more prob-
ability mass than each of its direct neighbors, with respect to some vicinity
structure on the set of elementary events. The mode inequalities cut out a poly-
tope from the simplex of probability vectors. Related to this is the concept of
strong modes. A strong mode of a distribution is an elementary event that has
more probability mass than all its direct neighbors together. The set of prob-
ability distributions with a given set of strong modes is again a polytope. We
study the vertices, the facets, and the volume of such polytopes depending on
the sets of (strong) modes and the vicinity structures.

1 Introduction

Many probability models used in practice are given in a parametric form. Sometimes
it is useful to also have an implicit description in terms of properties that characterize
the probability distributions that belong to the model. Such a description can be
used to check whether a given probability distribution lies in the model or, other-
wise, to estimate how far it lies from the model. For example, if a given model has
a parametrization by polynomial functions, then one can show that it has a semial-
gebraic description; that is, an implicit description as the solution set of polynomial
equations and polynomial inequalities. Finding this description is known as the im-
plicitization problem, which in general is very hard to solve completely. Even if it is
not possible to give a full implicit description, it may be possible to confine the model
by simple polynomial equalities and inequalities. Here we are interested in simple
confinements, in terms of natural classes of linear equalities and inequalities.

We consider polyhedral sets of discrete probability distributions defined by pre-
scribed sets of modes. A mode is a local maximum of a probability vector. Locality
is with respect to a given a vicinity structure in the set of coordinate indices; that is,
x is a (strict) mode of a probability vector p if and only if px > py, for all neighbors y
of x. The vicinity structure depends on the setting. For probability distributions on a
set of fixed-length strings, it is natural to call two strings neighbors if and only if they
have Hamming distance one. For probability distributions on integer intervals, it is
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natural to call two integers neighbors if and only if they are consecutive. In general,
a vicinity structure is just a graph with undirected edges.

Modes are important characteristics of probability distributions. In particular, the
question whether a probability distribution underlying a statistical experiment has
one or more modes is important in applications. Also, many statistical models consist
of “nice” probability distributions that are “smooth” in some sense. Such probability
distributions have only a limited number of modes. Another motivation for studying
modes was given in [2], where it was observed that mode patterns are a practical way
to differentiate between certain parametric model classes.

Besides from modes, we are also interested in the related concept of strong modes
introduced in [2]. A point x is a (strict) strong mode of a probability distribution p if
and only if px >

∑
y∼x py, where the sum runs over all neighbors y of x. Strong modes

offer similar possibilities as modes for studying models of probability distributions.
While strong modes are more restrictive than modes, they are easier to study.

One observation is: Suppose that p =
∑k
i=1 λip

i is a mixture of k probability
distributions. If p has a strict strong mode x ∈ V , then x must be a mode of one of
the distributions pi, because if pi(x) ≤ pi(yi) for some neighbor yi of x for all i, then∑
i λip

i(x) ≤∑i λip
i(yi) ≤

∑
y∼x

∑
i λip

i(y). For example, a mixture of k uni-modal
distributions has at most k strong modes. Surprisingly, the same statement is not true
for modes: A mixture of k product distributions may have more than k modes [2].
Still, the number of modes of a mixture of product distributions is bounded, although
this bound is not known in general. As another example, in [2] it was shown that a
restricted Boltzmann machine with m hidden nodes and n visible nodes, where m < n
and m is even, does not contain probability distributions with certain patterns of 2m

strict strong modes.

In this paper we derive essential properties of (strong) mode polytopes, depending
on the vicinity structures and the considered patterns of (strong) modes. In particular,
we describe the vertices, the facets, and the volume of these polytopes. It is worth
mentioning that mode probability polytopes are closely related to order and poset
polytopes. We describe this relation at the end of Section 2.

This paper is organized as follows: In Section 2 we study the polytopes of modes
and in Section 3 the polytopes of strong modes.

2 The Polytope of Modes

We consider a finite set of elementary events V and the set of probability distributions
on this set, ∆(V ). We endow V with a vicinity structure described by a graph. Let
G = (V,E) be a simple graph (i.e., no multiple edges and no loops). For any x, y ∈ V ,
if (x, y) ∈ E is an edge in G, we write x ∼ y. Since we assume that the graph is
simple, x ∼ y implies x 6= y.

Definition 1. A point x ∈ V is a mode of a probability distribution p ∈ ∆(V ) if
px ≥ py for all y ∼ x.
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Figure 1: Above: The graphG from Examples 3 and 11, with C marked in gray. Below:
The corresponding polytopes M(G, C) and S(G, C). Each vertex of these polytopes
is a uniform distribution supported on a subset of G, as explained in Propositions 4
and 12.

Definition 2. Consider a subset C ⊆ V . The polytope of C-modes in G is the set
M(G, C) of all probability distributions p ∈ ∆(V ) for which every x ∈ C is a mode.

The set M(G, C) is always non-empty, since it contains the uniform distribution.
It is a polytope, because it is a closed convex set defined by finitely many linear
inequalities and, as a subset of ∆(V ), it is bounded. We are interested in the properties
of this polytope, depending on G and C.

Recall that a set of vertices of a graph is independent, if it does not contain two
adjacent elements. If C is not independent, then M(G, C) is not full-dimensional as
a subset of ∆(V ); that is, dim M(G, C) < dim(∆(V )) = |V | − 1. For, if x, y ∈ C are
neighbors, then the defining equations of M(G, C) imply that px ≥ py ≥ px; that is,
any p ∈ M(G, C) satisfies px = py. In the following we will ignore this degenerate
case and assume that the set of modes is independent.

In some applications, for example those mentioned in the introduction, it is more
natural to study strict modes; i.e. points x ∈ V with px > py for all y ∼ x. A
description of the set of distributions with prescribed strict modes is easy to obtain
from a description of M(G, C).

Example 3. Let G be a square with vertices V = {00, 01, 10, 11} and edges E =
{(00, 01), (00, 10), (01, 11), (10, 11)}. The polytope M(G, C) for C = {01, 10} is given
in Figure 1.
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Vertices

We have defined M(G, C) by linear inequalities (H-representation). Next we determine
its vertices (V-representation). For any non-empty W ⊆ V \C and y ∈ V write y ∼W
if y ∼ x for some x ∈ W . Moreover, let NC(W ) = {y ∈ C : y ∼ W} (this is the set of
declared modes which are neighbors of W ), and let eWC be the uniform distribution
on NC(W ) ∪W .

Proposition 4.

1. M(G, C) is the convex hull of {eWC : ∅ 6= W ⊆ V \ C} ∪ {δx : x ∈ C}, where δx
denotes the point distribution concentrated on x.

2. For any x ∈ C, the distribution δx is a vertex of M(G, C).

3. eWC is a vertex of M(G, C) iff for any x, y ∈W , x 6= y, there is a path x = x0 ∼
x1 ∼ · · · ∼ xr = y in G with x0, x2, · · · ∈W and x1, x3, · · · ∈ NC(W ).

Proof. Clearly, for every non-empty W ⊆ V \ C, the vector eWC belongs to M(G, C),
and the same is true for the vectors δx with x ∈ C (C is independent). Next we show
that each p ∈ M(G, C) can be written as a convex combination of {eWC : ∅ 6= W ⊆
V \ C} ∪ {δx : x ∈ C}. We do induction on the cardinality of W := supp(p) \ C.
If |W | = 0, then p ∈ ∆(C) is a convex combination of {δx : x ∈ C}. Now assume
|W | > 0. Let λ = min{px : x ∈ W}. Then, p − λeWC ≥ 0 (component-wise) and∑
x(px − λeWC (x)) = (1− λ). Therefore,

p′ :=
1

1− λ (p− λeWC ) ∈ ∆(V ).

Moreover, one checks that p′ ∈M(G, C). By definition, supp(p′)\C ( supp(p)\C. By
induction, supp(p′) is a convex combination of {eWC : ∅ 6= W ⊆ V \ C} ∪ {δx : x ∈ C},
and so the same is true for p.

It remains to check which elements of {eWC : ∅ 6= W ⊆ V \ C} ∪ {δx : x ∈ C} are
vertices of M(G, C). Since δx is a vertex of ∆(V ), it is also a vertex of M(G, C). Let
W ⊂ V \ C be non-empty. Call a path such as in the statement of the proposition an
alternating path. Suppose that there is no alternating path from x to y for some x, y ∈
W . Let W1 = {z ∈ W : there is an alternating path from x to z} and let W2 =
W \W1. Then W1,W2 are non-empty, and NC(W1)∩ ÑC(W2) is empty. Hence eWC is
a convex combination of eW1

C and eW2

C , and eWC is not a vertex.
Let W be a non-empty subset of V \ C such that any pair of elements of W is

connected by an alternating path. To show that eWC is a vertex, for any different
non-empty set W ′ ⊆ V \ C we need to find a face of M(G, C) that contains eWC but

not eW
′

C . If there exists x ∈ W ′ \W , then eW
′

C (x) > 0 = eWC (x). Hence, eWC lies on

the face of M(G, C) defined by px ≥ 0, but eW
′

C does not. Otherwise, W ′ ( W . Let
x′ ∈W \W ′ and y′ ∈W ′ 6= ∅. By assumption, there exists an alternating path from
x′ to y′ in W . On this path, there exist x ∈ W \W ′ and y ∈ C with y ∼ x and
y ∈ NC(W ′). Therefore, eW

′
C (y)− eW ′C (x) > 0 = eWC (y)− eWC (x).
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Corollary 5. M(G, C) is a full-dimensional sub-polytope of ∆(V ).

Proof. The convex hull of {δx : x ∈ C} ∪ {e{y}C : y ∈ V \ C} is a (|V | − 1)-simplex and
a subset of M(G, C).

Facets

M(G, C) is defined, as a subset of ∆(V ), by the inequalities

px ≥ 0, for all x ∈ V, (positivity inequalities)

px ≥ py, for all x ∈ C and y ∼ x. (mode inequalities)

Next we discuss, which of these inequalities define facets.

Proposition 6.

1. For any x ∈ V \ C, the positivity inequality px ≥ 0 defines a facet.

2. If x ∈ C, then px ≥ 0 defines a facet iff x is isolated in G.

3. For any x ∈ C and y ∼ x, the mode inequality px ≥ py defines a facet.

Proof. 1. For x ∈ V \ C, the inequality px ≥ 0 defines a facet of the subsimplex from
the proof of Corollary 5, and hence also of M(G, C).

2. If x is isolated, then x is a mode of any distribution. Therefore, M(G, C) =
M(C \ {x}), and the statement follows from 1.

Otherwise, suppose there exists y ∈ V with x ∼ y. Since C is independent, y /∈ C.
Then px = (px − py) + py; that is, the inequality px ≥ 0 is implied by the inequalities
px ≥ py and py ≥ 0, and px ≥ 0 defines a sub-face of the facet py ≥ 0, which is a
strict sub-face, since it does not contain δx. Therefore, px ≥ 0 does not define a facet
itself.

3. Let W := {z ∈ C : z ∼ y} \ {x}. The uniform distribution on W ∪ {y} satisfies
all defining inequalities of M(G, C), except px ≥ py.

Triangulation and volume

The polytope M(G, C) has a natural triangulation that comes from a natural tri-
angulation of ∆(V ). Let N = |V | be the cardinality of V . For any bijection
σ : {1, . . . , N} → V let

∆σ = {p ∈ ∆(V ) : pσ(i) ≤ pσ(i+1) for i = 1, . . . , N − 1}.

Clearly, the ∆σ form a triangulation of ∆(V ). In particular, ∆(V ) =
⋃
σ ∆σ and

vol(∆σ ∪∆σ′) = vol(∆σ) + vol(∆σ′) whenever σ 6= σ′.

Lemma 7. Let Σ(G, C) be the set of all bijections σ : {1, . . . , N} → V that satisfy
σ−1(x) < σ−1(y) for all y ∈ C and x ∼ y. Then M(G, C) =

⋃
σ∈Σ(G,C) ∆σ.
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Proof. If σ ∈ Σ and p ∈ ∆σ, then p ∈ M(G, C) by definition. Conversely, let p ∈
M(G, C). Choose a bijection σ : {1, . . . , N} → V that satisfies the following:

1. pσ(i+1) ≥ pσ(i) for i = 1, . . . , N − 1,

2. If x ∈ C and y ∼ x, then σ−1(x) ≤ σ−1(y).

Clearly, σ ∈ Σ, and p ∈ ∆σ.

Corollary 8. vol(M(G, C)) = |Σ|
|V |! vol(∆(V )).

Proof. All simplices ∆σ have the same volume. Moreover, vol(∆σ ∩ ∆σ′) = 0 for
σ 6= σ′. Thus, vol(M(G, C)) = |Σ| vol(∆σ) and vol(∆(V )) = |V |! vol(∆σ).

It remains to compute the cardinality of Σ(G, C). It is not difficult to enumerate
Σ(G, C) by iterating over the set V . However, Σ(G, C) may be a very large, and so,
enumerating it can take a very long time. In fact, this is a special instance of the
problem of counting the number of linear extensions of a partial order (see below); a
problem which in many cases is known to be #P -complete [1]. In our case, a simple
lower bound is |Σ(G, C)| ≥ |C|!|V \ C|! (equality holds only when G is a complete
bipartite graph and C is one of the maximal independent sets).

Relation to order polytopes

The results in this section can also be derived from results about order polytopes. To
explain this, it is convenient to slightly generalize our settings. Instead of looking at
a graph G and an independent subset C of nodes, consider a partial order � on V
and let

M(�) := {p ∈ ∆(V ) : px ≥ py whenever x � y}.

The polytope M(G, C) arises in the special case where � is defined by

x � y :⇐⇒ x ∼ y and x ∈ C.

The relation � defined in this way from G and C is a partial order precisely if C
is independent. Our results about vertices, facets and volumes directly generalize
to M(�). We omit further details at this point.

The order polytope of a partial order arises by looking at subsets of the unit
hypercube instead of subsets of the probability simplex (see [3] and references):

O(�) := {p ∈ [0, 1]V : px ≥ py whenever x � y}.

One can show that M(�) is the vertex figure of O(�) at the vertex 0. This observation
allows to transfer the results from [3] to M(G, C).
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3 The Polytope of Strong Modes

Definition 9. A point x ∈ V is a strong mode of a probability distribution p ∈ ∆(V )
if px ≥

∑
y∼x py.

Definition 10. Consider a subset C ⊆ V . The polytope of strong C-modes in G is the
set S(G, C) all probability distributions p ∈ ∆(V ) for which every x ∈ C is a strong
mode.

Again, in applications one may be interested in strict strong modes that are char-
acterized by strict inequalities of the form px >

∑
y∼x py.

If x ∼ y for two strong modes of p ∈ ∆(V ), then px = py and pz = 0 for all other
neighbors z of x or y. In order to avoid such pathological cases, in the following we
always assume that C is an independent subset of G.

Example 11. Consider the graph from Example 3. For C = {01, 10}, the polytope
S(G, C) is given in Figure 1.

Again, we are interested in the vertices of the polytope S(G, C). For any x ∈ V
let NC(x) = {y ∈ C : y ∼ x} (this is the set of strong modes which are neighbors of
x) and let fxC be the uniform distribution on NC(x) ∪ {x}.

Proposition 12. If C is independent, then S(G, C) is a (|V |−1)-simplex with vertices
fxC , x ∈ V .

Proof. To see that {fxC : x ∈ V } is linearly independent, observe that the matrix
with columns fxC is in tridiagonal form when V is ordered such that the vertices in C
come before the vertices in V \ C. Therefore, the probability distributions fxC span a
(|V | − 1)-dimensional simplex.

It is easy to check that fxC ∈ S(G, C) for any x ∈ V . It remains to prove that
any p ∈ S(G, C) lies in the convex hull of {fxC : x ∈ V }. We do induction on the
cardinality of W := supp(p) \ C. If |W | = 0, then p ∈ ∆(C) is a convex combination
of {δx : x ∈ C} = {fxC : x ∈ C}. Otherwise, let x ∈W . Then

p′ :=
1

1− px
(p− pxfxC ) ∈ ∆(V ),

since p ∈M(G, C). Moreover, p′ ∈M(G, C). The statement now follows by induction,
since supp(p′) \ C = W \ {x}.

Proposition 13. The facets of S(G, C) are px ≥
∑
y∼x py for all x ∈ C and px ≥ 0

for all x ∈ V \ C.

Proof. It is easy to verify that each of the faces defined by these inequalities contains
|V | − 1 vertices.

Proposition 14. vol(S(G, C)) =
( ∏

x∈V

1

|NC(x)|+ 1

)
vol(∆(V )).
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Proof. After rearrangement of columns, the matrix

(fxC )x∈V =

(
(δx)x∈C ,

(
1

|NC(x)|+11NC(x)

)
x∈V \C,x∼C

, (δx)x∈V \C,x 6∼C

)

is in upper triangular from, with diagonal elements 1
|NC(x)|+1 , x ∈ V . The statement

now follows from the next Lemma 15.

Lemma 15. Let ∆ = conv{e0, . . . , ed} be the standard d-simplex in Rd+1 and let
s0, . . . , sd ∈ ∆. Then the d-volume of S = conv{s0, . . . , sd} satisfies

vol(S) = |det(s0, . . . , sd)| vol(∆).

Proof. The (d + 1)-volume of the parallelepiped spanned by s0, . . . , sd ∈ Rd+1 is
|det(s0, . . . , sd)|. The volume of an n-simplex with vertices v0, . . . , vn in Rn is 1

n! |det(v1−
v0, . . . , vn−v0)|. Hence the volume of the (d+1)-simplex P with vertices (0, s0, . . . , sd)
is vol(P ) = 1

(d+1)! |det(s0, . . . , sd)|. Note that P is a pyramid over S of height

h = 1√
d+1

. Thus vol(P ) = h
d+1 vol(S). The volume of the regular d-simplex is

vol(∆) =
√
d+1
d! . The statement follows by combining these formulas.

Example 16. Generalizing Examples 3 and 11, let G be the edge graph of an n-cube,
such that V = {0, 1}n and two points are adjacent if their Hamming distance is one.

a) If C ⊆ V has cardinality |C| = k and minimum distance 3, then S has 2n vertices
and volume vol(S) = 2−kn vol(∆), whereas M has k(2n − 1) + 2n − kn vertices and

volume vol(M) = |Σ|
2n! vol(∆) ≥ k!2−kn vol(∆).

b) If C is the set of all even-parity strings, then S has 2n vertices and volume

vol(S) = (n + 1)−2n−1

vol(∆), whereas M has 22n−1 − 1 + 2n−1 vertices and volume

vol(M) = |Σ|
2n! vol(∆) ≥

(
2n

2n−1

)−1
vol(∆). For n = 2 and n = 3 we have |Σ| = 4 and

|Σ| = 720. The next open case is n = 4.
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Abstract

An elementary triplet in an independence model represents a conditional in-
dependence statement between two singletons. It is known that these triplets
can be used to represent the independence model unambiguously under some
conditions. In this paper, we show how this representation helps performing
efficiently some operations with independence models, such as finding the dom-
inant triplets or a minimal independence map of an independence model, or
computing the intersection or union of a pair of independence models.

1 Representation

Let V denote a finite set of elements. Subsets of V are denoted by upper-case letters,
whereas the elements of V are denoted by lower-case letters. Given three sets I, J,K ⊆

V , the triplet I ⊥J ∣K denotes that I and J are conditionally independent given K.
Given a set of triplets G, also known as an independence model, I ⊥ GJ ∣K denotes
that I ⊥J ∣K is in G. A triplet I ⊥J ∣K is called elementary if ∣I ∣ = ∣J ∣ = 1. We shall
not distinguish between elements of V and singletons. We use IJ to denote I ∪ J .
Union has higher priority than set difference in expressions. Consider the following
properties:

(CI0) I⊥J ∣K⇔ J ⊥I ∣K.

(CI1) I⊥J ∣KL, I⊥K ∣L⇔ I⊥JK ∣L.

(CI2) I⊥J ∣KL, I⊥K ∣JL⇒ I⊥J ∣L, I⊥K ∣L.

(CI3) I⊥J ∣KL, I⊥K ∣JL⇐ I⊥J ∣L, I⊥K ∣L.

A set of triplets with the properties CI0-1/CI0-2/CI0-3 is also called a semi-
graphoid/graphoid/ compositional graphoid.1 The CI0 property is also called symme-
try property. The ⇒ part of the CI1 property is also called contraction property, and

1For instance, the independencies in a probability distribution form a semigraphoid, while the
independencies in a strictly positive probability distribution form a graphoid, and the independencies
in a regular Gaussian distribution form a compositional graphoid.
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the ⇐ part corresponds to the so-called weak union and decomposition properties.
The CI2 and CI3 properties are also called intersection and composition properties.2

In addition, consider the following properties:

(ci0) i⊥j∣k⇔ j⊥i∣k.

(ci1) i⊥j∣kL, i⊥k∣L⇔ i⊥k∣jL, i⊥j∣L.

(ci2) i⊥j∣kL, i⊥k∣jL⇒ i⊥j∣L, i⊥k∣L.

(ci3) i⊥j∣kL, i⊥k∣jL⇐ i⊥j∣L, i⊥k∣L.

Note that CI2 and CI3 only differ in the direction of the implication. The same
holds for ci2 and ci3.

Given a set of triplets G = {I ⊥J ∣K}, let P = p(G) = {i⊥j∣M ∶ I ⊥GJ ∣K with i ∈ I,
j ∈ J and K ⊆M ⊆ (I ∖ i)(J ∖ j)K}. Given a set of elementary triplets P = {i⊥j∣K},
let G = g(P ) = {I⊥J ∣K ∶ i⊥P j∣M for all i ∈ I, j ∈ J and K ⊆M ⊆ (I∖i)(J∖j)K}. The
following two lemmas prove that there is a bijection between certain sets of triplets
and certain sets of elementary triplets. The lemmas have been proven when G and P
satisfy CI0-1 and ci0-1 [6, Proposition 1]. We extend them to the cases where G and
P satisfy CI0-2/CI0-3 and ci0-2/ci0-3.

Lemma 1. If G satisfies CI0-1/CI0-2/CI0-3 then (a) P satisfies ci0-1/ci0-2/ci0-3,
(b) G = g(P), and (c) P = {i⊥j∣K ∶ i⊥Gj∣K}.

Proof. The proof of (c) is trivial. We now prove (a). That G satisfies C0 implies that
P satisfies ci0 by definition of P.

Proof of CI1 ⇒ ci1
Since ci1 is symmetric, it suffices to prove the ⇒ implication of ci1.

1. Assume that i⊥Pj∣kL.

2. Assume that i⊥Pk∣L.

3. Then, it follows from (1) and the definition of P that i⊥Gj∣kL or I⊥GJ ∣M with
i ∈ I, j ∈ J and M ⊆ kL ⊆ (I ∖ i)(J ∖ j)M . Note that the latter case implies that
i⊥Gj∣kL by CI1.

4. Then, i⊥Gk∣L by the same reasoning as in (3).

5. Then, i⊥Gjk∣L by CI1 on (3) and (4), which implies i⊥Gk∣jL and i⊥Gj∣L by
CI1. Then, i⊥Pk∣jL and i⊥Pj∣L by definition of P.

Proof of CI1-2 ⇒ ci1-2
Assume that i⊥ Pj∣kL and i⊥ Pk∣jL. Then, i⊥Gj∣kL and i⊥Gk∣jL by the same

reasoning as in (3), which imply i ⊥ Gj∣L and i ⊥ Gk∣L by CI2. Then, i ⊥ Pj∣L and
i⊥Pk∣L by definition of P.

2Intersection is typically defined as I ⊥J ∣KL, I ⊥K∣JL ⇒ I ⊥JK∣L. Note however that this and
our definition are equivalent if CI1 holds. First, I ⊥JK∣L implies I ⊥J ∣L and I ⊥K∣L by CI1. Second,
I ⊥J ∣L together with I ⊥K∣JL imply I ⊥JK∣L by CI1. Likewise, composition is typically defined as
I ⊥JK∣L⇐ I ⊥J ∣L, I ⊥K∣L. Again, this and our definition are equivalent if CI1 holds. First, I ⊥JK∣L
implies I ⊥ J ∣KL and I ⊥K∣JL by CI1. Second, I ⊥K∣JL together with I ⊥ J ∣L imply I ⊥ JK∣L by
CI1. In this paper, we will study sets of triplets that satisfy CI0-1, CI0-2 or CI0-3. So, the standard
and our definitions are equivalent.

Representing Independence Models with Elementary Triplets

156



Proof of CI1-3 ⇒ ci1-3
Assume that i ⊥ Pj∣L and i ⊥ Pk∣L. Then, i ⊥ Gj∣L and i ⊥ Gk∣L by the same

reasoning as in (3), which imply i⊥Gj∣kL and i⊥Gk∣jL by CI3. Then, i⊥Pj∣kL and
i⊥Pk∣jL by definition of P.

Finally, we prove (b). Clearly, G ⊆ g(P) by definition of P. To see that g(P) ⊆ G,
note that I ⊥ g(P)J ∣K ⇒ I ⊥ GJ ∣K holds when ∣I ∣ = ∣J ∣ = 1. Assume as induction
hypothesis that the result also holds when 2 < ∣IJ ∣ < s. Assume without loss of
generality that 1 < ∣J ∣. Let J = J1J2 st J1, J2 ≠ ∅ and J1 ∩ J2 = ∅. Then, I ⊥g(P)J1∣K
and I ⊥ g(P)J2∣J1K by ci1 and, thus, I ⊥ GJ1∣K and I ⊥ GJ2∣J1K by the induction
hypothesis, which imply I⊥GJ ∣K by CI1.

Lemma 2. If P satisfies ci0-1/ci0-2/ci0-3 then (a) G satisfies CI0-1/CI0-2/CI0-3,
(b) P = p(G), and (c) P = {i⊥j∣K ∶ i⊥Gj∣K}.

Proof. The proofs of (b) and (c) are trivial. We prove (a) below. That P satisfies ci0
implies that G satisfies C0 by definition of G.

Proof of ci1 ⇒ CI1
The ⇐ implication of CI1 is trivial. We prove below the ⇒ implication.

1. Assume that I⊥Gj∣KL.

2. Assume that I⊥GK ∣L.

3. Let i ∈ I. Note that if i /⊥ P j∣M with L ⊆ M ⊆ (I ∖ i)KL then (c) i /⊥ P j∣kM
with k ∈ K ∖M , and (d) i /⊥ P j∣KM . To see (c), assume to the contrary that
i⊥P j∣kM . This together with i⊥P k∣M (which follows from (2) by definition of
G) imply that i⊥ P j∣M by ci1, which contradicts the assumption of i /⊥ P j∣M .
To see (d), note that i /⊥P j∣M implies i /⊥P j∣kM with k ∈ K ∖M by (c), which
implies i /⊥P j∣kk

′M with k′ ∈ K ∖ kM by (c) again, and so on until the desired
result is obtained.

4. Then, i ⊥ P j∣M for all i ∈ I and L ⊆ M ⊆ (I ∖ i)KL. To see it, note that
i⊥P j∣KM follows from (1) by definition of G, which implies the desired result
by (d) in (3).

5. i⊥ P k∣M for all i ∈ I, k ∈ K and L ⊆ M ⊆ (I ∖ i)(K ∖ k)L follows from (2) by
definition of G.

6. i⊥P k∣jM for all i ∈ I, k ∈ K and L ⊆ M ⊆ (I ∖ i)(K ∖ k)L follows from ci1 on
(4) and (5).

7. I⊥GjK ∣L follows from (4)-(6) by definition of G.

Therefore, we have proven above the ⇒ implication of CI1 when ∣J ∣ = 1. Assume
as induction hypothesis that the result also holds when 1 < ∣J ∣ < s. Let J = J1J2 st
J1, J2 ≠ ∅ and J1 ∩ J2 = ∅.

8. I⊥GJ1∣KL follows from I⊥GJ ∣KL by definition of G.

9. I⊥GJ2∣J1KL follows from I⊥GJ ∣KL by definition of G.

10. I⊥GJ1K ∣L by the induction hypothesis on (8) and I⊥GK ∣L.

11. I⊥GJK ∣L by the induction hypothesis on (9) and (10).
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Proof of ci1-2 ⇒ CI1-2

12. Assume that I⊥Gj∣kL and I⊥Gk∣jL.

13. i⊥P j∣kM and i⊥P k∣jM for all i ∈ I and L ⊆M ⊆ (I ∖ i)L follows from (12) by
definition of G.

14. i⊥P j∣M and i⊥P k∣M for all i ∈ I and L ⊆M ⊆ (I ∖ i)L by ci2 on (13).

15. I⊥Gj∣L and I⊥Gk∣L follows from (14) by definition of G.

Therefore, we have proven the result when ∣J ∣ = ∣K ∣ = 1. Assume as induction
hypothesis that the result also holds when 2 < ∣JK ∣ < s. Assume without loss of
generality that 1 < ∣J ∣. Let J = J1J2 st J1, J2 ≠ ∅ and J1 ∩ J2 = ∅.

16. I⊥GJ1∣J2KL and I⊥GJ2∣J1KL by CI1 on I⊥GJ ∣KL.

17. I⊥GJ1∣J2L and I⊥GJ2∣J1L by the induction hypothesis on (16) and I⊥GK ∣JL.

18. I⊥GJ ∣L by the induction hypothesis on (17).

19. I⊥GK ∣L by CI1 on (18) and I⊥GK ∣JL.

Proof of ci1-3 ⇒ CI1-3

20. Assume that I⊥Gj∣L and I⊥Gk∣L.

21. i⊥ P j∣M and i⊥ P k∣M for all i ∈ I and L ⊆ M ⊆ (I ∖ i)L follows from (20) by
definition of G.

22. i⊥P j∣kM and i⊥P k∣jM for all i ∈ I and L ⊆M ⊆ (I ∖ i)L by ci3 on (21).

23. I⊥Gj∣kL and I⊥Gk∣jL follows from (22) by definition of G.

Therefore, we have proven the result when ∣J ∣ = ∣K ∣ = 1. Assume as induction
hypothesis that the result also holds when 2 < ∣JK ∣ < s. Assume without loss of
generality that 1 < ∣J ∣. Let J = J1J2 st J1, J2 ≠ ∅ and J1 ∩ J2 = ∅.

24. I⊥GJ1∣L by CI1 on I⊥GJ ∣L.

25. I⊥GJ2∣J1L by CI1 on I⊥GJ ∣L.

26. I⊥GK ∣J1L by the induction hypothesis on (24) and I⊥GK ∣L.

27. I⊥GK ∣JL by the induction hypothesis on (25) and (26).

28. I⊥GJK ∣L by CI1 on (27) and I⊥GJ ∣L.

29. I⊥GJ ∣KL and I⊥GK ∣JL by CI1 on (28).

The following two lemmas generalize Lemmas 1 and 2 by removing the assumptions
about G and P .

Lemma 3. Let G∗ denote the CI0-1/CI0-2/CI0-3 closure of G, and let P∗ denote
the ci0-1/ci0-2/ci0-3 closure of P. Then, P∗ = p(G∗

), G∗
= g(P∗) and P∗ = {i⊥j∣K ∶

i⊥G∗j∣K}.
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Proof. Clearly, G ⊆ g(P∗) and, thus, G∗
⊆ g(P∗) because g(P∗) satisfies CI0-1/CI0-

2/CI0-3 by Lemma 2. Clearly, P ⊆ p(G∗
) and, thus, P∗ ⊆ p(G∗

) because p(G∗
)

satisfies ci0-1/ci0-2/ci0-3 by Lemma 1. Then, G∗
⊆ g(P∗) ⊆ g(p(G∗

)) and P∗ ⊆

p(G∗
) ⊆ p(g(P∗)). Then, G∗

= g(P∗) and P∗ = p(G∗
), because G∗

= g(p(G∗
)) and

P∗ = p(g(P∗)) by Lemmas 1 and 2. Finally, that P∗ = {i ⊥ j∣K ∶ i ⊥ G∗j∣K} is now
trivial.

Lemma 4. Let P ∗ denote the ci0-1/ci0-2/ci0-3 closure of P , and let G∗ denote the
CI0-1/CI0-2/CI0-3 closure of G. Then, G∗

= g(P ∗
), P ∗

= p(G∗
) and P ∗

= {i⊥j∣K ∶

i⊥G∗j∣K}.

Proof. Clearly, P ⊆ p(G∗
) and, thus, P ∗

⊆ p(G∗
) because p(G∗

) satisfies ci0-1/ci0-
2/ci0-3 by Lemma 1. Clearly, G ⊆ g(P ∗

) and, thus, G∗
⊆ g(P ∗

) because g(P ∗
)

satisfies CI0-1/CI0-2/CI0-3 by Lemma 2. Then, P ∗
⊆ p(G∗

) ⊆ p(g(P ∗
)) and G∗

⊆

g(P ∗
) ⊆ g(p(G∗

)). Then, P ∗
= p(G∗

) and G∗
= g(P ∗

), because P ∗
= p(g(P ∗

)) and
G∗

= g(p(G∗
)) by Lemmas 1 and 2. Finally, that P ∗

= {i ⊥ j∣K ∶ i ⊥ G∗j∣K} is now
trivial.

The parts (a) of Lemmas 1 and 2 imply that every set of triplets G satisfying
CI0-1/CI0-2/CI0-3 can be paired to a set of elementary triplets P satisfying ci0-
1/ci0-2/ci0-3, and vice versa. The pairing is actually a bijection, due to the parts
(b) of the lemmas. Thanks to this bijection, we can use P to represent G. This
is in general a much more economical representation: If ∣V ∣ = n, then there up to
4n triplets,3 whereas there are n2 ⋅ 2n−2 elementary triplets at most. We can reduce
further the size of the representation by iteratively removing from P an elementary
triplet that follows from two others by ci0-1/ci0-2/ci0-3. Note that P is an unique
representation of G but the result of the removal process is not in general, as ties may
occur during the process.

Likewise, Lemmas 3 and 4 imply that there is a bijection between the CI0-1/CI0-
2/CI0-3 closures of sets of triplets and the ci0-1/ci0-2/ci0-3 closures of sets of elemen-
tary triplets. Thanks to this bijection, we can use P∗ to represent G∗. Note that P∗
is obtained by ci0-1/ci0-2/ci0-3 closing P, which is obtained from G. So, there is no
need to CI0-1/CI0-2/CI0-3 close G and so produce G∗. Whether closing P can be
done faster than closing G on average is an open question. In the worst-case scenario,
both imply applying the corresponding properties a number of times exponential in
∣V ∣ [7]. We can avoid this problem by simply using P to represent G∗, because P is
the result of running the removal process outline above on P∗. All the results in the
sequel assume that G and P satisfy CI0-1/CI0-2/CI0-3 and ci0-1/ci0-2/ci0-3. Thanks
to Lemmas 3 and 4, these assumptions can be dropped by replacing G, P , G and P
in the results below with G∗, P ∗, G∗ and P∗.

Let I = i1 . . . im and J = j1 . . . jn. In order to decide whether I ⊥ GJ ∣K, the
definition of G implies checking whether m ⋅n ⋅ 2(m+n−2) elementary triplets are in P .
The following lemma simplifies this for when P satisfies ci0-1, as it implies checking
m ⋅n elementary triplets. For when P satisfies ci0-2 or ci0-3, the lemma simplifies the

3A triplet can be represented as a n-tuple whose entries state if the corresponding node is in the
first, second, third or none set of the triplet.
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decision even further as the conditioning sets of the elementary triplets checked have
all the same size or form.

Lemma 5. Let H1 = {I ⊥ J ∣K ∶ is ⊥ P jt∣i1 . . . is−1j1 . . . jt−1K for all 1 ≤ s ≤ m and
1 ≤ t ≤ n}, H2 = {I ⊥ J ∣K ∶ i ⊥ P j∣(I ∖ i)(J ∖ j)K for all i ∈ I and j ∈ J}, and
H3 = {I ⊥J ∣K ∶ i⊥P j∣K for all i ∈ I and j ∈ J}. If P satisfies ci0-1, then G = H1. If
P satisfies ci0-2, then G = H2. If P satisfies ci0-3, then G = H3.

Proof. Proof for ci0-1

It suffices to prove that H1 ⊆ G, because it is clear that G ⊆ H1. Assume
that I ⊥ H1J ∣K. Then, is ⊥ P jt∣i1 . . . is−1j1 . . . jt−1K and is ⊥ P jt+1∣i1 . . . is−1j1 . . . jtK
by definition of H1. Then, is ⊥ P jt+1∣i1 . . . is−1j1 . . . jt−1K and is ⊥ P jt∣i1 . . . is−1
j1 . . . jt−1jt+1K by ci1. Then, is ⊥ Gjt+1∣i1 . . . is−1j1 . . . jt−1K and is ⊥ Gjt∣i1 . . . is−1
j1 . . . jt−1jt+1K by definition of G. By repeating this reasoning, we can then conclude
that is ⊥ Gjσ(t)∣i1 . . . is−1jσ(1) . . . jσ(t−1)K for any permutation σ of the set {1 . . . n}.
By following an analogous reasoning for is instead of jt, we can then conclude that
iς(s) ⊥Gjσ(t)∣iς(1) . . . iς(s−1)jσ(1) . . . jσ(t−1)K for any permutations σ and ς of the sets
{1 . . . n} and {1 . . .m}. This implies the desired result by definition of G.

Proof for ci0-2

It suffices to prove that H2 ⊆ G, because it is clear that G ⊆ H2. Note that G
satisfies CI0-2 by Lemma 2. Assume that I⊥H2J ∣K.

1. i1 ⊥ Gj1∣(I ∖ i1)(J ∖ j1)K and i1 ⊥ Gj2∣(I ∖ i1)(J ∖ j2)K follow from i1 ⊥ P

j1∣(I ∖ i1)(J ∖ j1)K and i1⊥P j2∣(I ∖ i1)(J ∖ j2)K by definition of G.

2. i1 ⊥ Gj1∣(I ∖ i1)(J ∖ j1j2)K by CI2 on (1), which together with (1) imply i1 ⊥

Gj1j2∣(I ∖ i1)(J ∖ j1j2)K by CI1.

3. i1⊥Gj3∣(I ∖ i1)(J ∖ j3)K follows from i1⊥P j3∣(I ∖ i1)(J ∖ j3)K by definition of
G.

4. i1⊥Gj1j2∣(I ∖ i1)(J ∖ j1j2j3)K by CI2 on (2) and (3), which together with (3)
imply i1⊥Gj1j2j3∣(I ∖ i1)(J ∖ j1j2j3)K by CI1.

By continuing with the reasoning above, we can conclude that i1 ⊥GJ ∣(I ∖ i1)K.
By an analogous reasoning, we can conclude that i1i2⊥GJ ∣(I ∖ i1i2)K, i1i2i3⊥GJ ∣(I ∖
i1i2i3)K and so on until the desired is obtained.

Proof for ci0-3

It suffices to prove that H3 ⊆ G, because it is clear that G ⊆ H3. Note that G
satisfies CI0-3 by Lemma 2. Assume that I⊥H3J ∣K.

1. i1 ⊥Gj1∣K and i1 ⊥Gj2∣K follow from i1 ⊥P j1∣K and i1 ⊥P j2∣K by definition of
G.

2. i1⊥Gj1∣j2K by CI3 on (1), which together with (1) imply i1⊥Gj1j2∣K by CI1.

3. i1⊥Gj3∣K follows from i1⊥P j3∣K by definition of G.

4. i1 ⊥ Gj1j2∣j3K by CI3 on (2) and (3), which together with (3) imply i1 ⊥ G
j1j2j3∣K by CI1.
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By continuing with the reasoning above, we can conclude that i1 ⊥GJ ∣K. By an
analogous reasoning, we can conclude that i1i2⊥GJ ∣K, i1i2i3⊥GJ ∣K and so on until
the desired result is obtained.

We are not the first to use some distinguished triplets of G to represent it. How-
ever, most other works use dominant triplets for this purpose [1, 4, 5, 9]. The following
lemma shows how to find these triplets with the help of P. A triplet I⊥J ∣K dominates
another triplet I ′ ⊥ J ′∣K ′ if I ′ ⊆ I, J ′ ⊆ J and K ⊆ K ′

⊆ (I ∖ I ′)(J ∖ J ′)K. Given
a set of triplets, a triplet in the set is called dominant if no other triplet in the set
dominates it.

Lemma 6. If G satisfies CI0-1, then I⊥J ∣K is a dominant triplet in G iff I = i1 . . . im
and J = j1 . . . jn are two maximal sets st is⊥Pjt∣i1 . . . is−1j1 . . . jt−1K for all 1 ≤ s ≤m
and 1 ≤ t ≤ n and, for all k ∈K, is /⊥Pk∣i1 . . . is−1J(K∖k) and k /⊥Pjt∣Ij1 . . . jt−1(K∖k)
for some 1 ≤ s ≤ m and 1 ≤ t ≤ n. If G satisfies CI0-2, then I ⊥ J ∣K is a dominant
triplet in G iff I and J are two maximal sets st i⊥Pj∣(I ∖ i)(J ∖ j)K for all i ∈ I and
j ∈ J and, for all k ∈K, i /⊥Pk∣(I ∖ i)J(K ∖k) and k /⊥Pj∣I(J ∖ j)(K ∖k) for some i ∈ I
and j ∈ J . If G satisfies CI0-3, then I ⊥J ∣K is a dominant triplet in G iff I and J
are two maximal sets st i⊥Pj∣K for all i ∈ I and j ∈ J and, for all k ∈K, i /⊥Pk∣K ∖ k
and k /⊥Pj∣K ∖ k for some i ∈ I and j ∈ J .

Proof. We proof the lemma for when G satisfies CI0-1. The other two cases can be
proven in much the same way. To see the if part, note that I⊥GJ ∣K by Lemmas 1 and
5. Moreover, assume to the contrary that there is a triplet I ′⊥GJ

′
∣K ′ that dominates

I ⊥GJ ∣K. Consider the following two cases: K ′
= K and K ′

⊂ K. In the first case,
CI1 on I ′ ⊥GJ

′
∣K ′ implies that Iim+1 ⊥GJ ∣K or I ⊥GJjn+1∣K with im+1 ∈ I

′
∖ I and

jn+1 ∈ J ′ ∖ J . Assume the latter without loss of generality. Then, CI1 implies that
is ⊥ Pjt∣i1 . . . is−1j1 . . . jt−1K for all 1 ≤ s ≤ m and 1 ≤ t ≤ n + 1. This contradicts the
maximality of J . In the second case, CI1 on I ′ ⊥GJ

′
∣K ′ implies that Ik ⊥GJ ∣K ∖ k

or I ⊥ GJk∣K ∖ k with k ∈ K. Assume the latter without loss of generality. Then,
CI1 implies that is ⊥ Pk∣i1 . . . is−1J(K ∖ k) for all 1 ≤ s ≤ m, which contradicts the
assumptions of the lemma.

To see the only if part, note that CI1 implies that is⊥Pjt∣i1 . . . is−1j1 . . . jt−1K for
all 1 ≤ s ≤ m and 1 ≤ t ≤ n. Moreover, assume to the contrary that for some k ∈ K,
is⊥Pk∣i1 . . . is−1J(K ∖ k) for all 1 ≤ s ≤m or k⊥Pjt∣Ij1 . . . jt−1(K ∖ k) for all 1 ≤ t ≤ n.
Assume the latter without loss of generality. Then, Ik⊥GJ ∣K∖k by Lemmas 1 and 5,
which implies that I⊥GJ ∣K is not a dominant triplet in G, which is a contradiction.
Finally, note that I and J must be maximal sets satisfying the properties proven
in this paragraph because, otherwise, the previous paragraph implies that there is a
triplet in G that dominates I⊥GJ ∣K.

Inspired by [7], if G satisfies CI0-1 then we represent P as a DAG. The nodes of
the DAG are the elementary triplets in P and the edges of the DAG are {i⊥ Pk∣L →
i ⊥ Pj∣kL} ∪ {k ⊥ Pj∣L ⇢ i ⊥ Pj∣kL}. See Figure 1 for an example. For the sake of
readability, the DAG in the figure does not include symmetric elementary triplets.
That is, the complete DAG can be obtained by adding a second copy of the DAG
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in the figure, replacing every node i⊥ Pj∣K in the copy with j ⊥ Pi∣K, and replacing
every edge → in the copy with ⇢. We say that a subgraph over m ⋅ n nodes of the
DAG is a grid if there is a bijection between the nodes of the subgraph and the labels
{vs,t ∶ 1 ≤ s ≤ m,1 ≤ t ≤ n} st the edges of the subgraph are {vs,t → vs,t+1 ∶ 1 ≤ s ≤
m,1 ≤ t < n} ∪ {vs,t ⇢ vs+1,t ∶ 1 ≤ s < m,1 ≤ t ≤ n}. For instance, the following
subgraph of the DAG in Figure 1 is a grid.

2⊥P5∣4

2⊥P6∣45

1⊥P5∣24

1⊥P6∣245

The following lemma is an immediate consequence of Lemmas 1 and 5.

Lemma 7. Let G satisfy CI0-1, and let I = i1 . . . im and J = j1 . . . jn. If the subgraph
of the DAG representation of P induced by the set of nodes {is⊥P jt∣i1 . . . is−1j1 . . . jt−1K ∶

1 ≤ s ≤m,1 ≤ t ≤ n} is a grid, then I⊥GJ ∣K.

Thanks to Lemmas 6 and 7, finding dominant triplets can now be reformulated
as finding maximal grids in the DAG. Note that this is a purely graphical charac-
terization. For instance, the DAG in Figure 1 has 18 maximal grids: The subgraphs
induced by the set of nodes {σ(s)⊥Pς(t)∣σ(1) . . . σ(s− 1)ς(1) . . . ς(t− 1) ∶ 1 ≤ s ≤ 2,1 ≤
t ≤ 3} where σ and ς are permutations of {1,2} and {4,5,6}, and the set of nodes
{π(s) ⊥ P4∣π(1) . . . π(s − 1) ∶ 1 ≤ s ≤ 3} where π is a permutation of {1,2,3}. These
grids correspond to the dominant triplets 12⊥G456∣∅ and 123⊥G4∣∅.

2 Operations

In this section, we discuss some operations with independence models that can effi-
ciently be performed with the help of P. See [2, 3] for how to perform these operations
efficiently when independence models are represented by their dominant triplets.

2.1 Membership

We want to check whether I ⊥ GJ ∣K, where G denotes a set of triplets satisfying
CI0-1/CI0-2/CI0-3. Recall that G can be obtained from P by Lemma 1. Recall
also that P satisfies ci0-1/ci0-2/ci0-3 by Lemma 1 and, thus, Lemma 5 applies to
P, which simplifies producing G from P. Specifically if G satisfies CI0-1, then we
can check whether I ⊥GJ ∣K with I = i1 . . . im and J = j1 . . . jn by checking whether
is⊥Pjt∣i1 . . . is−1j1 . . . jt−1K for all 1 ≤ s ≤ m and 1 ≤ t ≤ n. Thanks to Lemma 7, this
solution can also be reformulated as checking whether the DAG representation of P
contains a suitable grid. Likewise, if G satisfies CI0-2, then we can check whether
I⊥GJ ∣K by checking whether i⊥Pj∣(I ∖ i)(J ∖ j)K for all i ∈ I and j ∈ J . Finally, if G
satisfies CI0-3, then we can check whether I ⊥GJ ∣K by checking whether i⊥Pj∣K for
all i ∈ I and j ∈ J . Note that in the last two cases, we only need to check elementary
triplets with conditioning sets of a specific length or form.
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2.2 Minimal Independence Map

We say that a DAG D is a minimal independence map (MIM) of a set of triplets
G relative to an ordering σ of the elements in V if (i) I ⊥ DJ ∣K ⇒ I ⊥ GJ ∣K,4 (ii)
removing any edge from D makes it cease to satisfy condition (i), and (iii) the edges
of D are of the form σ(s) → σ(t) with s < t. If G satisfies CI0-1, then D can be
built by setting PaD(σ(s))

5 for all 1 ≤ s ≤ ∣V ∣ to a minimal subset of σ(1) . . . σ(s −
1) st σ(s) ⊥ Gσ(1) . . . σ(s − 1) ∖ PaD(σ(s))∣PaD(σ(s)) [8, Theorem 9]. Thanks to
Lemma 7, building a MIM of G relative to σ can now be reformulated as finding,
for all 1 ≤ s ≤ ∣V ∣, a longest grid in the DAG representation of P that is of the
form σ(s) ⊥ Pj1∣σ(1) . . . σ(s − 1) ∖ j1 . . . jn → σ(s) ⊥ Pj2∣σ(1) . . . σ(s − 1) ∖ j2 . . . jn →
. . . → σ(s) ⊥ Pjn∣σ(1) . . . σ(s − 1) ∖ jn, or j1 ⊥ Pσ(s)∣σ(1) . . . σ(s − 1) ∖ j1 . . . jn ⇢ j2 ⊥

Pσ(s)∣σ(1) . . . σ(s−1)∖ j2 . . . jn ⇢ . . .⇢ jn⊥Pσ(s)∣σ(1) . . . σ(s−1)∖ jn with j1 . . . jn ⊆
σ(1) . . . σ(s − 1). Then, we set PaD(σ(s)) to σ(1) . . . σ(s − 1) ∖ j1 . . . jn.

We say that a DAG D is a perfect map (PM) of a set of triplets G if I ⊥ D

J ∣K ⇔ I ⊥GJ ∣K. We can check whether G has a PM with the help of P as follows:
G has a PM iff PM(∅,∅) returns true, where

PM(V isited,Marked)

if V isited = V then
if all the nodes in the DAG representation of P are in Marked then

return true and stop
else

for each node i ∈ V ∖ V isited do
for each longest grid in the DAG representation of P that is of the form
i⊥Pj1∣V isited ∖ j1 . . . jn → i⊥Pj2∣V isited ∖ j2 . . . jn → . . .→ i⊥Pjn∣V isited ∖ jn or

j1⊥Pi∣V isited ∖ j1 . . . jn ⇢ j2⊥Pi∣V isited ∖ j2 . . . jn ⇢ . . .⇢ jn⊥Pi∣V isited ∖ jn with

j1 . . . jn ⊆ V isited do

PM(V isited ∪ {i},

Marked ∪ p({i⊥Gj1 . . . jn∣V isited ∖ j1 . . . jn}) ∪ p({j1 . . . jn⊥Gi∣V isited ∖ j1 . . . jn}))

2.3 Inclusion

Let G and G′ denote two sets of triplets satisfying CI0-1/CI0-2/CI0-3. We can check
whether G ⊆ G′ by checking whether P ⊆ P′. If the DAG representations of P and
P′ are available, then we can answer the inclusion question by checking whether the
former is a subgraph of the latter.

2.4 Intersection

Let G and G′ denote two sets of triplets satisfying CI0-1/CI0-2/CI0-3. Note that
G ∩ G′ satisfies CI0-1/CI0-2/CI0-3. Likewise, P ∩ P′ satisfies ci0-1/ci0-2/ci0-3. We

4I ⊥DJ ∣K stands for I and J are d-separated in D given K.
5PaD(σ(s)) denotes the parents of σ(s) in D.
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can represent G∩G by P∩P′. To see it, note that I⊥G∩G′J ∣K iff i⊥Pj∣M and i⊥P′j∣M
for all i ∈ I, j ∈ J , and K ⊆ M ⊆ (I ∖ i)(J ∖ j)K. If the DAG representations of P
and P′ are available, then we can represent G ∩G by the subgraph of either of them
induced by the nodes that are in both of them.

2.5 Union

Let G and G′ denote two sets of triplets satisfying CI0-1/CI0-2/CI0-3. Note that
G ∪ G′ may not satisfy CI0-1/CI0-2/CI0-3. For instance, let G = {x ⊥ y∣z, y ⊥ x∣z}
and G′

= {x⊥z∣∅, z⊥x∣∅}. We can solve this problem by simply adding an auxiliary
element e (respectively e′) to the conditioning set of every triplet in G (respectively
G′). In the previous example, G = {x⊥y∣ze, y⊥x∣ze} and G′

= {x⊥z∣e′, z⊥x∣e′}. Now,
we can represent G∪G′ by first adding the auxiliary element e (respectively e′) to the
conditioning set of every elementary triplet in P (respectively P′) and, then, taking
P ∪ P′. This solution has advantages and disadvantages. The main advantage is that
we represent G ∪G′ exactly. One of the disadvantages is that the same elementary
triplet may appear twice in the representation, i.e. with e and e′ in the conditioning
set. Another disadvantage is that we need to modify slightly the procedures described
above for building MIMs, and checking membership and inclusion. We believe that
the advantage outweighs the disadvantages.

If the solution above is not satisfactory, then we have two options: Representing
a minimal superset or a maximal superset of G ∪ G′ satisfying CI0-1/CI0-2/CI0-3.
Note that the minimal superset of G ∪ G′ satisfying CI0-1/CI0-2/CI0-3 is unique
because, otherwise, the intersection of any two such supersets is a superset of G ∪G′

that satisfies CI0-1/CI0-2/CI0-3, which contradicts the minimality of the original
supersets. On the other hand, the maximal subset of G ∪ G′ satisfying CI0-1/CI0-
2/CI0-3 is not unique. For instance, let G = {x⊥y∣z, y⊥x∣z} and G′

= {x⊥z∣∅, z⊥x∣∅}.
We can represent the minimal superset of G∪G′ satisfying CI0-1/CI0-2/CI0-3 by the
ci0-1/ci0-2/ci0-3 closure of P∪P′. Clearly, this representation represents a superset of
G∪G′. Moreover, the superset satisfies CI0-1/CI0-2/CI0-3 by Lemma 2. Minimality
follows from the fact that removing any elementary triplet from the representation
implies not representing some triplet in G ∪ G′ by Lemma 1. Note that the DAG
representation of G ∪ G′ is not the union of the DAG representations of P and P′,
because we first have to close P ∪ P′ under ci0-1/ci0-2/ci0-3. We can represent a
maximal subset of G ∪ G′ satisfying CI0-1/CI0-2/CI0-3 by a maximal subset U of
P∪P′ that is closed under ci0-1/ci0-2/ci0-3 and st every triplet represented by U is in
G∪G′. Recall that we can efficiently check the latter as shown above. In fact, we do
not need to check it for every triplet but only for the dominant triplets. Recall that
these can efficiently be obtained from U as shown in the previous section.

3 Discussion

In this work, we have proposed to represent semigraphoids, graphoids and composi-
tional graphoids by their elementary triplets. We have also shown how this represen-
tation helps performing efficiently some common operations between independence
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models. Whether this implies a gain of efficiency compared to other representations
(e.g. dominant triplets) is a question for future research.
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[7] Frantisek Matús. Lengths of semigraphoid inferences. Annals of Mathematics and
Artificial Intelligence, 35:287–294, 2002.

[8] Judea Pearl. Probabilistic reasoning in intelligent systems: Networks of plausible
inference. Morgan Kaufmann Publishers Inc., 1988.
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Figure 1: DAG representation of P (up to symmetry).
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Abstract

The decomposition of information into unique, shared, and synergetic parts
is an open, active problem in the theory of complex systems. Most approaches
to the problem are based on information theory, and propose decompositions of
mutual information between inputs and outputs in several ways, none of which
is generally accepted (yet).

We propose a new point of view on the topic. We model a multi-input
channel as a Markov kernel. We can decompose the kernel into a series of single
input nodes which represent single node information; pairwise interactions; and
in general onto n-node interactions, which form a hierarchical structure.

We consider three different ways to do the decomposition:

1. Linearly (Section 1), using orthogonal projectors w.r.t. the L2 inner prod-
uct defined by an input probability distribution.

2. Algebraically (Section 2), using algebraic-statistical quantities which quan-
tify the amount of interaction.

3. Geometrically (Section 3), minimizing the KL divergence between differ-
ent exponential families, or equivalently, maximizing the entropy with con-
strains on the marginals.

Under particular conditions, the three approaches are similar. Advantages
and disadvantages are outlined at the end.

Keywords: Synergy, Redundancy, Markov Kernels, Hilbert Spaces, Decompo-
sition, Projections, Divergences, Interactions
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Introduction

In complex systems like biological networks, for example neural networks, a basic
principle is that their functioning is based on the correlation and interaction of their
different parts. While correlation between two sources is well understood, and can
be quantified by Shannon’s mutual information (see for example [15]), there is still
no generally accepted theory for interactions of three nodes or more. If we label one
of the nodes as “output”, the problem is equivalent to determine how much two (or
more) input nodes interact to yield the output.

History

There are a number of important works which address the topic, but the problem is
still considered open. The first generalization of mutual information was interaction
information (introduced in [1]), defined for three nodes in terms of the joint and
marginal entropies:

I(X : Y : Z) =−H(X,Y, Z) +H(X,Y ) +H(X,Z) +H(Y, Z) + (1)

−H(X)−H(Y )−H(Z) . (2)

Unlike mutual information, this quantity carries a sign. This is traditionally inter-
preted as the effect that conditioning has on correlation (see [2]):

• I > 0: synergy. Conditioning on one node increases the correlation between the
remaining nodes. Example: XOR function.

• I < 0: redundancy. Conditioning on one node decreases, or explains away the
correlation between the remaining nodes. Example: Ising potential.

• I = 0: 3-independence. Conditioning on one node has no effect on the correla-
tion between the remaining nodes. The nodes can nevertheless still be condi-
tionally dependent. Example: independent nodes.1

As argued in [3], [4], and [5], however, the increase or decrease in correlation is not
the whole picture. There are systems which exhibit both synergetic and redundant
behavior, and interaction information only quantifies the average difference of synergy
and redundancy. In a system with highly correlated inputs, for example, the synergy
would remain unseen, as it would be cancelled by the redundancy. Moreover, this
picture breaks down for more than three nodes. Another problem, pointed out in
[5] and [6], is that redundancy (as in the Ising model) can be described in terms
of pairwise interactions, not triple, while synergy (as in the XOR function) is purely
threewise. Therefore, I compares and mixes information quantities of different nature.

A widely accepted approach, presented in [4] and equivalently in [7], proposed an
unsigned measure of synergy. However, it was proven in [8] that such an approach
can not work in the desired way for more than three nodes.

1For an example in which I = 0 but the nodes are not independent, see [3].
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Technical Definitions

We consider a set of N input nodes V = {1, . . . , N}, taking values in the sets
X1, . . . , XN , and an output node, taking values in the set Y . We write the input
globally as X := X1 × · · · × XN . For example, in biology Y can be the phenotype,
and X can be a collection of genes determining Y . We denote by F (Y ) the set of
functions on Y , and with P (X) the set of probability measures on X.

We can model the channel from X to Y as a Markov kernel K, that assigns to
each x ∈ X a probability measure on Y (for a detailed treatment, see [15]). Here
we will consider only finite systems, so we can think of a Markov kernel simply as a
transition matrix, whose rows sum to one.

K = K(x, y),
∑

y

K(x, y) = 1 ∀x . (3)

The pull-back of a function f : Y → R is:

K∗f(x) :=
∑

y

K(x, y) f(y) . (4)

The push-forward of a probability distribution p on X is:

K∗p(y) :=
∑

x

p(x)K(x, y) . (5)

Let I ⊆ V . We would like to restrict our function space (resp. probability space)
from V to I, in order to isolate the interactions that take place only within I. In more
rigor, given a function f ∈ F (X), we want to define a particular function fI ∈ F (X)
which depends only on the I entries (i.e. fI ∈ F (XI).

For brevity, we will denote F (XI) by FI . In the extreme cases, fV = f , and f∅ is
constant (equal to Ep(f) for any p). So FV = F (X), and F∅ ∼= R.

Definition. For any such construction, we call:

• F∅ := F0 the space of constant functions, or constant space;

• F{i} := Fi, with i = 1, . . . , N , the single node spaces;

• F{ij} := Fij , with 1 ≤ i < j ≤ N , the 2-interaction spaces;

• F{i1,...,ik} := Fi1,...,ik , with 1 ≤ i1 < · · · < ik ≤ N and 0 ≤ k ≤ N , the
k-interaction spaces.

Let use denote the elements of XI by xI . For later convenience, we also introduce
the complement:

Ic := V \I , (6)

so that V = I ∪ Ic, I ∩ IC = ∅, and f(x) = f(xI , xIc).
The very same (dual) construction can be made for probability distributions. In

this case we have:
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• P∅ := P0 contains only the constant measure;

• P{i} := Pi, with i = 1, . . . , N , contains the marginals on the single node i;

• P{ij} := Pij , with 1 ≤ i < j ≤ N , contains the marginals on nodes i, j;

• P{i1,...,ik} := Pi1,...,ik , with 1 ≤ i1 < · · · < ik ≤ N and 0 ≤ k ≤ N , contains the
marginals on the k nodes i1, . . . , ik.

1 Linear Decomposition

Let p be a strictly positive probability measure on X. Following the ideas of [9] and
[16], we define the following function in FI :

fI(x) :=
∑

x′
Ic

p(x′Ic |xI) f(xI , x
′
Ic) . (7)

First, we have the following consistency results:

Proposition. With the definition (7), fI = f if and only if f ∈ FI .

Corollary. Every function of FI can be written as fI for some f ∈ F (X).

We are saying in other words that the linear map f 7→ fI , which we denote by ΠI ,
is idempotent, i.e. a projector. There is more: it is orthogonal in the Hilbert space
L2(X, p), whose underlying vector space is F (X), and whose inner product is given
by:

〈 f, g 〉p := Ep(fg) =
∑

x

p(x) f(x) g(x) . (8)

Proposition. The map ΠI : f 7→ fI is the orthogonal projector onto FI .

Sketch of Proof. Because of Proposition 1, the image of ΠI is exactly FI . We have
already seen seen that ΠI is idempotent. By rearranging the sums, one can show
that:

〈 f,ΠIg 〉p = 〈ΠIf, g 〉p , (9)

i.e. ΠI is self-adjoint.

Remark. For every I ⊆ V , L2(XI , p) is a Hilbert subspace of L2(X, p), with un-
derlying space FI . Moreover, for I, J ⊆ V :

• FI ∩ FJ = FI∩J ;

• FI + FJ ⊂ FI∪J .
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The failure of the latter to be an equality is precisely the notion of synergy.
We have a hierarchical structure of linear subspaces:

F∅ ⊂ Fi ⊂ Fij ⊂ Fijk ⊂ · · · ⊂ F (X) , (10)

and projectors:

Π∅ ≤ Πi ≤ Πij ≤ Πijk ≤ · · · ≤ id , (11)

where for operators, A ≤ B means that (B−A) is positive semidefinite. The projectors
have the property that ΠIΠJ = ΠJ = ΠJΠI if and only if J ⊆ I.

We are interested in pure interactions. This means that, for I ⊆ V , we would like
to find the functions fI that cannot be written as (sums of) fJ , with J ( I strictly.
For example, if I = {1, 2}, we are interested in functions of the form f(x1, x2), but not
of the form f(x1), f(x2). Moreover, any function in the form f(x1, x2)+g1(x1)+g2(x2)
is also of the type f(x1, x2), and we would like somehow to “isolate” the interesting
part. In a vector space, this is precisely accomplished by the notion of quotient space.
We are interested in the spaces:

FI
/∑

J(I FJ . (12)

Since we are in a Hilbert space, we can work with orthogonal complements instead of
equivalence classes. Our quotient space is therefore isomorphic to:

FI ∩


∑

J(I
FJ



⊥

:= F̃I . (13)

Definition. We call the F̃I defined in (13) the pure I-interaction spaces.
We denote the orthogonal projector on F̃I by Π̃I .

Proposition. Every I-interaction space is spanned by the pure interaction spaces of
lower and equal order:

FI =
∑

J⊆I
F̃J . (14)

For example, if I = {1, 2}, F12 = F̃∅+ F̃1 + F̃2 + F̃12.

Remark. Since the pure interaction spaces are all independent, the sums are direct
sums:

FI =
⊕

J⊆I
F̃J . (15)

This means that given any f ∈ F , we can write it uniquely as a sum:

f =
∑

I

gI , (16)
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where each gI ∈ F̃I . Anyway, the gI in general do not correspond to the projections
Π̃I f , they only do when the inputs are independent. In the latter case, we have:

ΠI =
∑

J⊆I
Π̃J =

⊕

J⊆I
Π̃J , (17)

and a closed-form expression for the Π̃I is given by the Moebius inversion theorem
(see [16]), which states that (17) is equivalent to:

Π̃I =
∑

J⊆I
(−1)#(I\J)ΠJ , (18)

where #(I\J) is the number of elements of I\J . In general, no such closed form exists
for correlated inputs.

Consider now a Markov kernel from X to Y . The projection (7) on XI implies
that if f : Y → R:

(K∗f)1(x1) =
∑

x′
2

p(x′2|x1) (K∗f)(x1, x
′
2) =

∑

x′
2

p(x′2|x1)
∑

y

K(x1, x
′
2, y) f(y) .

This allows to extend the projections to Markov kernels in the most natural way:

K∗1 : f 7→ K∗1f := (K∗f)1 . (19)

Equivalently, the entries of K1 are given by:

K1(x1, y) :=
∑

x′
2

p(x′2|x1)K(x1, x
′
2, y) . (20)

For binary nodes, the spaces spanned by the KI are 1-dimensional, so the amount
of interaction is determined by the coefficient relative to the only basis element. For
higher numbers of states, the projections will be vectors, so it is best to consider their
squared norm.

Remark. The projection on a subset I, denoted above by KI , is a well-defined
Markov kernel, i.e. it is positive: if f is a non-negative function, then K∗I is also non-
negative. The projections on pure interaction spaces, however, do not yield positive
linear maps. This means that the objects in the linear decomposition of a Markov
kernels are not all themselves Markov kernels.

Examples. Here are some examples of decomposition for binary nodes, with con-
stant input distribution.

• The constant channel is simply a channel that returns 0 or 1 with probability
1/2, regardless of the input.

• The channels x1 and x2 copy the respective input, and forget the other one.
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• AND, OR, and XOR are the standard Boolean functions.

Channel K1 K2 K12

const 0 0 0
X1 1 0 0
X2 0 1 0

AND 1/2 1/2 -1/2
OR 1/2 1/2 1/2

XOR 0 0 1

Channel |K1|2 |K2|2 |K12|2
const 0 0 0
X1 1 0 0
X2 0 1 0

AND 1/4 1/4 1/4
OR 1/4 1/4 1/4

XOR 0 0 1

Since the terms in the decomposition are projections, or equivalently (since the
spaces here are 1-dimensional) coefficients relative to some basis elements, the terms
carry a sign. In the table on the right there are the squared moduli, which can be
more useful in higher dimensions.

2 Algebraic Decomposition

The approach of Section 1 was linear, here we have a multiplicative analogue. Or
equivalently, we look at a linear decomposition of the exponent of the Markov kernel
components.

We can see how to decompose the exponent by looking at the expansion:

K(x, y) =
1

Z
exp

(∑

I

qI
∏

i∈I
xi y

)
; Z =

∑

y′

exp

(∑

I

qI
∏

i∈I
xi y

′
)
. (21)

The coefficients qI measure exactly the interaction of the subset I in determining Y .
We can see this in the following way. A standard observation in algebraic statistics
(see [17]) states that a function f(x1, x2) can be written as a product f1(x1)f2(x2) if
and only if:

f(x1, x2)f(x′1, x
′
2) = f(x′1, x2)f(x1, x

′
2) (22)

for any x′1 6= x1 and x′2 6= x2. For n arguments, the function f(x1, . . . , xn) can be
written as a product of (any) less variable functions if an only if for any x′i 6= xi:

∏

I⊆V
|I| even

f(x′I , xIC ) =
∏

I⊆V
|I| odd

f(x′I , xIC ). (23)

It seems therefore natural to look at the quantity:

p(x1, x2)p(x′1, x
′
2)

p(x′1, x2)p(x1, x′2)
(24)

as a natural measure of how far p(x1, x2) is from a split probability (see [6], section
IV.E). Applying the same idea for Markov kernels, the quantity:

∏

x2

K(x1, x2, y)K(x′1, x2, y
′)

K(x′1, x2, y)K(x1, x2, y′)
, (25)
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independent of x2, measures how much y depends only on x1, and:

K(x1, x2, y)K(x′1, x
′
2, y)K(x′1, x2, y

′)K(x1, x
′
2, y
′)

K(x′1, x2, y)K(x1, x′2, y)K(x1, x2, y′)K(x′1, x
′
2, y
′)

(26)

measures how much interaction there is between x1, x2 in determining y. It is easier
to look at the logarithm of such quantities, and so we define for example:

qij(x, x
′, y, y′) : = log

K(x1, x2, y)K(x′1, x
′
2, y)K(x′1, x2, y

′)K(x1, x
′
2, y
′)

K(x′1, x2, y)K(x1, x′2, y)K(x1, x2, y′)K(x′1, x
′
2, y
′)

(27)

=
∑

J⊆{0,1,2}
(−1)|J| logK(x′J , xJc) , (28)

where X0 := Y for more compact notation. The general formula fo the subset I is
(where again X0 := Y ):

qI(x, x
′, y, y′) :=

∑

xIc

∑

J⊆I∪{0}
(−1)|J| logK(x′J , xJc) . (29)

It is clear from the definition that these quantities:

• do not depend on the input distribution;

• are not defined if some states have zero probability.

Just as in Section 1, for binary nodes, for each node there is only one state x′i
different from xi, and so the approach is particularly simple. For more than binary
inputs, the choice of different x′i 6= xi spans a subspace of dimension higher than one.
The logarithm of the kernel is itself a function, so we can decompose it exactly like
in Section 1. If we take the norm given by the counting measure on the inputs, the
projections are exactly the qI , and since the constant measure is split, the alternating
sum in (29) corresponds exactly to the Moebius inversion (18). So as in Section 1, for
binary nodes we can look at signed coefficients, while for higher dimensions we can
look at squared norms.

Examples. Here are some examples of decomposition for binary nodes, with con-
stant input distribution. The channels are the same as for Section 1, but averaged
(with weight 1/2) with a constant probability distribution, as deterministic channels
cannot be analyzed by this method.

Channel q1 q2 q12
const 0 0 0
X1 1.6 0 0
X2 0 1.6 0

AND 0.8 0.8 -0.8
OR 0.8 0.8 0.8

XOR 0 0 1.6

Channel |q1|2 |q2|2 |q12|2
const 0 0 0
X1 2.4 0 0
X2 0 2.4 0

AND 0.6 0.6 0.6
OR 0.6 0.6 0.6

XOR 0 0 2.4

As in Section 1, since the qI are coefficients relative to some basis elements, they
are signed. The table on the right gives the squared moduli. Because of the averaging,
only relative sizes matter.
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3 Geometric Decomposition

Here we take a slightly different approach from the previous two sections. The hierar-
chical structure is the same, but instead of projections (vectors or signed coefficients),
we look at “distances”, or in rigor, divergences. Therefore the results will always be
non-negative scalars.

In analogy with decompositions (14) and (21), here we define the exponential
families:

KI :=

{
1

Z
exp

(∑

J⊆I

qJ
∏

i∈J
xi y

)∣∣∣∣ Z =
∑

y′
exp

(∑

J⊆I

qJ
∏

i∈J
xi y

′
)
, qJ ∈ R

}
. (30)

For example, K1 is the space of (strictly positive) Markov kernels from X to Y which
only depend on x1.

What is the “optimal representative” in K1 of a given Markov kernel K (the
latter possibly depending on x2)? We want to extend the notion of divergence from
probability distributions to Markov kernels. The most natural way of doing it is the
following.

Definition. Let p be a strictly positive probability distribution on X, let K,M be
strictly positive Markov kernels from X to Y . Then:

Dp(K||M) :=
∑

x,y

p(x)K(x, y) log
K(x, y)

M(x, y)
. (31)

It is worth noticing that Dp is in general not equal to D(K∗p||M∗p). But defined
this way, Dp is linear on p, and it is a well-defined divergence. This implies an
important compatibility property. Let p, q be joint probability distributions on X×Y ,
and let D be the KL-divergence. Then:

D(p(x, y)||q(x, y)) = D(p(x)||q(x)) +Dp(x)(p(y|x)||q(y|x)) . (32)

Now let K be a family, and K be a kernel. We define the divergence between K and
K as:

Dp(K||K) := inf
M∈K

Dp(K||M) . (33)

First we look at the decomposition in the case of two inputs. For this, we need to
define the family of kernels depending on X1 and X2, but with no interaction:

K̃12 :=

{
1

Z
exp

(
q1x1y + q2x2y

)∣∣ Z =
∑

y′
exp

(
q1x1y

′ + q2x2y
′), q1, q2 ∈ R

}
. (34)

Equivalently, this is can be defined implicitly by q12 = 0 (see Section 2). We then
define:

G1 := Dp(K1||K0) (35)

G2 := Dp(K2||K0) (36)

G12 := Dp(K12|| K̃12) . (37)

Paolo Perrone, Nihat Ay

175



The logic is to evaluate the divergence between the KL-projection to I and the family
of lower-order interactions. In general, we define:

GI := Dp(KI || K̃I) , (38)

where:

K̃I :=

{
1

Z
exp

(∑

J(I

qJ
∏

i∈J
xi y

)∣∣∣∣ Z =
∑

y′
exp

(∑

J(I

qJ
∏

i∈J
xi y

′
)
, qJ ∈ R

}
. (39)

Note the difference with equation (30), here we are taking proper subsets of I, ne-
glecting higher interactions (in the language of Section 2, qI = 0).

The projections are easy to compute in the case of single input nodes (I = {i}), but
complicated for higher interaction, for which there is no closed form. The standard
approximation algorithm is the iterative scaling (see [11]), which we used to compute
the examples below.

It turns out that the projected kernel on a subset via the KL divergence, in the
strictly positive case, is equivalent to the linear projection of Section 1.

Proposition. Let p be a strictly positive probability distribution on X, and let K be
a strictly positive Markov kernel from X to Y . Consider the infimum, as in (33):

Dp(K||KI) := inf
M∈KI

Dp(K||M) . (40)

Then the infimum is realized by KI , as defined in (19) and (20).

Remark. This holds only hold for KL-projections on the families KI , not on other
families. For example, it does not hold in general for the K̃I . Moreover, this does not
apply to the deterministic channels (like most examples shown here), since they are
not strictly positive.

Examples. Here are some examples of decomposition for binary nodes, with con-
stant input distribution. The channels are again the same as for Section 1.

Channel G1 G2 G12

const 0 0 0
X1 1 0 0
X2 0 1 0

AND 0.3 0.3 1.2 · 10−5

OR 0.3 0.3 1.2 · 10−5

XOR 0 0 1
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4 Conclusion

We presented three different ways of decomposing Markov kernels. They all have
advantages and disadvantages, sometimes they yield similar or equal results, and in
our simple examples they tend to qualitatively agree.

The pros and contras of the different methods can be summarized in the following
table. “Y” means “yes”, “N” means “no”, “I” means “only for independent inputs”,
and “P” means “only in the strictly positive case”.

Property Linear Algebraic Geometric
Well-defined for any input P P Y
Independent on the input N P N2

Defined for deterministic channels Y N Y
Zero iff no highest interaction N Y Y

Independent from lower interactions Y P Y
Closed form results I Y N

Computationally simple I Y N

These three approaches can yield improvements over the previous measures of
interaction (see the Introduction). In particular:

• They all work for an arbitrary number of nodes;

• They (1 and 3) can tell apart interactions of different orders, without mixing
them;

• They (2 and 3) can tell without ambiguity when there is no interaction of a
given order or subset.
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Abstract

Chain Event Graphs are probabilistic graphical models designed especially
for the analysis of discrete statistical problems which do not admit a natu-
ral product space structure. We show here how they can be used for decision
analysis, and describe an optimal decision strategy based on an efficient local
computation message passing scheme. We briefly describe a method for produc-
ing a parsimonious decision CEG, analogous to the parsimonious ID, and touch
upon the CEG-analogues of Shachter’s barren node deletion and arc reversal for
ID-based solution.
Keywords: Chain Event Graph, decision analysis, Influence diagram

1 Introduction

In this paper we demonstrate how the Chain Event Graph (CEG) (see for example
[14, 16, 15, 12, 1]) can be used for tackling asymmetric decision problems.

Extensive form (EF) decision trees (in which variables appear in the order in which
they are observed by a decision maker) are flexible and expressive enough to represent
asymmetries within both the decision and outcome spaces, doing this through the
topological structure of the tree. They can however become unwieldy, and are not
convenient representations from which to read the conditional independence structure
of a problem.

Other graphical representations have been developed which to some extent deal
with the complexity issue associated with decision trees, and also allow for local com-
putation. The most commonly used of these is the Influence diagram (ID). Because of
their popularity, ID solution techniques have developed considerably since their first
introduction. However a major drawback of the ID representation is that many deci-
sion problems are asymmetric in that different actions can result in different choices
in the future, and IDs are not ideally suited to this sort of problem [5]. As decision
makers have become more ambitious in the complexity of the problems they wish to
solve, standard ID and tree-based methods have proven to be inadequate, and new
techniques have become necessary.
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There have consequently been many attempts to adapt IDs for use with asym-
metric problems (see for example [13, 9, 8]), or to develop new techniques which
use both IDs and trees [4]. There have also been several new structures suggested,
such as Sequential Decision Diagrams (SDDs) [5] and Valuation Networks (VNs) [11].
Asymmetric problems have recently also been represented via decision circuits [2].
An overview of many of these developments is given by Bielza & Shenoy in [3]. They
note that none of the methods available is consistently better than the others.

CEGs are probabilistic graphical models designed especially for the representation
and analysis of discrete statistical problems which do not admit a natural product
space structure. Unlike Bayesian Networks (BNs) they are functions of event trees,
and this means that they are able to express the complete sample space structure
associated with a problem. They are particularly useful for the analysis of processes
where the future development at any specific point depends on the particular history of
the problem up to that point. Such dependencies can be thought of as context-specific
conditional independence properties; and the structure implied by these properties is
fully expressed by the topology of the CEG. This is a distinct advantage over context-
specific BNs, which require supplementary information usually in the form of trees
or conditional probability tables attached to some of the vertices of the graph. Like
BNs, CEGs provide a suitable framework for efficient local computation algorithms.

Using CEGs for asymmetric decision analysis overcomes drawbacks associated
with the current graphs and techniques used for this purpose. They are an advance
on decision trees as they encode the conditional independence structure of problems.
They can represent probability models consistently (which SDDs don’t), and do not
require dummy states or supplementing with extra tables or trees (a drawback of
both VNs and Smith et als’ adaptations of IDs). They can model all asymmetries
(which VNs cannot), and their semantics are very straightforward, making them an
appropriate tool for use by non-experts (both VN & SDD methodologies are very
complicated).

Call & Miller [4] have drawn attention to the value of coalescence in tree-based
approaches to decision problems. They also point out that the difficulties in reading
conditional independence structure from trees has meant that analysts using them
have not fully taken advantage of the idea of coalescence. They remark that the
ability to exploit asymmetry can be a substantial advantage for trees. If trees could
naturally exploit coalescence, the efficiency advantage is even greater. SDDs go some
way towards exploiting this [3], but decision CEGs use coalescence both as a key tool
for the expression of conditional independence structure, and to power the analysis.

We show here how CEGs can be used for decision analysis, and describe how
to arrive at an optimal decision strategy via an efficient local computation message
passing scheme. We briefly describe a method for producing a parsimonious decision
CEG, analogous to the parsimonious ID, which contains only those variables and
dependencies which the decision maker needs to consider when making decisions;
and touch upon the CEG-analogues of Shachter’s [10] barren node deletion and arc
reversal for ID-based solution.
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2 CEGs and decision CEGs

We start this section with a brief introduction to CEGs – we direct readers to one
of [14, 15] if they would like a more detailed definition. The CEG is a function of a
coloured event tree, so we begin with a description of these graphs.

• A coloured event tree T is a directed tree with a single root-node.
• Each non-leaf-node v has an associated random variable whose state space cor-

responds to the subset of directed edges of T which emanate from v.
• Each edge leaving a node v carries a label which identifies a possible immediate

future development given the partial history corresponding to the node v.
• The non-leaf-node set of T is partitioned into equivalence classes called stages:

Nodes in the same stage have sets of outgoing edges with the same labels, and
edges with the same labels have the same probabilities.

• The edge-set of T is partitioned into equivalence classes, whose members have
the same colour: Edges have the same colour when the vertices from which they
emanate are in the same stage and the edges have the same label (& hence
probability).

• The non-leaf-node set of T is also partitioned into equivalence classes called
positions: Nodes are in the same position if the coloured subtrees rooted in
these nodes are isomorphic both in topology and in colouring (so edges in one
subtree are coloured (and labelled) identically with their corresponding edges
in another).

Note that nodes are in the same position when the sets of complete future develop-
ments from each node are the same, and have the same probability distribution.

To produce a CEG C from our tree T , nodes in the same position are combined
(as in the coalesced tree), and all leaf-nodes are combined into a single sink-node. We
note that for CEGs used for decision problems it is often more convenient to replace
the single sink-node by a set of terminal utility nodes, each of which corresponds to
a different utility value. We return to this idea in our example in Section 3.

So the nodes of our CEG C are the positions of the underlying tree T . We transfer
the ideas of stage and colour from T to C, and it is this combination of positions and
stages that enables the CEG to encode the full conditional independence structure of
the problem being modelled [14].

Many discrete statistical processes are asymmetric in that some variables have
quite different collections of possible outcomes given different developments of the
process up to that point. It was for these sorts of problem that the CEG was created,
and one area where they have proved particularly useful is that of causal analysis [16,
15]. In much causal analysis the question being asked is If I make this manipulation,
what are the effects?, but graphical models set up to answer such questions can also be
readily used for questions such as If I want to maximise my utility over this process,
what are the manipulations (decisions) I need to make?

In attempting to answer this second question, we notice that there are only certain
nodes or positions in the CEG which can actually be manipulated. We concentrate
in this paper on manipulations which impose a probability of one onto one edge
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emanating from any such node (equivalent to making a firm decision). Hence the
probabilistic nature of these nodes is removed – they become decision nodes, and we
therefore draw them as squares.

We draw our CEG in EF order – as with decision trees this is necessary in order to
calculate optimal decision rules. If two decision nodes in T are in the same position,
then the optimal strategy is the same for the decision maker (DM) at each of the two
decision nodes: it is conditionally independent of the path taken to reach the decision
node. A similar interpretation can be given to two chance nodes in the same position.

The only other modification that is required to use the CEG for decision analysis
is the addition of utilities. This can be done in two ways (1) adding utilities to edges,
or (2) expanding the sink-node w∞ into a set of utility nodes, each corresponding to
a distinct utility value (see our example in Section 3). We make our terminal nodes
diamond-shaped whether they are leaf nodes or a single sink-node.

When we manipulate a CEG we prune edges that are given zero probability by
the manipulation, and also any edge or position which lies downstream of such edges
only. No other edges (except those we manipulate to) have probabilities changed by
the manipulation [15]. This is not the case when we simply observe an event, when
edge-probabilities upstream of the observation can also change.

In [7], Dawid outlines how a decision-theoretic approach can be taken to causal
inference. In this paper we are perhaps doing the opposite; we show how established
causal analysis techniques for CEGs have a natural application in the field of decision
analysis.

Our propagation algorithm is illustrated in Table 1 – at the end of the local
message passing, the root node will contain the maximum expected utility. In the
pseudocode we use C & D for the sets of chance & decision nodes, p represents a
probability or weight, and u a utility. The utility part of a position w is denoted
by w[u], the probability part of an edge by e(w,w′)[p] etc. The set of child nodes
of a position w is denoted by ch(w). Note that there may be more than one edge
connecting two positions, if say two different decisions have the same consequence.
This has significant ramifications for more complicated problems, as described in our
example.

Table 1: Local propagation algorithm for finding an optimal decision sequence

• Find a topological ordering of the positions. Without loss of generality call
this w1, w2, . . . , wn, so that w1 is the root-node, and wn is the sink-node.
• Initialize the utility value wn[u] of the sink node to zero.
• Iterate: for i = n− 1 step minus 1 until i = 1 do:

– If wi ∈ C then
wi[u] =

∑
w∈ch(wi)

[∑
e(wi,w)

[
e(wi, w)[p] ∗ (w[u] + e(wi, w)[u])

]]

– If wi ∈ D then wi[u] = maxw∈ch(wi)

[
maxe(wi,w)

[
(w[u] + e(wi, w)[u])

]]

• Mark the sub-optimal edges.

Note that when we choose to confine utilities to terminal utility nodes, this algo-
rithm is much simplified since both the initializing step and the e(wi, w)[u] compo-
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nents are no longer required.

3 Representing and solving asymmetric decision prob-
lems using extensive form CEGs

We concentrate here on how the CEG compares with the augmented ID of Smith,
Holtzman & Matheson [13] for the representation and solution of asymmetric decision
problems. We show that the ID-based solution techniques of barren-node deletion [10]
and parsimony have direct analogues in the CEG-analysis, and that arc-reversal [10]
is not required for the solution of EF CEGs. The distribution trees [13] added to the
nodes of IDs to describe the asymmetry of a problem can simply be thought of as
close-ups of interesting parts of the CEG-depiction, where they are an integral part
of the representation rather than bolt-on as is the case with IDs. We illustrate this
comparison through an example.

We first consider what is meant by conditional independence statements which
involve decision variables.

The statement X q Y | Z is true if and only if we can write P (x | y, z) as a(x, z)
for some function a of x and z, for all values x, y, z of the variables X,Y, Z [6]. So
clearly, for chance variables X,Y, Z and decision variable D, where the value taken by
X is not known to the DM when she makes a decision at D, we can write statements
such as X q D | Z and X q Y | D since the expressions P (x | d, z) = a(x, z) and
P (x | y, d) = a(x, d) are unambiguous in this situation (d representing a value taken
by D).

Note that P (d | y, z) is not unambiguously defined, and so conditional indepen-
dence is no longer a symmetric property when we add decision variables to the
mix. By a slight abuse of notation we can also write U q (Y,D1) | (Z,D2) if
U(y, z, d1, d2) = U(z, d2) for all values y, z, d1, d2 of the chance variables Y,Z and
decision variables D1, D2.

Example. Patients suffering from some disease are given one of a set of possible
treatments. There is an initial reaction to the treatment in that the patient’s body
either accepts the treatment without problems or attempts to reject it. After this
initial reaction, the patient responds to the treatment at some level measurable by
their doctor, and this response is independent of the initial reaction conditioned on
which treatment has been given. The patient’s doctor has to make a second decision
on how to continue treatment.

There is also the possibility of the patient having some additional condition which
affects how they will respond to the treatment. Whether or not they have this condition
will remain unknown to the doctor, but she can estimate the probability of a patient
having it or not (conditioned on their response to their particular treatment) from
previous studies.

The doctor is concerned with the medium-term health of the patient following her
decisions, and knows that this is dependent on whether or not the patient has the
additional condition, how they respond to the first treatment, and the decision made
regarding treatment continuation.
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Table 2 summarises this information in the form of a list of variables and relation-
ships.

D
1

C
2

C
3

C
1

D
2

U

Figure 1: EF ID for our example

Table 2: Variables & relationships; plus U as a function of C3, D2 and C2

D1: Choice of treatment
C1: Initial reaction
C2: Response to treatment – C2 q C1 | D1

D2: Decision on how to continue treatment
C3: Condition affecting response to

treatment and medium-term health
Can estimate P (C3 | D1, C2)

U : Medium-term health, a function of
C2, D2 and C3

C3 C2 D2 U
1 1 1 A
1 1 2 A
1 2 1 B
1 2 2 C
2 1 1 A
2 1 2 A
2 2 1 D
2 2 2 E

To avoid making the problem too complex for easy understanding we let all vari-
ables be binary except U , and introduce only two asymmetric features: So suppose
that if a patient fails to respond to the first treatment (C2 = 1), then the patient will
inevitably have the lowest medium-term health rating (U = A). We can express this
as U q (C3, D2) | (C2 = 1) (see Table 2). Suppose also that if D1 = 2 (Treatment 2 is
given) then C1 takes the value 1 (the patient’s body always accepts the treatment).
The problem can be represented by the EF ID in Figure 1.

To express the asymmetry of the problem we can add distribution trees to the
nodes C1 and U as in Figure 2. These have been drawn in a manner consistent with
the other diagrams in this paper, rather than with those in [13].

The ID in Figure 1 is not the most parsimonious representation of the problem.
If we can partition the parents of a decision node D (those nodes with arrows into
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Figure 2: Distribution trees for nodes C1 and U

D) into two sets QA(D), QB(D) such that U q QB(D) | (D,QA(D)), then the set
QB(D) can be considered irrelevant for the purposes of maximising utility, and the
edges from nodes in QB(D) into D can be removed from the ID. Here we find that
C1 ∈ QB(D2), and so the edge from C1 to D2 can be removed from the ID. The node
C1 is now barren, so it can also be removed (together with the edge D1 → C1).

Once we have our parsimonious ID we can use one of the standard solution methods
to produce an optimal decision strategy and expected utility for this strategy. Using
Shachter’s method (reversing the arc between C3 and C2, and adding a new arc from
D1 to C3) we eventually get

Ufinal = max
D1

[∑

C2

P (C2 | D1)
[

max
D2

[∑

C3

P (C3 | D1, C2) U(C2, C3, D2)
]]]

which does not however reflect the asymmetries in the problem. These can be built
into the solution technique, but as the principal asymmetry concerns U(C2, C3, D2),
any advantage conveyed by the compactness of the ID is lost in the messy arithmetic.

We now turn our attention to a CEG-representation of the problem. There are
two EF orderings of the variables: D1, C2, C1, D2, C3, U and one where C1 & C2 are
interchanged. Note that D2 precedes C3 since the value of C3 is not known to the
DM when she comes to make a decision at D2. The first ordering leads to a slightly
more transparent graph.

As we are comparing CEGs and IDs here, we do not put any utilities onto edges,
but restrict them to terminal utility nodes. We also separate out our single utility
node into distinct utility nodes for each value taken by U . In more complex decision
problems this can lead to greater transparency. We have elsewhere called this form of
CEG without utilities on edges, and with separated utility nodes, a Type 2 decision
CEG. The Type 2 CEG for the ordering D1, C2, C1, D2, C3, U is given in Figure 3.

Conditional independence structure in a CEG can be read from individual po-
sitions, from stages, and from cuts through these [14]. Recall that nodes in the
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Figure 3: Initial EF CEG for our example
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Figure 4: First and second simplifications

underlying tree are coalesced into positions when the sets of complete future devel-
opments from each node are the same and have the same probability distribution. So
for example, the position wn yields the information that

(C3, U)q (C1, D2) | (D1 = 1, C2 = 1) (3.1)

The position wp similarly yields (C3, U)q C1 | (D1 = 1, C2 = 2, D2 = 1).
Recall that positions in a CEG are in the same stage if their sets of outgoing edges

carry the same labels and have the same probability distribution. The positions wp
& wq are in the same stage (indicated by the colouring), and so the probabilities on
the edges leaving these positions have the same distibution, and hence

C3 q (C1, D2) | (D1 = 1, C2 = 2) (3.2)

The expressions (3.1) & (3.2) result from the fact that in our EF CEG ordered
D1, C2, C1, D2, C3, U , the variable C3 is dependent on D1 and C2. This is not clear
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from the ID in Figure 1, but is reflected in the expression for Ufinal. But the form
of this expected utility expression is a consequence of the arc-reversal required for
successful ID-based solution of our problem. So this arc-reversal is already explicitly
represented in the original EF CEG, and is not (as with IDs) an additional requirement
of the solution technique.

A cut through a CEG is a set of positions or stages which partitions the set of
root-to-sink/leaf paths. So the set of positions {wn, wo, wp, wq, wr, ws} is a cut of our
CEG. A conditional independence statement associated with a cut is the union of
those statements associated with the component positions (or stages) of the cut. So
the cut through {wn, wo, wp, wq, wr, ws} gives us that

U q C1 | (D1, C2, D2)

which is clearly of the form UqQ(DB
2 ) | (D2, Q(DA

2 )), and tells us that C1 is irrelevant
to D2 for the purposes of maximising utility.

For a Type 2 CEG drawn in EF order, two (or more) decision nodes are in the
same position if the sub-CEGs rooted in each decision node have the same topology,
equivalent edges in these sub-CEGs have the same labels & (where appropriate) prob-
abilities, and equivalent branches terminate in the same utility node. So in Figure 3,
the nodes wh & wi are in the same position, as are the nodes wk & wl. Decision nodes
in the same position can simply be coalesced, giving us the first graph in Figure 4.

For a Type 2 EF decision CEG with all positions coalesced (as in this graph), a
barren node is simply a position w for which ch(w) (defined as in section 2) contains
a single element. Barren nodes can be deleted in a similar manner to those in BNs –
see Table 3 (where pa(w) denotes the set of parent nodes of w).

Table 3: Barren node deletion algorithm (Type 2 decision CEGs)

• Choose a topological ordering of the positions excluding the terminal utility
nodes: w1, w2, . . . , wm, such that w1 is the root-node.

• Iterate: for i = 2 step plus 1 until i = m do:

– If ch(wi) contains only one node then
Label this node w�i
For each node w≺i ∈ pa(wi)
Replace all edges e(w≺i, wi) by a single edge e(w≺i, w�i)
Delete all edges e(wi, w�i) & the node wi.

Four iterations of the algorithm applied to the first graph in Figure 4 yield the
second graph in Figure 4. Further iterations will remove the first two D2 nodes and
the first two C3 nodes to give the parsimonious CEG in Figure 5.

We can clearly see that C1 is irrelevant for maximising U , and moreover if C2 = 1
then both D2 and C3 are also irrelevant for this purpose (so the DM actually only
needs to make one decision in this context). This latter property of the problem is
not one that can be deduced from an ID-representation, although it could with some
effort be worked out from the second distribution tree in Figure 2. It is however
obvious in the parsimonious CEG.
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Solution follows the method described in section 2 (the process obviously being
simpler as there are no rewards or costs on the edges), and results in the expression

Ufinal =

max
[
P (C2 = 1 | D1 = 1)UA + P (C2 = 2 | D1 = 1)×

max
[
P (C3 = 1 | D1 = 1, C2 = 2)UB + P (C3 = 2 | D1 = 1, C2 = 2)UD,

P (C3 = 1 | D1 = 1, C2 = 2)UC + P (C3 = 2 | D1 = 1, C2 = 2)UE
]
,

P (C2 = 1 | D1 = 2)UA + P (C2 = 2 | D1 = 2)×
max

[
P (C3 = 1 | D1 = 2, C2 = 2)UB + P (C3 = 2 | D1 = 2, C2 = 2)UD,

P (C3 = 1 | D1 = 2, C2 = 2)UC + P (C3 = 2 | D1 = 2, C2 = 2)UE
]]

1

2

1

2

1

2

w1

w2

w3

D1 C2 D2 C3

w4

w5

w6

w7

w8

w9

U

A

B

C

D

E

Figure 5: Parsimonious CEG

This expression is obviously more complex than that for the ID, but it is much more
robust since it has been produced using the asymmetry of the problem to power the
analysis, rather than treating it as an added complication.

4 Discussion

In this paper we have concentrated on how CEGs compare with IDs for the analysis
of asymmetric decision problems. It is however worth pointing out two advantages
of CEGs over coalesced trees: Firstly, the ability to read conditional independence
structure from CEGs allowed us to create an analogue of the parsimonious ID, and
secondly, the explicit representation of stage structure in CEGs gave rise to our barren
node deletion algorithm.

A paper providing a more detailed discussion of parsimony, barren node deletion
and arc reversal as they relate to CEGs is imminent. This paper will also provide a
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comparison of CEGs with VNs, SDDs and augmented IDs through a worked example.
A further paper on the use of decision CEGs for multi-agent problems and games is
also in the pipeline.
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Abstract

The contribution is devoted to the relationship between a special type of
compositional models, so-called prefect sequences, and networks in four partic-
ular frameworks of imprecise probabilities. We show that although the class
of perfect sequences of probability distributions is equivalent with the class of
Bayesian networks (and analogous equivalence holds also in possibilistic setting),
the class of evidential compositional models is much wider than that of eviden-
tial networks and the relationship among credal networks (in general sense),
perfect sequences of credal sets and separately specified credal networks is even
more interesting.

Keywords: Compositional models, Bayesian networks, possibilistic networks,
evidential networks, credal networks

1 Introduction

Compositional models of precise probability distributions were introduced almost
twenty years ago [9] with the aim to bring an alternative to Graphical Markov models.
Later the compositional models were introduced also in possibility theory [14] utilizing
the formal similarity of possibility and probability theories, more precisely, the ability
to express both probability and possibility measures by a point function — distribu-
tion. Nevertheless, there exist one substantial difference with probabilistic framework
— multidimensional models are parameterized by a continuous t-norm. The gener-
alization of compositional models to evidence theory [11] was not too simple, as it is
necessary to work with set functions instead of point ones, and the generalization to
even more general framework of credal sets is under development [17].

Bayesian networks, on the other hand, are at present probably the most popular
representative of Graphical Markov models. Therefore, it is not surprising that their
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counterparts in imprecise probabilities framework have been introduced during last
two decades [1, 3, 5].

This contribution is devoted to the overview of compositional models and corre-
sponding networks in four above-mentioned frameworks. We will show that while the
class of perfect sequences of probability distributions is equivalent with the class of
Bayesian networks (and analogous equivalence holds also in possibilistic setting), the
class of evidential compositional models is much wider than that of evidential networks
and the relationship among credal networks (in general sense), perfect sequences of
credal sets and separately specified credal networks is even more interesting.

The contribution is organised as follows. After an overview of basic concepts
in particular frameworks (Section 2), in Section 3 compositional models (and their
properties) will be recalled and Section 4 is the overview of relationships between
compositional models and networks in particular frameworks.

2 Basic concepts and notation

In this section we will recall basic concepts and notation necessary for understanding
the contribution.

2.1 Set projections and extensions

For an index setN = {1, 2, . . . , n} let {Xi}i∈N be a system of variables, eachXi having
its values in a finite set Xi. In this contribution we will deal with a multidimensional
frame of discernment (or simply Cartesian product space)

XN = X1 ×X2 × . . .×Xn,

and, for K ⊆ N , its subframes (or subspaces)

XK =×i∈KXi.

When dealing with groups of variables on these subframes, XK will denote a group
of variables {Xi}i∈K throughout the contribution.

A projection of x = (x1, x2, . . . , xn) ∈ XN into XK will be denoted x↓K , i.e. , for
K = {i1, i2, . . . , ik}

x↓K = (xi1 , xi2 , . . . , xik) ∈ XK .

Analogously, for M ⊂ K ⊆ N and A ⊂ XK , A↓M will denote a projection of A into
XM . In this case

A↓M = {y ∈ XM | ∃x ∈ A : y = x↓M}.
In addition to the projection, in this text we will also need an inverse operation,

which will be called a join [2]. By a join of two sets A ⊆ XK and B ⊆ XL (K,L ⊆ N),
we will understand a set

A ./ B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.
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Let us note that, for any C ⊆ XK∪L, naturally C ⊆ C↓K ./ C↓L, but generally
C 6= C↓K ./ C↓L. Furthermore, if K and L are disjoint, then the join of A and B is
just their Cartesian product, A ./ B = A×B, and if K = L then A ./ B = A∩B. If
K ∩ L 6= ∅ and A↓K∩L ∩B↓K∩L = ∅ then A ./ B = ∅ as well.

2.2 Probability and possibility distributions

The uncertainty of a group of variables XK can “traditionally” be described by a
probability distribution (sometimes also called probability function) P : XK −→ [0, 1],
such that ∑

xK∈XK

P (xK) = 1.

Having two probability distributions P1 and P2 of XK we say that P1 is absolutely
continuous with respect to P2 (and denote P1 � P2) if for any xK ∈ XK

P2(xK) = 0 =⇒ P1(xK) = 0.

This concept plays an important role in the definition of the probabilistic composition
operator.

More specific (but not less important) is the concept of projectivity. Probability
distributions P1 and P2 of XK and XL, respectively, are called projective, if they
coincide on common subspaces, i.e. if

P1(xK∩L) = P2(xK∩L)

for any xK∩L ∈ XK∩L.
As an alternative to probability one can use a possibility distribution

π : XK −→ [0, 1],

which is called normal if
max

xK∈XK

π(xK) = 1.

In a way closely connected with the notion of normalization is also the most impor-
tant difference between the two considered settings, which concerns marginalization.

Marginalization in possibility theory differs from that in the probabilistic frame-
work in using maximization instead of summation, i.e. for L ⊂ K a marginal possi-
bility distribution π(xL) of distribution π(xK) is defined by the formula

π(xL) = max
xK\L∈XK\L

π(xK) = max
xK\L∈XK\L

π(xL, xK\L).

Analogous to probabilistic framework, we say that possibility distributions π1 and
π2 of XK and XL, respectively, are called projective, if

π1(xK∩L) = π2(xK∩L)

for any xK∩L ∈ XK∩L.
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From the point of view of this contribution, one of the most important notions we
have to recall is the concept of conditioning [6]. Considering a continuous t-norm1 T ,
the conditional possibility distribution π (x2|T x1) is defined for each (x1, x2) ∈ X1×X2

as any solution of the equation

π (x1, x2) = T (π (x2|T x1) , π (x1)) .

Since the solution of this equation is usually not unique, we take for the conditional
distribution the maximal (or the least specific) one. As we consider only continuous
t-norms T , this solution coincides with the respective T-residual

y4Tx = sup{z ∈ [0, 1] : T (z, x) ≤ y},
i.e. for each (x1, x2) ∈ X1 ×X2

π (x2|T x1) = π (x1, x2)4Tπ (x1) .

2.3 Set functions

In evidence theory [13], which can be considered as a generalization of both probability
and possibility theories, two dual measures are used to model the uncertainty: belief
and plausibility measures. Each of them can be defined with the help of another set
function called a basic assignment m on XN , i.e.,

m : P(XN ) −→ [0, 1],

where P(XN ) is the power set of XN , and
∑

A⊆XN

m(A) = 1.

Furthermore, we assume that m(∅) = 0.2 A set A ∈ P(XN ) is a focal element if
m(A) > 0.

For a basic assignment m on XK and M ⊂ K, a marginal basic assignment of m
on XM is defined (for each A ⊆ XM ) by the equality

m↓M (A) =
∑

B⊆XK

B↓M=A

m(B).

Analogous to previous subsection, we will call two basic assignments m1 and m2

on XK and XL, respectively, projective, if

m↓K∩L1 (A) = m↓K∩L2 (A)

for any A ⊆ XK∩L.
Although there exist a great number of conditioning rules [8], their usefulness for

multidimensional models is rather questionable. This fact led us to the following
proposal of a new conditioning rule in [16], where also its correctness was proven.

1Let us recall that a t-norm T is a commutative, associative and isotone binary operator on [0,1]
satisfying boundary condition T (x, 1) = x for any x ∈ [0, 1].

2This assumption is not generally accepted, e.g. , in [4] it is omitted.
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Definition 1 Let XK and XL (K ∩ L = ∅) be two groups of variables with values
in XK and XL, respectively. Then the conditional basic assignment of XK given
XL ∈ B ⊆ XL (for B such that m↓L(B) > 0) is defined as follows:

mXK |XL
(A|B) =

∑

C⊆XK∪L:

C↓K=A&C↓L=B

m(C)

m↓L(B)

for any A ⊆ XK .

2.4 Credal sets

Even more general is the theory of credal sets [7]. A credal set M(XK) describing
a group of variables XK is defined as a closed convex set of probability measures
describing the values of these variables.3

In order to simplify the expression of operations with credal sets, it is often con-
sidered [12] that a credal set is the set of probability distributions associated to the
probability measures in it. Under such consideration a credal set can be expressed as
a convex hull of its extreme distributions

M(XK) = CH{ext(M(XK ))}.

Consider a credal set describing XK , i.e. M(XK). For each L ⊂ K its marginal
credal set M(XL) is obtained by element-wise marginalization, i.e.

M(XL) = CH{P ↓L : P ∈ ext(M(XK))},

where P ↓L denotes the marginal distribution of P on XL.

Again, having two credal sets M1 and M2 describing XK and XL, respectively
(assuming that K,L ⊆ N), we say that these credal sets are projective if

M1(XK∩L) =M2(XK∩L). (1)

Let us note that if K and L are disjoint, thenM1 andM2 are always projective,
as M1(X∅) =M2(X∅) ≡ 1.

Conditional credal sets are obtained from the joint ones by point-wise conditioning
of the extreme points and subsequent linear combination of the resulting conditional
distributions. More formally: Let M(XK∪L) (K ∩ L = ∅) be a credal set describing
(groups of) variables XK∪L. Then for any xL ∈ XL

M(XK |xL) = CH{P (XK |xL) : P ∈ ext(M(XK∪L))},

is a conditional credal set describing XK given XL = xL.

3For K = ∅ let us setM(X∅) ≡ 1.
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3 Compositional models

Now, we are ready to recall compositional models in the four above-characterized
frameworks.

3.1 Composition operator

The most important concept of this contribution is that of the composition operator,
in any of the above-mentioned frameworks. First we will recall its probabilistic form
[9], as the remaining ones were designed to have analogous properties.

3.1.1 Composition of probability distributions

Let P1 and P2 be two probability distributions of (groups of) variables XK and XL;
then

(P1 . P2)(XK∪L) =
P1(XK) · P2(XL)

P2(XK∩L)
, (2)

whenever P1(XK∩L)� P2((XK∩L); otherwise, it remains undefined.

3.1.2 Composition of possibility distributions

Composition operator for possibility distribution was introduced in [14]. Since con-
ditioning in possibilistic framework is dependent on the selected t-norm, it is quite
natural that also the composition operator is t-norm dependent.

Considering a continuous t-norm T , two subsets K,L ⊂ N (this time not neces-
sarily disjoint) and two normalized possibility distributions π1(xK) and π2(xL), we
define the composition operator of possibilistic distributions as an analogy with (2)
by the expression

(π1 .T π2) (xK , xL) = T (π1 (xI1) , π2 (xI2)4Tπ2 (xI1∩I2)) .

In contrast with the probabilistic case in possibility theory the composition oper-
ator is always defined.

3.1.3 Composition of basic assignments

Evidential compositional models are based on the concept of the operator of compo-
sition of basic assignments, introduced in [11] in the following way.

Definition 2 For two arbitrary basic assignments m1 on XK and m2 on XL a com-
position m1 . m2 is defined for all C ⊆ XK∪L by one of the following expressions:

(a) if m↓K∩L2 (C↓K∩L) > 0 and C = C↓K ./ C↓L then

(m1 . m2)(C) =
m1(C↓K) ·m2(C↓L)

m↓K∩L2 (C↓K∩L)
;
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(b) if m↓K∩L2 (C↓K∩L) = 0 and C = C↓K ×XL\K then

(m1 . m2)(C) = m1(C↓K);

(c) in all other cases
(m1 . m2)(C) = 0.

Again, in this framework the composition operator is always defined.

3.1.4 Composition of projective credal sets

The compositional models for credal sets are under development — at present we only
deal with the composition of projective credal sets [17].

Definition 3 For two projective credal sets M1 and M2 describing XK and XL, a
composition M1 .M2 is defined by the following expression:

(M1 .M2)(XK∪L) = CH{(P1 · P2)/P
↓K∩L
2 : P1 ∈ ext(M1(XK)),

P2 ∈ ext(M2(XL)), P ↓K∩L1 = P ↓K∩L2 }.

In all settings the resulting model keeps the first marginal, in case of projective
distributions or basic assignments both [9, 14, 11]. As the credal composition operator
is defined only for projective credal sets, it is not surprising, that it also keeps both
marginals [17].

3.2 Perfect sequences and their properties

In this paragraph we will recall repetitive application of the composition operator
with the goal to create a multidimensional model. As the theory of credal sets is the
most general among theories studied in this contribution,4 we will present all concepts
and results in this section for credal sets.

Since the operator is not associative [9, 14, 11, 15], we have to specify in which
order the low-dimensional credal sets are composed together. To make the formulae
more transparent we will omit parentheses in case that the operator is to be applied
from left to right, i.e., in what follows

M1 .M2 .M3 . · · · .Mm−1 .Mm (3)

= (· · · ((M1 .M2) .M3) . · · · .Mm−1) .Mm.

Furthermore, we will always assume Mi be a credal set describing XKi
and call

M1,M2,M3, . . . ,Mm generating sequence of the model (3).
The reader familiar with some papers on compositional models knows that one of

the most important notions of this theory is that of a so-called perfect sequence.

4The only exception is possibility theory, where the composition operator is parameterized by a
continuous t-norm, and so is the concept of perfectness.
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Definition 4 A generating sequence of credal setsM1,M2, . . . ,Mn is called perfect
if

M1 .M2 = M2 .M1,

M1 .M2 .M3 = M3 . (M1 .M2),

...

M1 .M2 . · · · .Mm = Mm . (M1 . · · · .Mm−1).

It is evident that the necessary condition for perfectness is pairwise projectivity
(i.e. (1) holds for any pair of credal sets from the generating sequence in question) of
low-dimensional credal sets. However, it need not be sufficient.

Therefore a stronger, necessary and sufficient condition, expressed by the following
assertion [15], must be fulfilled.

Lemma 1 A generating sequence M1,M2, . . . ,Mm is perfect iff the pairs of credal
sets Mj and (M1 . · · · .Mj−1) are projective, i.e. if

Mj(XKj∩(K1∪···∪Kj−1)) = (M1 . · · · .Mj−1)(XKj∩(K1∪···∪Kj−1)),

for all j = 2, 3, . . . ,m.

From Definition 4 one can hardly see what are the properties of the perfect se-
quences besides the algebraic ones; the most important one is expressed by the follow-
ing characterization theorem [15], which also suggests why these sequences are called
perfect.

Theorem 1 A generating sequence of credal sets M1,M2,. . . ,Mm is perfect iff all
the credal sets from this sequence are marginal to the composed credal set M1 .M2 .
· · · .Mm:

(M1 .M2 . · · · .Mm)(XKj
) =Mj(XKj

),

for all j = 1, . . . ,m.

The following theorem [17] is quite special within this contribution, as it deals with
the relationship between perfect sequences in different frameworks. Nevertheless, it
is not only an interesting result, but also an effective tool for the proof of a part of
Theorem 3 in the next section.

Theorem 2 Let M1,M2,. . . ,Mm be a perfect sequence of credal sets such that each
Mi, i = 1, . . .m, is the convex hull of its extreme points, i.e.,

Mi(XKi) = CH{Pi : Pi ∈ ext(Mi(XKi))}.
Then

M1 .M2 . · · · .Mm

is a convex hull of all
P1 . P2 . . . . . Pm

such that each Pi ∈ ext(Mi(XKi
)), and P1, P2, . . . , Pm form a perfect sequence.
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4 Networks

In this section we will deal with networks in each of the theories listed in Section 2
and study their relationship with the corresponding compositional models. First let
us recall the basic concepts of particular networks.

4.1 Bayesian networks

As already mentioned in the introduction, Bayesian networks are probably the most
popular representative of Graphical Markov models.

Relationships among variables in Bayesian networks are determined in two ways.
Structural information describing the existence of a “direct” dependence of variables is
given by a graph, while the quantitative information is given by a system of conditional
probability distributions. Thus, a Bayesian network is a couple: an acyclic directed
graph and a system of conditional probability distributions. In this system there are
as many distributions as variables, i.e. nodes of the graph. For each variable there is
a conditional distribution given all parent5 variables in the condition. Some of nodes
(at least one because of acyclicity) are parentless and their distributions are in fact
unconditional.

Let us denote BN (XN ) the class of Bayesian networks over XN .

4.2 Possibilistic networks

Possibilistic networks (Benferhat et al. [3] call them directed possibilistic graphs) can
be introduced as a possibilistic counterpart of Bayesian networks in the following way:

Relationships among variables in possibilistic belief networks are determined anal-
ogous to Bayesian networks: an acyclic directed graph and a system of conditional
possibility distributions. Nevertheless, there is one more parameter, a continuous t-
norm (frequently minimum or product). So, let us denote ΠNT (XN ) the class of
possibilistic networks over XN (with respect to t-norm T ).

4.3 Evidential networks

Evidential networks were introduced in [16] as a concept derived from perfect se-
quences, analogous to Bayesian networks: an acyclic directed graph and a system of
conditional basic assignments. Conditional basic assignments are defined in accor-
dance with Definition 1 only for focal elements in the condition. Again, let us denote
EN (XN ) the class of possibilistic networks over XN .

There exists also an alternative definition of networks in evidence theory, so-called
directed evidential networks [5], but these models can hardly be considered to be a
counterpart of Bayesian networks, as the graph has completely different interpreta-
tion.

5Node i is a parent of node j in a graph if there is a directed edge leading from i to j. The set
of parents of j will be denoted pa(j).
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4.4 Credal Networks

A credal network [1] over XN is a pair (G, {P1, . . . ,Pk}) such that for any i = 1, . . . , k
(G,Pi) is a Bayesian network over XN , i.e. any Pi is a system of conditional proba-
bility distribution forming the joint distribution of XN , P i(XN ).

The resulting model is a credal set, which is the convex hull of the Bayesian
networks, i.e.

CH{P 1(XN ), . . . P k(XN )}.
It is evident, that this definition looses the attractiveness of Bayesian networks, where
the overall information is computed from the local pieces of information. Let us denote
by CN (XN ) the class of credal networks over XN .

The most popular (and also most effective) type of credal networks are those called
separately specified. A separately specified credal network over XN is a pair (G,M),
where M is a set of conditional credal sets M(Xi|pa(Xi)) for each Xi ∈ XN and
pa(Xi) denotes the set of parent variables of Xi. Here the overall model is obtained
analogous to Bayesian networks as the strong extension of the M(Xi|pa(Xi)), i ∈ N .
Analogous to previous paragraph let us denote by SCN (XN ) the class of separately
specified credal networks over XN .

Nevertheless, there exist a lot of situations in which separately specified credal
networks cannot be used or their use leads to less specific models. For more details
the reader is referred to [1].

4.5 Networks and Prefect Sequences

In this subsection we will overview, the relationship between networks and perfect
sequences. For this purpose let us denote by PPS(XN ), ΠPST (XN ), EPS(XN )
and CPS(XN ) the classes of perfect sequences6 over XN of probability distributions,
possibility distributions, basic assignments and credal sets, respectively.

Theorem 3 For any XN

(i) BN (XN ) = PPS(XN ),

(ii) ΠNT (XN ) = ΠPST (XN ),

(iii) EN (XN ) ⊂ EPS(XN ),

(iv) SCN (XN ) ⊂ CPS(XN ) ⊂ CN (XN ).

The proofs of particular parts of theorem can be found in [10, 16, 17] and for
the description of an algorithm reconstructing a network from a perfect sequence the
reader is referred to the same papers.

The fact, that compositional models for credal sets are based on “local knowledge”
even in cases, when the credal network is not separately specified, can be considered
as an advantage of these models.

6In case of possibility distributions T -perfect sequences.
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5 Conclusions

The aim of this contribution was to overview relationships between compositional
models and networks in four specific settings of imprecise probabilities.

In probability theory, special class of these models, called perfect sequences, was
proved to be equivalent to Bayesian networks in such a sense, that any Bayesian
network can be expressed as a composition of a perfect sequence of probability distri-
butions and vice versa. In possibility theory an analogous equivalence relation holds
true: for identical t-norms and a suitable choice of a conditioning rule.

On the contrary in evidence theory the equivalence is no more valid. Any evidential
network can be expressed in the form of a compositional model, but not vice versa. In
other words, the class of compositional models is much richer. In credal sets theory,
the relationship is even more complicated: any separately specified credal network
can be expressed in the form of a compositional model and any compositional model
can be expressed in the form of a credal network. The reverse implications do not
hold.

From the results presented in this contribution it is evident, that both evidential
and credal compositional models are worth-developing, as they are more flexible than
evidential networks and separately specified credal networks, respectively.
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Abstract

Influence diagrams were applied to diverse decision problems. However,
the general theory is still not sufficiently developed if the variables are con-
tinuous or hybrid and the utility functions are nonlinear. In this paper, we
study computational problems related to the application of influence dia-
grams to vehicle speed profile optimization and suggest an approximation of
the nonlinear utility functions by piecewise linear functions.

1 Introduction

In this paper, we use an example inspired by a real problem – a car moving on a
road – to study various issues related to computations with influence diagrams. The
modeled car is equipped with an automatic transmission and its speed is controlled
using the throttle and the brakes. There are various speed limits on the road (e.g.,
130 km/h on a highway or 50 km/h in an urban area). The goal is to find an
optimal strategy for passing the road while minimizing (i) time spend on the road,
(ii) the fuel consumption, or (iii) a mixture of both.

There are two principal ways for representing the solution:

speed profile – a function that assigns a speed value to all points on the road,

control policy – a function that assigns control values of the throttle and the
brakes for every possible speed and to every point on the road.

The control policy is more general. In case of the speed profile the vehicle
uses an additional regulator that follows the speed profile by controlling the car
acceleration using the throttle and the brakes. In the control policy, the control
signals are already precomputed for all admissible speed values. This becomes
especially handy in real situations when the driver has to suddenly slow down or
even to stop due to an unexpected traffic situation and the precomputed speed
profile becomes obsolete.
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Since all variables (speed, acceleration, throttle, brakes) are continuous by their
nature, it would be natural to work with continuous or hybrid influence diagrams.
Unfortunately, the theory of continuous influence diagrams is not sufficiently devel-
oped (especially for nonlinear utility functions). In this paper we perform experi-
ments with discrete influence diagrams. One of our goals is to analyze the shape
of nonlinear relations and propose good approximations.

An influence diagram (Howard and Matheson, 1981) is a Bayesian network
augmented with decision variables and utility functions. Influence diagrams were
applied to diverse decision problems. Recently, we introduced influence diagrams to
the problem of optimization of a vehicle speed profile. We performed computational
experiments in which an influence diagram was used to optimize the speed profile
of a Formula 1 race car at the Silverstone F1 circuit (Kratochv́ıl and Vomlel, 2015).

In this paper we split the vehicle path into n segments of the same length s.
For each segment of the vehicle path there are two random variables Vi and Vi+1,
one decision variable Ui, and one utility potential fi+1. In Figure 1, we present the
structure of a part of the ID corresponding to one segment of the path. The values
of i are from the set {1, 2, . . . , n− 1}. The physical model of the vehicle is given in

Vi+1

fi+1

Vi

Ui

Figure 1: A part of the influence diagram for one path segment

Section 2. It is used to define the probability and utility functions of the influence
diagram.

In this paper, we generally allow variables to be discrete or continuous and the
main theoretical results presented in the paper are valid for both types of variables.
However, experiments were performed with discrete variables only. For the sake of
brevity we do not discuss related work in this paper – we refer interested readers
to Kratochv́ıl and Vomlel (2015).
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2 Vehicle physics

We model the vehicle behavior using the laws of physics. To model the engine
behavior and the fuel consumption we assume the vehicle to be a passenger car
and we follow the approach of Chang and Morlok (2005). The values of variables1

describing the car state are defined by the following formulas2.
Velocity at the coordinate i+ 1

vi+1 = v(ai, vi) =
√

(vi)2 + 2 · s · ai , (1)

where ai and vi is acceleration and velocity at the coordinate i, respectively. Let
amaxt be the maximum tangential acceleration of the vehicle,3 amint be the maximum
tangential deceleration,4 Engine acceleration at segment i is defined by the following
equation:

aei = ae(ui, vi) =

{
ui · (amaxt − ca · vi) if ui > 0
ui · amint otherwise.

(2)

In this paper we will consider a vehicle with values amaxt = 4, ca = 0.06, and
amint = 5. ui is the control at the coordinate i. It has values from 〈0, 1〉 where
negative ones correspond to braking, positive ones to using throttle. Deceleration
caused by friction forces and aerodynamic drag is

adi = ad(vi) = cr + cv · (vi)2 (3)

where cr = 0.1273 and cv = 0.000257 for the considered vehicle. Acceleration at
segment [i, i+ 1] is

ai = a(ui, vi) = ae(ui, vi)− ad(vi) . (4)

By putting equations (1)–(4) altogether we get

vi+1 = v′(ui, vi)

=





√
(vi)2 + 2 · s ·

(
ui · (amaxt − ca · vi)− cr − cv · (vi)2

)
if ui > 0

√
(vi)2 + 2 · s ·

(
ui · amint − cr − cv · (vi)2

)
otherwise.

(5)

Time spent at the path segment [i, i+ 1]

ti+1 = t(vi, vi+1) = s ·
(
vi + vi+1

2

)−1
. (6)

1We use the symbol without subscript to denote the function that specifies the variable’s value.
2Note that the relations between variables follow the edges of the influence diagram from

Figure 1
3It is a property of the vehicle engine (without considering the aerodynamic drag and friction

forces). The real maximum acceleration is lower.
4It is a property of the vehicle brakes (without considering the aerodynamic drag and friction

forces). The real maximum deceleration is higher.
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Figure 2: The total fuel consumption and the speed with the initial speed 100 km/h
and the control u = 0.2 and u = 0, respectively.

When modeling the fuel consumption, we assume it is proportional to the work
done by the engine (Chang and Morlok, 2005), which is the acceleration multiplied
by the vehicle mass and by the distance s, plus a low fuel consumption constant
per time:

gi+1 = g(vi, vi+1)

= cg · s ·m ·max

{
0,

(vi+1)2 − (vi)
2

2s
+ ad(vi)

}
+ gmin · t(vi, vi+1) , (7)

where the considered constants are the vehicle mass in kilograms m = 1759, the fuel
rate in liter per one Joul of energy cg = 10−7, and the constant fuel consumption
in liter per second gmin = 1/3600. The vehicle behavior in terms of the fuel
consumption and its speed is illustrated in Figure 2.

3 Speed constraints in the model

We assume that a maximum speed vmaxi and a minimum speed vmini is given in
advance at each path coordinate i = 1, . . . , n. Let Vi denote the set of admissible
speed values at i and let the admissible set at the end of the path be

Vn = {v ∈ V, vminn ≤ v ≤ vmaxn } . (8)

We apply the constraints during optimization process where we allow to select
only those control signals ui ∈ U that lead to vi+1 = v′(ui, vi) belonging to Vi+1.
We define functions Ui(Vi) that for each value vi of variable Vi provide the set of
admissible control values:

Ui(vi) = {u ∈ U : v′(ui, vi) ∈ Vi+1} . (9)

This set inductively defines the set of admissible speed values at i for which there
exist an admissible control value:

Vi = {v ∈ V : vmini ≤ v ≤ vmaxi , Ui(v) 6= ∅} . (10)

This, again, inductively defines set Ui−1(vi−1). This process is repeated until i = 1.
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4 Expected utility of a control policy

In the sequel we will use the following abbreviations
∑

Vi

ϕ(Vi, ·) =
∑

vi∈Vi
ϕ(Vi = vi, ·) and

max
Ui

ψ(Ui, Vi) = max
ui∈Ui(vi)

ψ(Ui = ui, Vi = vi) .

M will be a generalized marginalization operation. The operatorM acts differently
for a discrete random variable A, a continuous random variable B, and a decision
variable U of a (probability or utility) potential ψ:

M
A
ψ(A, . . .) =

∑

A

ψ(A, . . .), M
B
ψ(B, . . .) =

∫
ψ(B = b, . . .) db,

M
U
ψ(U, . . .) = max

U
ψ(U, . . .) .

The control of the vehicle speed will be realized by means of the control policy.

Definition 1. Control policy is a set of functions

δ =
{
δ(Ui|Vi) : i ∈ {1, . . . , n− 1}, vi ∈ V

}

such that for all i = 1, . . . , n and all vi ∈ V it maps ui ∈ U to values from [0, 1] and
it holds that

∑

ui∈U
δ(Ui = ui|Vi = vi) = 1 . (11)

Definition 2. A control policy δ is deterministic if for all i = 1, . . . , n and all
vi ∈ V it holds that there is a function ui : V → U such that for all u ∈ U

δ(Ui = u|Vi = vi) =

{
1 if u = ui(vi)
0 otherwise.

(12)

Remark 1. In this paper, all considered policies will be deterministic.

Definition 3. The expected value Ef of a deterministic control policy δ speci-
fied by functions ui is the sum or the integral over all possible configurations of
random variables of the products of the probability and the criteria value of that
configuration:

Ef (δ) = M
V1,...,Vn

P (V1, . . . , Vn) · f(V1, . . . , Vn) (13)

where

P (V1, . . . , Vn) = P (V1) ·
n−1∏

i=1

P (Vi+1|Ui = ui(vi), Vi) (14)

f(V1, . . . , Vn) =

n−1∑

i=1

f(Vi, Vi+1) . (15)

Jiří Vomlel, Václav Kratochvíl

207



The criteria to be optimized will be the expected value Ef of a deterministic
control policy.

Definition 4. An optimal deterministic policy δ∗ is a deterministic policy such
that it holds for all control policies δ that

Ef (δ) ≤ Ef (δ∗) . (16)

We will use symbol u∗i to denote the function ui : V → U that specifies the optimal
deterministic policy δ∗ according to Definition 2. The symbol u∗i (Vi) denotes the
set of functions u∗i for all values vi of variable Vi.

Using the recursive application of the commutative and distributive laws we
get the following theorem that specifies a computationally efficient algorithm for
finding an optimal decision policy. Note that our algorithm is just a special case of
general inference methods for influence diagrams (Jensen et al., 1994; Shenoy, 1992;
Shachter and Peot, 1992). But since our influence diagram has a simple structure
it is useful to derive a simple inference algorithm tailored for the task we solve.
Note that, in this case, the algorithm does not involve divisions. The computations
can be also viewed as a special case of dynamic programming (Bellman, 1957).

Theorem 1.

E∗f = Ef (δ∗) = M
V1

P (V1) · ψ(V1) , (17)

where ψ(V1) is computed recursively for i = 1, . . . , n− 1 as

ψ(Vi) = max
Ui

M
Vi+1

P (Vi+1|Vi, Ui) ·
(
f(Vi, Vi+1) + ψ(Vi+1)

)
. (18)

with the recursion terminal values being ψ(Vn) = 0(Vn), where 0(Vn) stands for
the vector taking for all states of variable Vn value zero.

The proof can be found in Appendix A.

Remark 2. In each step i = 1, . . . , n, an optimal deterministic policy is specified
(according to Definition 2) by a function ui : V → U such that ui(vi) = u∗i (vi),
where u∗i (vi) is a value of Ui that maximize formula (18) for a given vi .

5 Deterministic continuous model for the total time
minimization

In this section we will present a special case for which it is easy to find an optimal
speed profile even if all variables are continuous. The optimality criteria will be
the total time

∑n−1
i=1 t(vi, vi+1) and the goal will be to minimize it.
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Definition 5. Let v′(ui, vi) be the function specified in (5). If for i = 1, . . . , n− 1
it holds that

P (Vi+1 = vi+1|Ui = ui, Vi = vi) =

{
1 if vi+1 = v′(ui, vi)
0 otherwise.

then we say that the vehicle behavior is deterministic.

Next we present a corollary of Theorem 1 that specifies an algorithm for the
case of a deterministic vehicle behavior.

Corollary 1. Assume that the vehicle behavior is deterministic. Then

E∗f = Ef (δ∗) = M
V1

P (V1) · ψ(V1) , (19)

where ψ(V1) is computed recursively for i = 1, . . . , n− 1 and for all vi ∈ V as:

ψ(vi) = f
(
vi, v

′(max Ui(vi), vi
))

+ ψ
(
v′
(

max Ui(vi), vi
))

. (20)

The recursion terminal values are defined as ψ(vn) = 0 for all vn ∈ V.

Proof. Formula (20) follows from (18) - the considered criteria is the minimization
of the total time. Therefore maxUi corresponds to picking the highest value from
Ui(vi). Also, note that for the deterministic vehicle behavior and for any potential
ξ(Vi, Vi+1) it holds for all ui ∈ U , vi ∈ V that

M
Vi+1

P (Vi+1|Ui = ui, Vi = vi) · ξ(Vi = vi, Vi+1) = ξ(Vi = vi, Vi+1 = v′(ui, vi)) .

From Corollary 1 we derive computationally efficient Algorithm 1 that can be
used to compute efficiently the optimal speed profile of the vehicle satisfying the
speed constraints. We will use function w(ui, vi+1) that gives the initial speed vi
such that after driving distance s with the control ui the speed is vi+1. The idea
behind the algorithm is that the function f , which is is to be maximized, implies
that the best policy for any vi, i = 1, . . . , n−1 is to speedup as much as possible to
be able to slow down by maximum allowed decceleration to satisfy that v∗j ≤ vmaxj

for all j > i.
First, the maximal speed profile is constructed from the speed constraints and

the maximum decceleration of the vehicle. Second, the best policy is found with
the maximum acceleration until the speed meets the maximum profile constructed
in the first stage of the algorithm.

6 Experiments

In the experiments, we considered the speed and control variables to be discrete,
i.e. sets V,U are finite with the discretization steps being dV , dU , respectively. In
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input : vmaxi , i = 1, . . . , n – maximal speed values
output: v∗i , i = 1, . . . , n – speed values maximizing Ef (see Definition 3)

v∗n = vmaxn ;
for i = n− 1, . . . , 1 do

v∗i = w(−1, v∗i+1);
if (v∗i > vmaxi ) then

v∗i = vmaxi ;
end

end
for i = 1, . . . , n− 1 do

vi+1 = v′(+1, v∗i );
if (vi+1 < v∗i+1) then

v∗i+1 = vi+1;
end

end

Algorithm 1: Optimal speed profile construction for the deterministic vehicle
behavior.

this case we use linear approximations of utility values of vi = v(ui−1, vi−1), vi 6∈ V
by a mixture of utility values vi ≤ vi and vi ≥ vi that are the closest values from
V to vi. The mixture weights are the probabilities that are defined as

P (Vi = v|Ui−1 = ui−1, Vi−1 = vi−1) =





1− |v − vi|
dV

for v = vi, vi

0 otherwise.
(21)

To get an into the problem we performed the following computational experi-
ment. Assume a road section of length 2 km in a flat area and the speed limit of
90 km/h in the whole section and with three short subpaths with the speed limit
of 50 km/h. Let s = 20 m. The speed limit profile of the road can be seen in the
upper part of Figure 3. The area of forbidden speeds is highlighted. The black line
illustrates a speed profile of a car starting with initial speed of 80 km/h, following
the control policy calculated using Theorem 1. The probability potentials were
defined as in (21) and V,U had 100 values.

Using deterministic relation between variables, we are inevitably working with
states of zero probability. If the task is minimization of a criteria the zero proba-
bility values may lead to wrong solutions. Therefore we formulate the problem as
a maximization task. Instead of the minimization of a specific mixture of the fuel
consumption and the total time, we maximize the savings with respect to the worst
performance. As the optimality criteria we use a mixture of the normalized total
time savings and the normalized fuel savings. The normalized utility functions for
the time and fuel savings at segment [i, i+ 1] are defined as

f ti+1 = f t(vi, vi+1) = 1− t(vi, vi+1)

tmax
, ffi+1 = ff (vi, vi+1) = 1− g(vi, vi+1)

gmax
,
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Figure 3: Generated speed profile and corresponding control profile

where t(vi, vi+1) and g(vi, vi+1) are defined by formula (6) and (7), respectively.
tmax and gmax are the maximum possible time spent and fuel consumption in one
segment. In the experiments we used utility function f defined (for α = 0.5)

f =

n−1∑

i=1

αf ti + (1− α)ffi . (22)

Remark 3. For the speeds close to zero the values of t(vi, vi+1) and g(vi, vi+1) are
very high. This would imply high values of tmax and gmax. Consequently, for most
of other speed values the functions f ti+1 and ffi+1 would provide values close to one.
This may cause rounding errors. To avoid this problem we disregard speeds lower
than 4 km/h for the definitions of tmax and gmax.

In Figure 3, we present results of our numerical experiment. In the upper part
the computed optimal speed profile is presented. The corresponding values of the
control variable (the throttle or the brakes) are depicted in the lower part of the
figure. It is interesting to note that most of the time the car is in a so called
flying mode, which is driving with the neutral gear with no throttle or brakes. In
case of a longer road without speed limits, the optimal speed stabilizes (for this
settings) around 80 km/h - see the road section around 900 m. Because there is
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no requirement on the speed at the end - the algorithm decided to enter the flying
mode, similarly, as in the case when the vehicle is approaching 50 km/h speed
limits.

According to Theorem 1, the calculations are performed in the direction from
the road’s furthermost point backwards. The development of the values of the
expected utility function in two randomly selected points of the path can be seen
in Figure 4. Axis x and y correspond to speed and control, axis z refers to the
expected utility. Figure 4a corresponds to the iteration 15 of the algorithm (i = 87),
while Figure 4b corresponds to the iteration 62 (i = 39). Forbidden combinations of
speed and control are not depicted. In Figure 4 the highlighted facets corresponds
to maximal expected utility for the given speed. For every value of speed, we store
respective control as the optimal deterministic policy in this points - see Remark 2.

From Figure 4a we can deduce that the best strategy for a low speed is to use
the full throttle (first, to speed up and than to use the flying mode). For speeds of
about 50− 60 km/h it starts to be better to use the flying mode immediately. For
very high speeds, the optimal strategy has to be to use the brakes in order to satisfy
the speed limits. The overall view of the image suggests that global optimum is
at the highest speeds. It is logical, because with a high initial speed a lot of the
fuel and time can be saved. Figure 4b corresponds to a driving situation just
before reaching one of the speed limits of 50 km/h. Therefore more combinations
of speed and control values are forbidden. However, the shape of the expected
utility function is similar.

Remark 4. Note the scale of axis z in Figures 4a and 4b. Recall that, in every
point, we are using a weighted mixture of normalized utility functions with values
from interval 〈0, 1〉. By maximization, we usually select combinations with values
close to 1 and that is why the values of expected utility corresponds well to the
number of the current algorithm iteration.

Our future goal is to move from discrete variables to the continuous ones. There-
fore, it is interesting to see the shape of the expected utility function with respect
to the control value and for a given speed. Let us take the utility function from Fig-
ure 4a and select five speed values. Respective slices are depicted in Figure 5. The
gray solid lines show values from Figure 4a, the black lines show piecewise-linear
approximations of each line. All approximations are composed from three lines. To
find the best approximation of each curve, we used R package segmented (Muggeo,
2008). The package estimates linear and generalized linear models with one or more
segmented relationships in the linear predictor. Estimates of the slopes and of the
(possibly multiple) breakpoints are provided. In our experiments, we decided to fix
the number of breakpoints to two and let the algorithm find their best positions.

In an influence diagram with continuous variables we would need to represent
the optimal control policy at each step i by a function ui : V → U (see Definition 2).
The optimal control policy at point i = 87 of the path is depicted in Figure 6. We
can see that piecewise linear functions may again represent good approximations.
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7 Conclusions

We applied influence diagrams to optimization of a vehicle speed profile and per-
formed numerical experiments on a 2-km-long path with few speed constraints.
We considered optimality criteria based on a mixture of the fuel consumption and
the total driving time. We derived the general inference algorithm for this type
of influence diagrams and presented efficient modifications of this algorithm for
specific cases. Finally, we used the numerical experiments to elicit the shape of
expected utility and policy functions. In both cases piecewise linear functions seem
to be good approximations that can be used in influence diagrams with continuous
variables.
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A Proof of Theorem 1

Proof. For any j = 1, . . . , n we will denote the joint probability distribution as

P (U1, . . . , Uj , V1, . . . , Vj) = P (V1) ·
j∏

i=2

P (Vi|Ui−1, Vi−1) · δ(Ui−1|Vi−1)

and the total utility as

f(V1, . . . , Vj) =

j−1∑

i=1

f(Vi, Vi+1) .

For the maximal expected value it holds that

E∗f

= max
U1,...,Un−1

M
V1,...,Vn

(
P (U1, . . . , Un−1, V1, . . . , Vn) · f(V1, . . . , Vn)

)

= max
U1,...,Un−1

M
V1,...,Vn

(
P (U1, . . . , Un−1, V1, . . . , Vn)

·
(
f(V1, . . . , Vn) + ψ(Vn)

)
)

(23)

= max
U1,...,Un−1

M
V1,...,Vn−1




P (U1, . . . , Un−1, V1, . . . , Vn−1)

·
∑

Vn

P (Vn|Vn−1, Un−1) ·




f(V1, . . . , Vn−1)

+f(Vn−1, Vn)

+ψ(Vn)







.
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We can write

E∗f = max
U1,...,Un−1

M
V1,...,Vn−1




P (U1, . . . , Un−1, V1, . . . , Vn−1)

·
(
ξ(V1, . . . , Vn−1) + ψ(Un−1, Vn−1)

)

 ,

where

ξ(V1, . . . , Vn−1) = M
Vn

(
P (Vn|Vn−1, Un−1) · f(V1, . . . , Vn−1)

)
(24)

ψ(Un−1, Vn−1) = M
Vn

P (Vn|Vn−1, Un−1) ·
(
f(Vn−1, Vn) + ψ(Vn)

)
. (25)

Equation (24) can be simplified to

ξ(V1, . . . , Vn−1) =
(
M
Vn

P (Vn|Vn−1, Un−1)
)
· f(V1, . . . , Vn−1) (26)

= f(V1, . . . , Vn−1) , (27)

where the second transformation is due toM
Vn

P (Vn|Vn−1, Un−1) = 1. This implies

E∗f = max
U1,...,Un−1

M
V1,...,Vn−1




P (U1, . . . , Un−1, V1, . . . , Vn−1)

·
(
f(V1, . . . , Vn−1) + ψ(Un−1, Vn−1)

)

 .

As the next step, we will for each vn−1 ∈ V find a value un−1 of decision variable
Un−1 that maximizes Ef over the terms containing Un−1. Note that the value of
Un−1 cannot influence the past since when deciding on Un−1 the value of Vn−1 is
already known. It means that the values of Vn−1 effectively separate the influence
diagram into two parts and maximization over Un−1 can be performed only in the
part containing Un−1:

E∗f = max
U1,...,Un−2

M
V1,...,Vn−1




P (U1, . . . , Un−2, V1, . . . , Vn−1)

·max
Un−1

δ(Un−1|Vn−1) ·
(
f(V1, . . . , Vn−1)
+ψ(Un−1, Vn−1)

)

 .

Since f(V1, . . . , Vn−1) does not depend on Un−1 we get

E∗f = max
U1,...,Un−2

M
V1,...,Vn−1

(
P (U1, . . . , Un−2, V1, . . . , Vn−1)
· (f(V1, . . . , Vn−1) + ψ(Vn−1))

)
. (28)

where

ψ(Vn−1) = max
Un−1

ψ(Un−1, Vn−1) .

From formula (23) we can get formula (28) by substituting n− 1 for n. Therefore
we can repeat the transformations again and again until n = 2. In case n = 2
formula (28) reduces to

E∗f = M
V1

P (V1) · ψ(V1) ,

which is formula (17) of the theorem we want to prove.
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Abstract

A distance-based method to reconstruct a phylogenetic tree with n leaves
takes a distance matrix, n × n symmetric matrix with 0s in the diagonal, as
its input and reconstructs a tree with n leaves using tools in combinatorics. A
safety radius is a radius from a tree metric (a distance matrix realizing a true
tree) within which the input distance matrices must all lie in order to satisfy
a precise combinatorial condition under which the distance-based method is
guaranteed to return a correct tree. A stochastic safety radius is a safety radius
under which the distance-based method is guaranteed to return a correct tree
within a certain probability. In this paper we investigated stochastic safety radii
for the neighbor-joining (NJ) method and balanced minimal evolution (BME)
method for n = 5.

1 Introduction

A phylogenetic tree (or phylogeny) on the set X = [n] is a graph which summarizes
the relations of evolutionary descent between different species, organisms, or genes.
Phylogenetic trees are useful tools for organizing many types of biological information,
and for reasoning about events which may have occurred in the evolutionary history
of an organism. There has been much research on phylogenetic tree reconstructions
from alignments, and distance-based methods are some of the best-known phylogenetic
tree reconstruction methods.

Once we compute pairwise distances ∀(x, y) ∈ X ×X from an alignment, we can
reconstruct a phylogenetic tree via distance-based methods. In contrast with parsi-
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mony methods, distance-based methods have been shown to be statistically consistent
in all settings (such as the long branch attraction) [7, 3, 4, 1]. Distance-based methods
also have a huge speed advantage over parsimony and likelihood methods in terms of
computational time, and hence enable the reconstruction of trees with large numbers
of taxa. However, a distance-based method is not a perfect method to reconstruct
a phylogenetic tree from the input sequence data set: in the process of computing a
pairwise distance, we ignore interior nodes of a tree as well as a tree topology, and
thus we lose information from the input sequence data sets. Therefore it is important
to understand how a distance based method works and how robust it is with noisy
data sets.

One way to measure its robustness is called the safety radius. A safety radius
is a radius from a tree metric (a distance matrix realizing a true tree) within which
the input distance matrices must all lie in order to satisfy a precise combinatorial
condition under which the distance-based method is guaranteed to return a correct
tree. More precisely, we have the following definition.

Definition 1. Suppose we have a vector representation of all pairwise distances δ ∈
R(n

2) and suppose dT,w := (dxy)x,y∈X , where T ∈ τn, τn is the set of all phylogenetic
unrooted trees with leaves X = [n], and w ∈ R2n−3

+ , where R+ is the set of all non-
negative real numbers, is a vector representation of the set of branch lengths in T , is
a tree metric, i.e., dxy ≥ 0 is the total of branch lengths in the unique path from a
leaf x to a leaf y in T . Let wmin be the smallest interior branch length in T . Then
a method M for reconstructing a phylogenetic X-tree from each distance matrix δ on
X is said to have a l∞ safety radius ρn if for any binary phylogenetic tree T with n
leaves we have:

||δ − dT,w||∞ < ρn · wmin ⇒M(δ) = T.

Notice that the definition of the safety radius defined in Definition 1 is determin-
istic even though the input data δ is a multivariate random variable. Thus, this is
more meaningful to define in terms of probability distribution. Thus, in 2014 Steel
and Gascuel introduced a notion of stochastic safety radius [9].

Definition 2 (Stochastic safety radius). Suppose we allow σ2 to depend on n: σ2 =
c2

log(n)
, for some value c 6= 0. For any η > 0, we say that a distance-based tree

reconstruction method M has η-stochastic safety radius s = sn if for every binary
phylogenetic X-tree T on n leaves, with minimum interior edge length wmin, and with
the distance matrix δ on X described by the random errors model, we have

c < s · wmin ⇒ P (M(δ) = T ) ≥ 1− η.

In this paper we focus on two distance-based methods, namely neighbor-joining
(NJ) method and balanced minimal evolution (BME) method. In 2002, Desper and
Gascuel introduced a BME principle, based on a branch length estimation scheme of
Pauplin [13]. The guiding principle of minimum evolution tree reconstruction methods
is to return a tree whose total length (sum of branch lengths) is minimal, given an
input dissimilarity map. The BME method is a special case of these distance-based
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methods wherein branch lengths are estimated by a weighted least-squares method
(in terms of the input δ and the tree T ∈ τn in question) that puts more emphasis on
shorter distances than longer ones. Each labeled tree topology gives rise to a vector,
called herein the BME vector, which is obtained from Pauplin’s formula. In 2000,
Pauplin showed that the BME method is equivalent to optimizing a linear function,
the dissimilarity map, over the BME representations of binary trees, given by the
BME vectors [13]. Eickmeyer et. al. defined the nth BME polytope as the convex
hull of the BME vectors for all binary trees on a fixed number n of taxa. Hence
the BME method is equivalent to optimizing a linear function, namely, the input
distance matrix δ, over a BME polytope. They characterized the behavior of the
BME phylogenetics on such data sets using the BME polytopes and the BME cones,
i.e., the normal cones of the BME polytope.

The study of related geometric structures, the BME cones, further clarifies the
nature of the link between phylogenetic tree reconstruction using the BME criterion
and using the NJ Algorithm developed by Saitou and Nei [14]. In 2006, Gascuel
and Steel showed that the NJ Algorithm, one of the most popular phylogenetic tree
reconstruction algorithms, is a greedy algorithm for finding the BME tree associated to
a distance matrix δ [8]. The NJ Algorithm relies on a particular criterion for iteratively
selecting cherries; details on cherry-picking and the NJ Algorithm are recalled later
in the paper. In 2008, based on the fact that the selection criterion for cherry-picking
is linear in the distance matrix δ [2], Eickmeyer et. al. showed that the NJ Algorithm
will pick cherries to merge in a particular order and output a particular tree topology
T if and only if the pairwise distances satisfy a system of linear inequalities, whose

solution set forms a polyhedral cone in R(n
2) [5]. They defined such a cone as an NJ

cone. In general, the sequence of cherries chosen by the NJ Algorithm is not unique,
hence multiple distance matrix δ will be assigned by the NJ Algorithm to a single
fixed tree topology T. The set of all distance matrix δ for which the NJ Algorithm
returns a fixed tree topology T is a union of NJ cones, however this union is not
convex in general. Eickmeyer et. al. characterized those dissimilarity maps for which
the NJ Algorithm returns the BME tree, by comparing the NJ cones with the BME
cones, for eight or fewer taxa [5].

In this paper we use the BME cones and NJ cones in order to investigate their
stochastic safety radius for n = 5. Here we assume that the multivariate random
variable δ is defined as follows:

δxy = dxy + εxy,

where εxy ∼ N(0, σ2), the Gaussian distribution with mean 0 and a standard deviation
σ > 0, are independent for all pairwise distance (x, y) ∈ X × X. This paper is
organized as follows: Section 2 shows the probability distribution of a random δ so
that it satisfies the four point rule for all distinct quartets in [n] with a fixed T .
Zarestkii in [11] defined the notion of the four point rule as follows: we select the tree
topology xy|wz (which means there is an internal edge between {x, y} and {w, z} for
a distinct x, y, w, z ∈ [n]) if

δxy + δwz < min{δxw + δyz, δxz + δyw}. (1)
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In Section 3 we will show multivariate probability distribution P (M(δ) = T ) where
T ∈ τ5 is fixed and M is the BME method, in Section 4 shows the multivariate
probability distribution P (M(δ) = T ) where T ∈ τ5 is fixed and M is the NJ method.
Finally in Section 5 we will show some computational results on these probability
distributions and we have shown the plot for the stochastic safety radii for the NJ
and the BME methods varying η and c for n = 5 (Figure 6). As shown in Figure
6 both stochastic safety radii are basically almost identical in this case since the
probability distributions P (M(δ) = T ) for the NJ and for the BME methods are
almost identically same shown in Figure 5 for n = 5 and wmin = 1.

2 Probability distribution on “four point rule”

For a tree containing random errors, the pairwise distance between two leaves is

δxy = dxy + εxy

where x and y are different taxas of a tree, dxy is the true pairwise distance between
taxa x and y, and ε′xys follow i.i.d. Gaussian Distribution with mean 0 and variance
σ2. Intuitively in this section we are computing a probability distribution such that if

we select a random δ ∈ R(n
2), δ satisfies Equation 1 if and only if there is an internal

edge between {x, y} and {w, z} in T ∈ τn, for all distinct {x, y, w, z} ∈ [n]. We find
a formula for the probability, for 5 taxa, that a tree metric with random errors still
obeys the original four-point inequalities on each subset of four leaves.

Figure 1: 4 taxa tree

We first consider four point
rule on 4 taxa tree. Suppose
Figure 1 is the true tree. Then
for a random tree, the follow-
ing inequalities must be satis-
fied in order to return the cor-
rect tree:

δ12 + δ34 ≤ δ13 + δ24
δ12 + δ34 ≤ δ14 + δ23

(2)

Since
δ12 = e1 + e2 + ε12
δ34 = e3 + e4 + ε34
δ13 = e1 + e3 + w + ε13
δ24 = e2 + e4 + w + ε24
δ14 = e1 + e4 + w + ε14
δ23 = e2 + e3 + w + ε23

(3)

Then we can have
ε12 + ε34 ≤ 2w + ε13 + ε24
ε12 + ε34 ≤ 2w + ε14 + ε23

(4)
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Since εxy
iid∼ N(0, σ2), we know ε12 + ε34, ε13 + ε24, ε14 + ε23

iid∼ N(0, 2σ2). Let f
and F be the density and cumulative distribution functions of N(0, 1), respectively.
Then the probability that Inequality 4 is satisfied, i.e. the probability that a random
distance matrix δ returns the true tree, equals to:

∫ ∞

−∞
f(x)[1− F (

x− 2w√
2σ

)]2dx (5)

Now we consider four point rule on 5 taxa tree. Suppose the true tree is Figure
2(a). We need to check the rule on all possible combinations of four distinct leaves
in this tree. It is trivial to see we only have 5 different combinations. For each of
them, we could construct two inequalities similar to the way we obtained Equation 4.
Therefore, we have 10 inequalities for the 5 combinations of 4 distinct taxa:

ε12 + ε34 ≤ 2w1 + ε13 + ε24
ε12 + ε34 ≤ 2w1 + ε14 + ε23
ε12 + ε35 ≤ 2w1 + ε13 + ε25
ε12 + ε35 ≤ 2w1 + ε15 + ε23
ε12 + ε45 ≤ 2w1 + 2w2 + ε14 + ε25
ε12 + ε45 ≤ 2w1 + 2w2 + ε15 + ε24
ε13 + ε45 ≤ 2w2 + ε14 + ε35
ε13 + ε45 ≤ 2w2 + ε15 + ε34
ε23 + ε45 ≤ 2w2 + ε24 + ε35
ε23 + ε45 ≤ 2w2 + ε25 + ε34

(6)

Let ε ≡ (ε12, ε13, ε14, . . . , ε45)T10×1 and

U =




1 −1 0 0 0 −1 0 1 0 0
1 0 −1 0 −1 0 0 1 0 0
1 −1 0 0 0 0 −1 0 1 0
1 0 0 −1 −1 0 0 0 1 0
1 0 −1 0 0 0 −1 0 0 1
1 0 0 −1 0 −1 0 0 0 1
0 1 −1 0 0 0 0 0 −1 1
0 1 0 −1 0 0 0 −1 0 1
0 0 0 0 1 −1 0 0 −1 1
0 0 0 0 1 0 −1 −1 0 1




10×10

,

then the 10 inequalities are:

Uε ≤ (2w1, 2w1, 2w1, 2w1, 2w1 + 2w2, 2w1 + 2w2, 2w2, 2w2, 2w2, 2w2)T . (7)

Thus the probability that a 5-leaved tree metric with random errors still obeys the
original-four point inequalities on each subset of four leaves is the probability that
inequality (7) is satisfied.
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3 Probability distribution of the output tree via the
BME method

This method begins with a given set of n items and a symmetric (or upper triangular)
square n×n distance matrix whose entries are numerical dissimilarities, or distances,
between pairs of items. From the distance matrix the BME method constructs a
binary tree with the n items labeling the n leaves. The BME tree has the property
that the distances between its leaves most closely match the given distances between
corresponding pairs of taxa.

By “most closely match” in the previous paragraph we mean the following: the
reciprocals of the distances between leaves are the components of a vector c, and this
vector minimizes the dot product c · δ where δ is the list of distances in the upper
triangle of the distance matrix.

More precisely: Let the set of n distinct species, or taxa, be called X. For con-
venience we will often let X = [n] = {1, 2, . . . , n}. Let vector δ be given, having

(
n
2

)

real valued components δxy, one for each pair {x, y} ⊂ X. There is a vector c(t) for
each binary tree t on leaves X, also having

(
n
2

)
components cxy(t), one for each pair

{x, y} ⊂ X. These components are ordered in the same way for both vectors, and we
will use the lexicographic ordering: δ = (δ12, δ13, . . . , δ1n, δ23, δ24, . . . , δn−1,n).

We define, following Pauplin [13]:

cxy(t) =
1

2l(x,y)

where l(x, y) is the number of internal nodes (degree 3 vertices) in the path from leaf
x to leaf y. The BME tree for the vector δ is the binary tree t that minimizes δ · c(t)
for all binary trees on leaves X. Rather than the original fractional coordinates cxy
we will scale by a factor of 2n−2, giving coordinates

xxy = 2n−2cxy = 2n−2−l(x,y).

Since the furthest apart any two leaves may be is a distance of n− 2 internal nodes,
this scaling will result in integral coordinates. Thus we can equivalently say that the
BME tree for the vector δ is the binary tree t that minimizes δ · x(t) for all binary
trees on leaves X.

Consider a tree metric dT which arises from a binary tree T with five leaves
{a, b, c, d, e}. Let the interior edges e1 and e2 have lengths wi = l(ei).

Theorem 3. Let T , the tree for which dT is a tree metric, have cherries {a, b} and
{c, d}.

Let:
y1 = 2εac + εad − εbc + εbd + 3εbe − εce

y2 = 2εac + εae − εbc + 3εbd + εbe − εcd
y3 = −εac + εad + 3εae + 2εbc + εbd − 1εce
y4 = −εac + 3εad + εae + 2εbc + εbe − εcd
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Let:

z1 = −εac + 3εad + εbd + εbe − εcd + 2εce

z2 = −εac + 3εae + εbd + εbe + 2εcd − εce
z3 = εad + εae − εbc + 3εbd − εcd + 2εce

z4 = εad + εae − εbc + 3εbe + 2εcd − εce

Then the BME method will return the correct tree T if and only if:

4w2 > εac + εbc + 2εde −min(εad + εbd + 2εce, εae + εbe + 2εcd)

6w1 + 4w2 > 3εab + 2εde −min(y1, y2, y3, y4)

6w1 + 6w2 > 3εab + 3εde −min(3εae + 3εbd, 3εad + 3εbe)

4w1 + 6w2 > 2εab + 3εde −min(z1, z2, z3, z4)

4w1 > 2εab + εcd + εce −min(εad + εae + 2εbc, 2εac + εbd + εbe)

Proof. The BME method will return the correct tree T if and only if

(dT + ε) · x(T ) < (dT + ε) · x(t)

for all alternate trees t. This is true since the 1-skeleton of the BME polytope for
n = 5 is the complete graph on the 15 vertices.

Further, the above inequality holds iff

dT · (x(t)− x(T )) > ε · (x(T )− x(t))

for all alternate trees t. Note that all the trees with five leaves have the same topology.

There are 14 other possible trees t. These separate into 5 sets of trees for which the
left hand side of the above inequality is respectively 4w2, 6w1 +4w2, 6w1 +6w2, 4w1 +
6w2, or 4w1. For each of these we collect the right hand sides, and take their maximum.

4 Probability distribution of the output tree via the
NJ method

4.1 H-representation of NJ cones [6]

Recall that the tree metric dT,w = (dxy)1≤x,y≤n is a symmetric matrix with dxx = 0.
We can flatten the entries in the upper triangle (diagonal entries are omitted) by
columns:

dxy = d (y−1)(y−2)
2 +x

,
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where 1 ≤ x ≤ n − 1 and x + 1 ≤ y ≤ n. Let d = (d1, d2, . . . , dm), m :=
(
n
2

)
, be the

vector of tree metric after flattening. Notice here this flattening defines a one-to-one
mapping between the indices:

If : {(x, y) ∈ Z : 1 ≤ x ≤ n− 1, x+ 1 ≤ y ≤ n} → {1, 2, . . . ,m}, If (x, y) =
(y − 1)(y − 2)

2
+ x.

In NJ algorithm, we first compute the Q-criterion (cherry picking criterion):

qxy = (n− 2)dxy −
n∑

z=1

dxz −
n∑

z=1

dzy.

Similar as the flattened tree metric d, the Q-criterion can also be flattened to a m
dimensional vector q which can be obtained from d by linear transformation:

q = A(n)d,

where matrix A(n) is defined as:

A
(n)
ij =





n− 4 if i = j

−1 if i 6= j and {x, y} ∩ {z, w} 6= ∅
0 else

,

where (x, y) = I−1f (i) and (z, w) = I−1f (j).
Now each entry in q corresponds to a pair of nodes in T , the next step of NJ

algorithm is to find the minimum entry of q and join the corresponding two nodes
as a cherry (“cherry picking”), then these two nodes will be replaced by a new node
and the tree metric will be updated as d′ (the dimension is reduced). We can see
NJ algorithm proceeds by picking one cherry and reducing the size of the tree metric
in each iteration until a binary tree is reconstructed. Without loss of generality and
for the convenience of expression, we will only give details for the first iteration and
assume the cherry we pick is (n− 1, n) in the rest part of this section.

First, to make cherry (n− 1, n) be the one to be picked, qm = qIf (n−1,n) needs to
be the minimum in q. This means the following inequalities need to be satisfied:

(Im−1,−1m−1)q ≥ 0 =⇒ H(n)d ≥ 0, H(n) = (Im−1,−1m−1)A(n).

Note that if an arbitrary cherry is picked, then a permutation of columns need to be
assigned to H(n).

Then, after picking cherry (n − 1, n), we join these two nodes as the new node
(n − 1)∗. Again, we can produce the new reduced tree metric from d by linear
transformation:

d′ = Rd,

where R = (rij) ∈ R(m−n+1)×m,

rij =





1 if 1 ≤ i = j ≤
(
n−2
2

)

1/2 if
(
n−2
2

)
+ 1 ≤ i ≤

(
n−1
2

)
, j = i

1/2 if
(
n−2
2

)
+ 1 ≤ i ≤

(
n−1
2

)
, j = i+ n− 2

−1/2 if
(
n−2
2

)
+ 1 ≤ i ≤

(
n−1
2

)
, j = m

0 else

.
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At last, after including inequalities in all iterations, by the shifting lemma in [6],
we also include the following equalities: ∀ node x,

sTxd = 0, (sx)i =

{
1 if x ∈ I−1f (i)

0 else
.

4.2 H-representation of 5 taxa NJ cones

There is only one tree topology for 5 taxa tree. Therefore, without loss of generality,
we assume our true tree is Figure 2(a).

(a) The 5 taxa tree

(b) Two orderings of picking cherries for 5 taxa tree

Figure 2: The 5 taxa tree used to generate data, all edges has length 1

For 5 taxa tree, the flattening for tree metric is:

xy: 12 13 23 14 24 34 15 25 35 45
( )d = d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

Jing Xi, Jin Xie, Ruriko Yoshida, Stefan Forcey

225



In Section 4.1, we can see that the permutation of columns for H(n) and R depends
on the cherry we pick. This means that we should compute NJ cones for all ordering
of cherry picking (see the two orderings of cherry picking in Figure 2(b) for example).

There are four orderings of cherry picking. First we can pick cherry (1, 2) then
pick cherry (4, 5), which we denote as (1, 2) − (4, 5). Use a similar notation we have
the other three: (1, 2) − ((1, 2), 3), (4, 5) − (1, 2), and (4, 5) − (3, (4, 5)). Take the
ordering (4, 5) − (3, (4, 5)) for example, use the results in Section 4.1 we can obtain
the following linear constraints on d:




1 −1 −1 0 0 1 0 0 1 −1
−1 1 −1 0 1 0 0 1 0 −1
−1 −1 1 1 0 0 1 0 0 −1
−1 −1 0 2 0 0 0 1 1 −2
−1 0 −1 0 2 0 1 0 1 −2
0 −1 −1 0 0 2 1 1 0 −2
−1 −1 0 0 1 1 2 0 0 −2
−1 0 −1 1 0 1 0 2 0 −2
0 −1 −1 1 1 0 0 0 2 −2
−1 1 0 0 0.5 −0.5 0 0.5 −0.5 0
−1 0 1 0.5 0 −0.5 0.5 0 −0.5 0




d ≥ 0;




1 1 0 1 0 0 1 0 0 0
1 0 1 0 1 0 0 1 0 0
0 1 1 0 0 1 0 0 1 0
0 0 0 1 1 1 0 0 0 1
0 0 0 0 0 0 1 1 1 1




d = 0;

Although it is not obvious to see, we found that the linear constraints for orderings
(1, 2) − (4, 5) and (1, 2) − ((1, 2), 3) are exactly the same, and the linear constraints
for orderings (4, 5)− (1, 2) and (4, 5)− (3, (4, 5)) are exactly the same. Therefore we
only consider two NJ cones: the one for (1, 2)− (4, 5) (denote as C(1,2)−(4,5)), and the
one for (4, 5)− (1, 2) (denote as C(4,5)−(1,2)).

4.3 Computing the probability that NJ reconstructs the cor-
rect 5 taxa tree

For the 5 taxa tree given in Figure 2(a) under the random errors model, we know
that the flattened δ should follow a multi-variate normal (MVN) distribution with
mean µ = (2, 3, 3, 4, 4, 3, 4, 4, 3, 2) and covariance matrix Σ = σ2I10. To trace the
performance of NJ algorithm under different variation, we let σ2 to be a set of values
in (0, 1] and then compute the probability that NJ algorithm reconstructs the correct
tree for each value of σ2.

For a given σ2, it is trivial to see that the probability that NJ algorithm returns
the right tree is Pr(δ ∈ C(1,2)−(4,5)) + Pr(δ ∈ C(4,5)−(1,2)) − Pr(δ ∈ C(1,2)−(4,5) ∩
C(4,5)−(1,2)).
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We used software Polymake [10] and verified that the dimension of C(1,2)−(4,5) ∩
C(4,5)−(1,2) is lower than both of them, therefore Pr(δ ∈ C(1,2)−(4,5)∩C(4,5)−(1,2)) = 0.
Polymake also gives us the facets of these two NJ cones. For example, the facets of
C(4,5)−(1,2) are:




1 −1 −1 0 0 1 0 0 1 −1
−1 −1 0 2 0 0 0 1 1 −2
−1 0 −1 0 2 0 1 0 1 −2
0 −1 −1 0 0 2 1 1 0 −2
−1 −1 0 0 1 1 2 0 0 −2
−1 0 −1 1 0 1 0 2 0 −2
0 −1 −1 1 1 0 0 0 2 −2
−1 0 1 0.5 0 −0.5 0.5 0 −0.5 0
−1 1 0 0 0.5 −0.5 0 0.5 −0.5 0




d ≥ 0;

With these facets, we can use the R function “pmvnorm{mvtnorm}” with GenzBretz
algorithm to compute Pr(δ ∈ C(1,2)−(4,5)) and Pr(δ ∈ C(4,5)−(1,2)).

5 Computational experiments

In this section, we show both the theoretical and simulation probabilities that the four
point rule reconstructs the correct tree, as well as NJ algorithm and BME method.
In our computational experiments, we set all branch lengths to be 1’s and compute
the probabilities for different values of σ2.

Figure 3: Theoretical probability that four
point rule will return the correct 4 taxa tree,
and that 5 taxa tree metric with random errors
still obeys the original four-point inequalities
on each subset of four leaves.

In Figure 3, when σ2 is increas-
ing, the probability of 5 taxa tree will
dramatically decrease faster than the
probability of 4 taxa tree because we
have more constraints to satisfy in 5
taxa tree which leads to lower prob-
abilities.

In Figure 4(a), we calculated the
theoretical probability that the NJ
method reconstructs the correct 5
taxa tree based on Section 4. For the
simulation, we fix the 5 taxa tree in
Figure 2(a) with all branch lengths
to be 1′s, and add i.i.d. normal ran-
dom errors ε′xys to the pairwise dis-
tance matrix. Then we use R func-
tion “nj{ape}” from the “ape” pack-
age in R [12] to reconstruct the tree.
If the RF distance equals 0, it means
that NJ method successfully returns
the correct tree. Our simulation is based on 10,000 random trees. Figure 4(a) shows
that the theoretical probabilities perfectly match the simulation result.
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(a) Theoretical Probability and Simula-
tion for NJ on 5 Taxa Tree

(b) Theoretical Probability and Simulation for
BME on 5 Taxa Tree

Figure 4: Probability distributions for five leaves

Figure 5: Comparison between BME and NJ on 5 Taxa Tree

Figure 6: Stochastic safety radii for the NJ
and BME methods for n = 5. The x-axis rep-
resents η and the y-axis represents the upper
bound for c/wmin with wmin = 1 for this ex-
periment.

In Figure 4(b), we calculated the
theoretical and simulated probabili-
ties that the BME method will re-
turn the correct 5 taxa tree. For the
theoretical probability, we generate
100,000 sets of random errors, and
check whether the theoretical rule is
satisfied. In the end, we return the
percentage. For the simulation, we
generate random trees in the simi-
lar way to what we did for NJ al-
gorithm. Then we used R function
“fastme.bal{ape}” to reconstruct the
tree. Again we used RF distance to
check if the BME method success-
fully returned the correct tree. Our
simulation is based on 10,000 random
trees. Figure 4(b) shows that the the-
oretical probabilities perfectly match
the simulation result.
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Figure 5 shows that there is almost no difference between BME and NJ methods
on 5 taxa tree in both theoretical probabilities and simulation result.

Figure 6 shows the stochastic safety radii for the NJ and the BME methods for
n = 5 and wmin = 1. As shown in Figure 6 both stochastic safety radii are basically
almost identical in this case since the probability distributions P (M(δ) = T ) for the
NJ and for the BME methods are almost identically same shown in Figure 5.
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Abstract

In this contribution we focus on the finite collection of sources, providing
their opinions about a hidden (stochastic) phenomenon, that is not directly
observable. The assumption on obtaining opinions yields a decision making
process commonly referred to as opinion pooling. Due to the complexity of the
space of possible decisions we consider the probability distributions over this
set rather than single values, exploited before, e.g., in [2]. The final decision
(result of pooling) is then a combination of probability distributions provided
by sources. Here, we in particular exploit the combination introduced in [4],
assuming each source is cooperating and willing to share its opinion with others,
but selfishly requires the combination to be close to its opinion. The summary
of basic steps is given below.

1 Kullback-Leibler divergence based combination of
sources’ opinions

Let us have s <∞ sources providing discrete probability distributions represented by
probability mass functions (pmf) p1, . . . ,ps:

pj = (pj1, . . . , pjn) : pji > 0,

n∑

i=1

pji = 1, n <∞, j = 1, . . . , s. (1)

By exploiting theory of the Bayesian decision making [3] we search for their combi-
nation as the estimator q̂ of an unknown pmf q minimizing the expected Kullback-
Leibler divergence [1]:

Eπ(q|p1,...,ps)KLD(q||q̂). (2)
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231



The minimizer of (2) is

q̂ = Eπ(q|p1,...,ps)[q|p1, . . . ,ps]. (3)

To obtain the conditional expectation in (3) the conditional probability density
function (pdf) π(q|p1, . . . ,ps) has to be specified. We formalize the notion of selfish-
ness among sources by considering the following equality constraints:

Eπ(q|p1,...,ps)[KLD(pj ||q)|p1, . . . ,ps] = Eπ(q|p1,...,ps)[KLD(ps||q)|p1, . . . ,ps], (4)

j = 1, . . . , s − 1. Let S denote the set of all pdfs π(q|p1, . . . ,ps) satisfying (4). We
now exploit the minimum cross-entropy principle [5] and choose the conditional pdf
π(q|p1, . . . ,ps) ∈ S that solves:

min
π(q|p1,...,ps)∈S

KLD(π(q|p1, . . . ,ps)||π0(q)), (5)

where π0(q) denotes the prior guess on the conditional pdf π(q|p1, . . . ,ps).
We choose the pdf of the Dirichlet distribution with parameters

ν01, . . . , ν0n as the prior guess π0(q) for its computationally advantageous properties.
Then, the conditional pdf π̂(q|p1, . . . ,ps) minimizing (5) is also the pdf of the Dirich-
let distribution Dir(ν̂1, . . . , ν̂n). The values of its parameters ν̂1, . . . , ν̂n are expressed
by the following formula:

ν̂i = ν0i +

s∑

j=1

λj(pji − psi), i = 1, . . . , n, (6)

where λj are the Lagrange multipliers resulting from minimization of (5) with respect
to (s− 1) equations in (4), and the combination (3) is

q̂i =
ν0i∑n
k=1 ν0k

+

s∑

j=1

λj∑n
k=1 ν0k

(pji − psi), i = 1, . . . , n. (7)

Although the combination has been introduced earlier in [4], its properties have not
received much attention. We next discuss the choice of prior parameters ν01, . . . , ν0n
and the changes in the value of the combination when we deal with duplicate opinions.

2 Properties of the combination

It is somewhat surprising that the equation (6) combines simultaneously both, the pa-
rameters of the Dirichlet distribution and pmfs p1, . . . ,ps. Pmfs provided by sources
can be viewed as individual guess for ν1, . . . , νn when

∑n
k=1 νk =

∑n
k=1 ν0k = 1. By

plugging this relation into (7) we obtain

q̂i = p0i +

s−1∑

j=1

λjpji +


−

s−1∑

j=1

λj


 psi, (8)
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where prior pmf (p01, . . . , p0n), generally p0i = ν0i∑n

k=1
ν0k

, coincides with (ν01, . . . , ν0n),

a part of q̂ induced by prior pdf prior pdf π0(q).
Remind that we focus on combining sources’ (experts’) opinions, where the prior

information about the studied problem may not be available. For the prior guess on
(p01, . . . , p0n) one should then exploit provided pmfs p1, . . . ,ps. Based on the addi-
tive nature of the derived optimal estimator q̂ and the considered relation between
(ν01, . . . , ν0n) and (p01, . . . , p0n) in (8), we focus on the weighted linear combination
of p1, . . . ,ps, e.g., arithmetic mean. Preferences can be assigned by delegated per-
son or depend on other available information, e.g., sources’ prior information about
parameters of the Dirichlet distribution. The constraints (equality of the expected
KL-divergences) should then be modified accordingly.

We next study how the value of the combination (7) changes with the dupli-
cate data. Let us now have s + 1 pmfs p1, . . . ,ps,ps+1 and for simplicity assume
that ps+1,i = ps,i, i = 1, . . . , n. Let λ1, . . . , λs be the Lagrange multipliers related
to s equality constraints in (4). Then, for a fixed prior pmf p0, the combination
of p1, . . . ,ps,ps+1 coincides with combination evaluated with omission of ps+1 and
unchanged p0:

q̂i = p0i +

s−1∑

j=1

λj(pji − psi) + λs(psi − psi). (9)

The additivity property of combination (7) implies that if other s1 sources gave the
same pmf pk, then the coefficient of each source equals λk

s1
.

It may seem strange that repeated sources’ opinion are not taken more “seriously”,
with a higher weight. This is consequence of the fact that individual sources are
not qualified by a weight reflecting their reliability. When such a weighting will be
introduced, the coincidence of opinions can be taken into account and distinguished
from cheating by repetitions of the same opinion.

Conclusion and future work

In this contribution we focused on approach to combining sources’ opinions described
in [4]. This combination is of a conservative type and qualifies all repetitions as
“cheating”, prevents overweighing of such source. The analogue of (7), where the
prior guess p0 as well as the constraints (4) are influenced by preferences among
sources, is of interest in the future.

Keywords

combining discrete probability distributions, linear opinion pooling, minimum cross-
entropy principle
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